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and the parameter z can be interpreted as an activity (fugacity)
of the lattice gas. This classical model in two dimensions
has been studied extensively in the literature of statistical
mechanics. For instance, the model on the square lattice is
known as the hard-square model. One can easily imagine that
the system undergoes a phase transition from a liquid state
at z ! 1 to a solid state at z " 1, where the difference of
the sublattice occupations is nonzero. In fact, previous studies
have shown that the model exhibits an order-disorder phase
transition at z = zc # 3.796 [39–41]. This second-order phase
transition belongs to the same universality class as the 2D
Ising model. The model on the triangular lattice is called the
hard-hexagon model, which is integrable and was solved by
Baxter [34]. It also exhibits an order-disorder phase transition
at z = zc = (11 + 5

√
5)/2 = 11.09017..., but this transition

belongs to the universality class of the three-state Potts model.
Let us return to the original quantum model. A particular

feature of the present construction is that correlation functions
in the quantum ground state are the same as those of the
corresponding classical model [36]. This provides useful
information on the ground-state phase diagram of the quantum
model. In fact, if the parameter z is tuned so that the
corresponding classical model is critical, then the ground
state has algebraically decaying correlation functions, which
suggests that the quantum model is critical as well. This type
of quantum critical point is called conformal quantum critical
point because the ground-state wave functional is conformally
invariant in the scaling limit [42].

III. ENTANGLEMENT PROPERTIES

In this section, we consider the exact ground state Eq. (5)
on a two-leg ladder as shown in Fig. 1. The classical partition
function Eq. (7) is defined on the same ladder, which is still
1D. This implies that there is no critical point at finite z and
the correlation functions of local operators in the ground state
are exponentially decaying. Nevertheless, we find an intimate
relation to CFTs, which will be revealed by the analysis of the
entanglement properties. We show that the ES of this system
can be inferred from the spectrum of the transfer matrix in
the corresponding 2D classical system. We also study the
von Neumann entropy associated with the ground state of the
entanglement Hamiltonian, and show that the underlying CFT
is a unitary minimal model with central charge c < 1.

(a)

(b)

FIG. 1. (Color online) (a) Two-leg square ladder and (b) two-leg
triangular (zigzag) ladder. The systems are divided into two parts, A

and B, as indicated by the dashed lines. We impose periodic boundary
conditions in the leg direction: τL+1 = τ1 and σL+1 = σ1.

(a)

(b)

(c)

FIG. 2. (Color online) (a) Graphical representation of the local
Boltzmann weights. Allowed configurations and their Boltzmann
weights for the square ladder (b) and the triangular ladder (c).

A. Reduced density matrix

Consider the two-leg ladder of length L with periodic
boundary conditions in the leg direction. We divide the system
into two subsystems, A and B, as shown in Fig. 1. Let
τ = {τ1,τ2, . . . ,τL} be a particle configuration on the chain in
A, and σ = {σ1,σ2, . . . ,σL} be that on the chain in B. Here τi =
1 (0) if the site i on A is occupied (empty). The same applies
to σi . Let |τ 〉 and |σ 〉 denote the corresponding basis states
in the quantum model. Then the (unnormalized) ground state
|#(z)〉 on the ladder is written as

|#(z)〉 =
∑

τ

∑

σ

[T (z)]τ,σ |τ 〉 ⊗ |σ 〉, (8)

where

[T (z)]τ,σ :=
L∏

i=1

w(σi ,σi+1,τi+1,τi), (9)

with w(a,b,c,d) being the Boltzmann weights for each face
(see Fig. 2). More explicitly, for the square ladder, we have

[T (z)]τ,σ =
L∏

i=1

z(σi+τi )/2(1 − σiτi)(1 − σiσi+1)(1 − τiτi+1),

(10)

and for the triangular ladder, we have

[T (z)]τ,σ =
L∏

i=1

z(σi+τi )/2(1 − σiτi)(1 − σiσi+1)

× (1 − τiτi+1)(1 − τiσi+1). (11)

One can think of T (z) in Eq. (8) as an NL-dimensional
matrix, where NL is the number of allowed configurations
in each chain [43]. In fact, we can identify T (z) as the transfer
matrix of the 2D classical lattice gas model with hard-core
exclusion [34]. Note that a similar transfer matrix formalism
was also applied to entanglement entropies of the 2D RK wave
function [44].

The reduced density matrix for A describing the en-
tanglement between the two subsystems is defined by
ρA := TrB[|z〉〈z|]. To obtain the spectrum of ρA, we follow
the approach used in Ref. [45]. A similar approach has been
applied to the 2D VBS states [22,46]. We first write the state
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corresponding classical model [36]. This provides useful
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model. In fact, if the parameter z is tuned so that the
corresponding classical model is critical, then the ground
state has algebraically decaying correlation functions, which
suggests that the quantum model is critical as well. This type
of quantum critical point is called conformal quantum critical
point because the ground-state wave functional is conformally
invariant in the scaling limit [42].
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on a two-leg ladder as shown in Fig. 1. The classical partition
function Eq. (7) is defined on the same ladder, which is still
1D. This implies that there is no critical point at finite z and
the correlation functions of local operators in the ground state
are exponentially decaying. Nevertheless, we find an intimate
relation to CFTs, which will be revealed by the analysis of the
entanglement properties. We show that the ES of this system
can be inferred from the spectrum of the transfer matrix in
the corresponding 2D classical system. We also study the
von Neumann entropy associated with the ground state of the
entanglement Hamiltonian, and show that the underlying CFT
is a unitary minimal model with central charge c < 1.
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A. Reduced density matrix

Consider the two-leg ladder of length L with periodic
boundary conditions in the leg direction. We divide the system
into two subsystems, A and B, as shown in Fig. 1. Let
τ = {τ1,τ2, . . . ,τL} be a particle configuration on the chain in
A, and σ = {σ1,σ2, . . . ,σL} be that on the chain in B. Here τi =
1 (0) if the site i on A is occupied (empty). The same applies
to σi . Let |τ 〉 and |σ 〉 denote the corresponding basis states
in the quantum model. Then the (unnormalized) ground state
|#(z)〉 on the ladder is written as

|#(z)〉 =
∑

τ

∑

σ

[T (z)]τ,σ |τ 〉 ⊗ |σ 〉, (8)

where

[T (z)]τ,σ :=
L∏

i=1

w(σi ,σi+1,τi+1,τi), (9)

with w(a,b,c,d) being the Boltzmann weights for each face
(see Fig. 2). More explicitly, for the square ladder, we have

[T (z)]τ,σ =
L∏

i=1

z(σi+τi )/2(1 − σiτi)(1 − σiσi+1)(1 − τiτi+1),

(10)

and for the triangular ladder, we have

[T (z)]τ,σ =
L∏

i=1

z(σi+τi )/2(1 − σiτi)(1 − σiσi+1)

× (1 − τiτi+1)(1 − τiσi+1). (11)

One can think of T (z) in Eq. (8) as an NL-dimensional
matrix, where NL is the number of allowed configurations
in each chain [43]. In fact, we can identify T (z) as the transfer
matrix of the 2D classical lattice gas model with hard-core
exclusion [34]. Note that a similar transfer matrix formalism
was also applied to entanglement entropies of the 2D RK wave
function [44].

The reduced density matrix for A describing the en-
tanglement between the two subsystems is defined by
ρA := TrB[|z〉〈z|]. To obtain the spectrum of ρA, we follow
the approach used in Ref. [45]. A similar approach has been
applied to the 2D VBS states [22,46]. We first write the state

032326-3

| (z)i =
X

⌧

X

�

[T (z)]⌧,�|⌧i ⌦ |�i

[T (z)]⌧,� =
LY

i=1

z(�i+⌧i)/2(1� �i⌧i)(1� �i�i+1)

⇥ (1� ⌧i⌧i+1)(1� ⌧i�i+1)

[T (z)]⌧,� =
LY

i=1

z(�i+⌧i)/2(1� �i⌧i)(1� �i�i+1)

⇥ (1� ⌧i⌧i+1)

1 z1/4 z1/4 z1/4 z1/4 z1/2 z1/2 1 z1/4 z1/4 z1/4 z1/4 z1/2

We can identify        as the transfer matrix of 
two-dimensional lattice gas with hard-core exclusion.

T (z)

ラダー格子上の量子ハードコア粒子系のエンタングルメント・スペクトル
物材機構　田村亮PS-B23

Two-leg ladder system

Shu Tanaka, Ryo Tamura, and Hosho Katsura, Phys. Rev. A 86, 032326 (2012).



4

Hard-square model
(Square lattice)

Hard-hexagon model
(Triangular lattice)

 Universality class:
Two-dimensional Ising model

Universality class:
Two-dimensional three-state Potts model

twofold
symmetry
breaking

threefold
symmetry
breaking

so
lid

liq
ui
d

z = zc

= 11.09017 · · ·
z = zc

' 3.796

ラダー格子上の量子ハードコア粒子系のエンタングルメント・スペクトル
物材機構　田村亮PS-B23

Corresponding two-dimensional classical lattice gas

Shu Tanaka, Ryo Tamura, and Hosho Katsura, Phys. Rev. A 86, 032326 (2012).



5

ENTANGLEMENT SPECTRA OF THE QUANTUM HARD- . . . PHYSICAL REVIEW A 86, 032326 (2012)

states are related to each other by translations. Therefore, we
have ρA ∼ 1√

2
(|0101...〉〈0101...| + |1010...〉〈1010...|) for the

square ladder and a similar one with period 3 for the triangular
ladder. As a result, we obtain the observed saturation values
of EE. In the opposite limit z → 0, the EEs become zero
since the ground state is the vacuum state [see Eq. (6)]. In the
intermediate region between these two limits, the EE shows a
nonmonotonic dependence on z and has a peak in both square
and triangular ladders as shown in Figs. 4(a) and 4(b). In both
cases, the peak position is at about z = zc (i.e., the critical
activity in the corresponding classical model), and remains
almost unchanged with increasing L.

Let us focus on the entanglement properties of the model at
z = zc. Figures 4(c) and 4(d) show the scaling of the EE S(L)
for both the square and triangular ladders. From these plots, it
is clear that the EEs at z = zc scale linearly with the system
size L (corresponding to the length of the boundary between
A and B) and thus obey the area law:

S(L) = αL + S0, (17)

where α and S0 are the fitting parameters independent of
L. For square and triangular ladders, (α,S0) = [0.2272(3),
− 0.036(6)], and (α,S0) = [0.4001(3),0.020(5)], respectively.
In both cases, S0 is nearly zero, suggesting that the topological
EE introduced in Refs. [48,49] is zero in our system. This is
consistent with the fact that CFTs describing the entanglement
Hamiltonians of our system are nonchiral as we will see later.

As discussed in the previous subsection, the Gram matrix
M can be interpreted as a transfer matrix in the corresponding
2D classical model. Therefore, we expect that the anomalous
behavior of EE at z = zc is attributed to the phase transition in
the classical model. To study the nature of the phase transitions
in both square and triangular cases, we perform a finite-size
scaling analysis of the correlation length. The correlation
length is defined in terms of the entanglement gap as

ξ (z) := 1
ln[p(1)(z)/p(2)(z)]

, (18)

where p(1)(z) and p(2)(z) are the largest and the second-largest
eigenvalues of M at z, respectively. Figures 4(e) and 4(f) show
the correlation length divided by the system size L as a function
of z for both square and triangular cases. Clearly, the curves for
different system sizes cross at the same point z = zc, which
implies that the dynamical critical exponent is given by 1.
Near the critical point, we expect that ξ (z)/L obeys the scaling
relation,

ξ (z)/L = f ((z − zc)L1/ν), (19)

where ν is the correlation length exponent and f (·) is a scaling
function. Figures 5(a) and 5(b) show plots of ξ (z)/L versus
the scaling variable (z − zc)L1/ν . For the square ladder, we
find a good data collapse with ν = 1, which agrees with
the correlation length exponent of the 2D Ising model [see
Fig. 5(a)]. On the other hand, for the triangular ladder, the
exact value ν = 5/6 can be obtained by noting that the two-row
transfer matrix shown in Fig. 3(b) is exactly equivalent to that
of the hard-hexagon model [50]. We obtain an excellent data
collapse as shown in Fig. 5(b). Note that the exponent ν = 5/6
coincides with that of the three-state Potts model [51].
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FIG. 5. (Color online) Finite-size scaling plot of ξ (z)/L for the
square ladder (a) and that for the triangular ladder (b). The correlation
length exponents of the square and triangular ladders are ν = 1 and
ν = 5/6, respectively.

C. Entanglement spectrum (ES)

The anomalous behavior of the correlation length at z = zc

suggests that the entanglement gap at this point vanishes
linearly with 1/L. To further elucidate the gapless nature of
the entanglement Hamiltonian HE := − ln M , we calculate
the excitation spectrum of HE at the critical point. The ES
{λα}α=1,...,NL

can be obtained from the relation λα = − ln pα .
Each eigenstate is labeled by the total momentum k due to
the translational symmetry in the leg direction. Figure 6 shows
the ES of both square and triangular ladders at z = zc. In
both cases, there is the minimum eigenvalue λ0(:= minα λα) at
k = 0, and the ES is symmetric about k = 0 and k = π (mod
2π ). For the square ladder, the gapless modes at momenta
k = 0 and k = π are clearly visible. On the other hand, for the
triangular ladder, they are at k = 0, 2π/3, and 4π/3.

These towers of energy levels can be identified as those of
CFTs describing the low-energy spectra of HE. As opposed to
topologically ordered systems such as fractional quantum Hall
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FIG. 6. (Color online) Low-energy spectra of the entanglement
Hamiltonian HE at z = zc for the square ladder (top panel) and
for the triangular ladder (bottom panel). In both cases, the system
size is L = 18. The ground-state energy of HE is denoted by λ0.
The red open circles indicate positions of the primary fields of the
corresponding CFTs, while the green open squares imply the positions
of the descendant fields. Discrepancies between the numerical results
and the CFT predictions are due to finite-size effects.
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M can be interpreted as a transfer matrix in the corresponding
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behavior of EE at z = zc is attributed to the phase transition in
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length is defined in terms of the entanglement gap as
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eigenvalues of M at z, respectively. Figures 4(e) and 4(f) show
the correlation length divided by the system size L as a function
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different system sizes cross at the same point z = zc, which
implies that the dynamical critical exponent is given by 1.
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where ν is the correlation length exponent and f (·) is a scaling
function. Figures 5(a) and 5(b) show plots of ξ (z)/L versus
the scaling variable (z − zc)L1/ν . For the square ladder, we
find a good data collapse with ν = 1, which agrees with
the correlation length exponent of the 2D Ising model [see
Fig. 5(a)]. On the other hand, for the triangular ladder, the
exact value ν = 5/6 can be obtained by noting that the two-row
transfer matrix shown in Fig. 3(b) is exactly equivalent to that
of the hard-hexagon model [50]. We obtain an excellent data
collapse as shown in Fig. 5(b). Note that the exponent ν = 5/6
coincides with that of the three-state Potts model [51].
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suggests that the entanglement gap at this point vanishes
linearly with 1/L. To further elucidate the gapless nature of
the entanglement Hamiltonian HE := − ln M , we calculate
the excitation spectrum of HE at the critical point. The ES
{λα}α=1,...,NL

can be obtained from the relation λα = − ln pα .
Each eigenstate is labeled by the total momentum k due to
the translational symmetry in the leg direction. Figure 6 shows
the ES of both square and triangular ladders at z = zc. In
both cases, there is the minimum eigenvalue λ0(:= minα λα) at
k = 0, and the ES is symmetric about k = 0 and k = π (mod
2π ). For the square ladder, the gapless modes at momenta
k = 0 and k = π are clearly visible. On the other hand, for the
triangular ladder, they are at k = 0, 2π/3, and 4π/3.

These towers of energy levels can be identified as those of
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 0

 2

 4

 6

 0  0.25  0.5  0.75  1

λ-
λ 0

k/2π

 0

 1

 2

 0  0.25  0.5  0.75  1

λ-
λ 0

k/2π

FIG. 6. (Color online) Low-energy spectra of the entanglement
Hamiltonian HE at z = zc for the square ladder (top panel) and
for the triangular ladder (bottom panel). In both cases, the system
size is L = 18. The ground-state energy of HE is denoted by λ0.
The red open circles indicate positions of the primary fields of the
corresponding CFTs, while the green open squares imply the positions
of the descendant fields. Discrepancies between the numerical results
and the CFT predictions are due to finite-size effects.

032326-5

ラダー格子上の量子ハードコア粒子系のエンタングルメント・スペクトル
物材機構　田村亮PS-B23

Square ladder Triangular ladder

c = 1/2
Two-dimensional Ising model

c = 4/5
Two-dimensional three-state 

Potts model
Shu Tanaka, Ryo Tamura, and Hosho Katsura, Phys. Rev. A 86, 032326 (2012).

Entanglement spectrum

ENTANGLEMENT SPECTRA OF THE QUANTUM HARD- . . . PHYSICAL REVIEW A 86, 032326 (2012)

and the parameter z can be interpreted as an activity (fugacity)
of the lattice gas. This classical model in two dimensions
has been studied extensively in the literature of statistical
mechanics. For instance, the model on the square lattice is
known as the hard-square model. One can easily imagine that
the system undergoes a phase transition from a liquid state
at z ! 1 to a solid state at z " 1, where the difference of
the sublattice occupations is nonzero. In fact, previous studies
have shown that the model exhibits an order-disorder phase
transition at z = zc # 3.796 [39–41]. This second-order phase
transition belongs to the same universality class as the 2D
Ising model. The model on the triangular lattice is called the
hard-hexagon model, which is integrable and was solved by
Baxter [34]. It also exhibits an order-disorder phase transition
at z = zc = (11 + 5

√
5)/2 = 11.09017..., but this transition

belongs to the universality class of the three-state Potts model.
Let us return to the original quantum model. A particular

feature of the present construction is that correlation functions
in the quantum ground state are the same as those of the
corresponding classical model [36]. This provides useful
information on the ground-state phase diagram of the quantum
model. In fact, if the parameter z is tuned so that the
corresponding classical model is critical, then the ground
state has algebraically decaying correlation functions, which
suggests that the quantum model is critical as well. This type
of quantum critical point is called conformal quantum critical
point because the ground-state wave functional is conformally
invariant in the scaling limit [42].

III. ENTANGLEMENT PROPERTIES

In this section, we consider the exact ground state Eq. (5)
on a two-leg ladder as shown in Fig. 1. The classical partition
function Eq. (7) is defined on the same ladder, which is still
1D. This implies that there is no critical point at finite z and
the correlation functions of local operators in the ground state
are exponentially decaying. Nevertheless, we find an intimate
relation to CFTs, which will be revealed by the analysis of the
entanglement properties. We show that the ES of this system
can be inferred from the spectrum of the transfer matrix in
the corresponding 2D classical system. We also study the
von Neumann entropy associated with the ground state of the
entanglement Hamiltonian, and show that the underlying CFT
is a unitary minimal model with central charge c < 1.
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FIG. 1. (Color online) (a) Two-leg square ladder and (b) two-leg
triangular (zigzag) ladder. The systems are divided into two parts, A

and B, as indicated by the dashed lines. We impose periodic boundary
conditions in the leg direction: τL+1 = τ1 and σL+1 = σ1.
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FIG. 2. (Color online) (a) Graphical representation of the local
Boltzmann weights. Allowed configurations and their Boltzmann
weights for the square ladder (b) and the triangular ladder (c).

A. Reduced density matrix

Consider the two-leg ladder of length L with periodic
boundary conditions in the leg direction. We divide the system
into two subsystems, A and B, as shown in Fig. 1. Let
τ = {τ1,τ2, . . . ,τL} be a particle configuration on the chain in
A, and σ = {σ1,σ2, . . . ,σL} be that on the chain in B. Here τi =
1 (0) if the site i on A is occupied (empty). The same applies
to σi . Let |τ 〉 and |σ 〉 denote the corresponding basis states
in the quantum model. Then the (unnormalized) ground state
|#(z)〉 on the ladder is written as

|#(z)〉 =
∑

τ

∑

σ

[T (z)]τ,σ |τ 〉 ⊗ |σ 〉, (8)

where

[T (z)]τ,σ :=
L∏

i=1

w(σi ,σi+1,τi+1,τi), (9)

with w(a,b,c,d) being the Boltzmann weights for each face
(see Fig. 2). More explicitly, for the square ladder, we have

[T (z)]τ,σ =
L∏

i=1

z(σi+τi )/2(1 − σiτi)(1 − σiσi+1)(1 − τiτi+1),

(10)

and for the triangular ladder, we have

[T (z)]τ,σ =
L∏

i=1

z(σi+τi )/2(1 − σiτi)(1 − σiσi+1)

× (1 − τiτi+1)(1 − τiσi+1). (11)

One can think of T (z) in Eq. (8) as an NL-dimensional
matrix, where NL is the number of allowed configurations
in each chain [43]. In fact, we can identify T (z) as the transfer
matrix of the 2D classical lattice gas model with hard-core
exclusion [34]. Note that a similar transfer matrix formalism
was also applied to entanglement entropies of the 2D RK wave
function [44].

The reduced density matrix for A describing the en-
tanglement between the two subsystems is defined by
ρA := TrB[|z〉〈z|]. To obtain the spectrum of ρA, we follow
the approach used in Ref. [45]. A similar approach has been
applied to the 2D VBS states [22,46]. We first write the state
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at z = zc = (11 + 5

√
5)/2 = 11.09017..., but this transition

belongs to the universality class of the three-state Potts model.
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feature of the present construction is that correlation functions
in the quantum ground state are the same as those of the
corresponding classical model [36]. This provides useful
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weights for the square ladder (b) and the triangular ladder (c).

A. Reduced density matrix

Consider the two-leg ladder of length L with periodic
boundary conditions in the leg direction. We divide the system
into two subsystems, A and B, as shown in Fig. 1. Let
τ = {τ1,τ2, . . . ,τL} be a particle configuration on the chain in
A, and σ = {σ1,σ2, . . . ,σL} be that on the chain in B. Here τi =
1 (0) if the site i on A is occupied (empty). The same applies
to σi . Let |τ 〉 and |σ 〉 denote the corresponding basis states
in the quantum model. Then the (unnormalized) ground state
|#(z)〉 on the ladder is written as

|#(z)〉 =
∑

τ

∑

σ

[T (z)]τ,σ |τ 〉 ⊗ |σ 〉, (8)

where

[T (z)]τ,σ :=
L∏

i=1

w(σi ,σi+1,τi+1,τi), (9)

with w(a,b,c,d) being the Boltzmann weights for each face
(see Fig. 2). More explicitly, for the square ladder, we have

[T (z)]τ,σ =
L∏

i=1

z(σi+τi )/2(1 − σiτi)(1 − σiσi+1)(1 − τiτi+1),

(10)

and for the triangular ladder, we have

[T (z)]τ,σ =
L∏

i=1

z(σi+τi )/2(1 − σiτi)(1 − σiσi+1)

× (1 − τiτi+1)(1 − τiσi+1). (11)

One can think of T (z) in Eq. (8) as an NL-dimensional
matrix, where NL is the number of allowed configurations
in each chain [43]. In fact, we can identify T (z) as the transfer
matrix of the 2D classical lattice gas model with hard-core
exclusion [34]. Note that a similar transfer matrix formalism
was also applied to entanglement entropies of the 2D RK wave
function [44].

The reduced density matrix for A describing the en-
tanglement between the two subsystems is defined by
ρA := TrB[|z〉〈z|]. To obtain the spectrum of ρA, we follow
the approach used in Ref. [45]. A similar approach has been
applied to the 2D VBS states [22,46]. We first write the state

032326-3


