K^{bar}N system studied with

coupled-channel Complex Scaling Method

A. Doté (KEK Theory center / IPNS/ J-PARC branch) T. Inoue (Nihon univ.) T. Myo (Osaka Inst. Tech. univ.)

1. Introduction

- 2. Scattering problem solved with Complex Scaling Method
 - Formalism / Test calculation with AY K^{bar}N potential

3. Set up for the calculation of $K^{bar}N-\pi Y$ system

- Kinematics / Non-rela. approximation
- 4. Results
 - I=0 channel: Scattering amplitude / Resonance pole
 - I=1 channel: Scattering amplitude
- 5. Summary and future plans

arXiv:1207.5279

基研研究会「ハドロン物質の諸相と状態方程式 ---中性子星の観測に照らして---」 '12.08.29-09.01 @ YITP, Kyoto, Japan

Neutron star in universe

Radius ~ 10km Mass ~ M_{sun}

Maybe ...

High dense at core \sim > 2 ρ_0 Involving strangeness

K^{bar} nuclear system on the Earth

... light nucleus with K⁻ mesons

 Self-bound K^{bar}-nuclear system

Neutron star in universe

Radius ~ 10km Mass ~ M_{sun}

Maybe ...

High dense at core \sim > 2 ρ_0 Involving strangeness

K^{bar} nuclear system on the Earth

... light nucleus with K⁻ mesons
 ✓ Involving strangeness via K⁻ meson
 Strong attraction by K⁻ meson
 ⇒ Dense nuclear system
 A phenomenological K^{bar}N potential[†]

 \Rightarrow B(K) ~ 100MeV, **2~4** ρ_0

† A. D., H. Horiuchi, Y. Akaishi and T. Yamazaki, PLB 590 (2004) 51; PRC 70 (2004) 044313.

These days, K⁻pp has been focused in both of theoretical and experimental studies!

Since K⁻pp is a three-body system, it can be studied with various methods:

• <u>Doté, Hyodo, Weise</u>	PRC79, 014003(2009)
Variational with a chiral SU(3)-based	K ^{bar} N potential
• <u>Akaishi, Yamazaki</u>	PRC76, 045201(2007)
ATMS with a phenomenological	K ^{bar} N potential
• <u>Ikeda, Sato</u>	PRC76, 035203(2007)
Faddeev with a chiral SU(3)-derived	K ^{bar} N potential
• <u>Shevchenko, Gal, Mares</u>	PRC76, 044004(2007)
Faddeev with a phenomenological	K ^{bar} N potential
•Wycech, Green Variational with a phenomenological K ^b	PRC79, 014001(2009) ^{ar} N potential (with p-wave)
•Arai, Yasui, Oka	PTP119, 103(2008)
Uchino, Hyodo, Oka	PTP119, 103(2008)
Λ* nuclei model	
•Nishikawa, Kondo	PRC77, 055202(2008)
Skyrme model	
All studies predict that K-pp	can be bound!

Theoretical studies of K-pp

「100MeV以下の束縛、かなり広い崩壊幅」

しかし手法・相互作用によって計算結果はバラけている。。。

ta.

[1] PR [2] PR [3] PR

"Λ(140<u>5)" etc.</u>

<u>Experimental studies of K-pp</u>

• FINUDA collaboration (DAΦNE, Frascati)

- K⁻ absorption at rest on various nuclei (⁶Li, ⁷Li, ¹²C, ²⁷Al, ⁵¹V)
- Invariant-mass method

Strong correlation between emitted p and Λ (back-to-back)

Invariant mass of p and Λ

<u>Experimental studies of K-pp</u>

<u>Experimental studies of K-pp</u>

• Re-analysis of KEK-PS E549

- K⁻ stopped on ⁴He target

- Ap invariant mass

Strong Ap back-to-back correlation is confirmed. Unknown strength is there in the same energy region as FINUDA.

> T. Suzuki et al (KEK-PS E549 collaboration), arXiv:0711.4943v1[nucl-ex]

• **DISTO collaboration**

- $p + p -> K^+ + \Lambda + p @ 2.85GeV$
- Ap invariant mass
- Comparison with simulation data

К⁻ pp??? B. E.= 103 ±3 ±5 MeV Г = 118 ±8 ±10 MeV

T. Yamazaki et al. (DISTIO collaboration), PRL104, 132502 (2010)

E15: A search for deeply bound kaonic nuclear states by ³He(inflight K⁻, n) reaction (M. Iwasaki (RIKEN), T. Nagae (Kyoto))

E17: Precision spectroscopy of kaonic ³He atom 3d→2p X-rays (R. Hayano (Tokyo), H. Outa (Riken))

K^{bar}N interaction

as of 2011

E27: Search for a nuclear Kbar bound state K⁻pp in the d(π⁺, K⁺) reaction (T. Nagae (Kyoto)) <u>K⁻pp</u>

E31: Spectroscopic study of hyperon resonances below KN threshold via the (K⁻, n) reaction on deuteron (H. Noumi (Osaka)) Λ(1405)

as of 2011 K^+ E15. Use lots of pion issing mass $\Lambda(1405)$ E17

E27: Search for a nuclear Kbar bound state K⁻pp in the d(π⁺, K⁺) reactio (T. Nagae (Kyoto))

old

<u>E</u>31:

Preceding E15, E27 experiment was performed in June. Analysis is now undergoing!

$\Lambda(1405) = Important building block of K^{bar} nuclei$

 $J^{\pi}=1/2^{-}$, I=0 $K^{bar}N-\pi\Sigma$ coupled system

I=0 K^{bar}N potential ... very attractive Interesting properties of K^{bar} nuclei !

coupled-channel Complex Scaling Method

Investigate a resonant state, based on the variational approach
 Explicit treatment of the πΣ channel

Importance of $\pi\Sigma N$ in K⁻pp Y. Ikeda and T. Sato, PRC 79, 035201(2009)

Chiral SU(3) potential (KSW)

- ➢ Based on Chiral SU(3) theory → Energy dependence
- + r-space, Gaussian form

$$V_{ij}^{(I=0)}\left(r\right) = -\frac{C_{ij}^{(I=0)}}{8f_{\pi}^{2}}\left(\boldsymbol{\omega}_{i} + \boldsymbol{\omega}_{j}\right)\sqrt{\frac{M_{i}M_{j}}{s\,\boldsymbol{\omega}_{i}\,\boldsymbol{\omega}_{j}}}\,g_{ij}\left(r\right)$$

$$g_{ij}(r) = \frac{1}{\pi^{3/2} d_{ij}^3} \exp\left[-(r/d_{ij})^2\right]$$

coupled-channel Complex Scaling Method

Based on the variational approach
 Explicitly treatment of the πYN channel

Proper treatment of resonant state

Complex Scaling Method

Complex rotation of coordinate $U(\theta): \mathbf{r} \to \mathbf{r} e^{i\theta}, \quad \mathbf{k} \to \mathbf{k} e^{-i\theta}$ $H_{\theta} \equiv U(\theta) H U^{-1}(\theta), \quad |\Phi_{\theta}\rangle \equiv U(\theta) |\Phi\rangle$ $E = \langle \Phi | H | \Phi \rangle = \langle \Phi_{\theta} | H_{\theta} | \Phi_{\theta} \rangle$

 Resonant wave function is transformed from a divergent function to a dumping function.

$$\Phi_{R} \sim e^{ik_{R}r} = e^{i(\kappa - i\gamma)r} \qquad \longrightarrow \qquad U(\theta)\Phi_{R} \sim \exp\{(\gamma + i\kappa)re^{i\theta}\} \\ = \exp[(\gamma\cos\theta - \kappa\sin\theta)r] \cdot \exp[i(\gamma\sin\theta + \kappa\cos\theta)r] \\ Negative when \tan\theta > \gamma/\kappa$$

- ✓ Resonant and bound states are independent of a scaling angle θ . (ABC theorem[†])
- ✓ Resonant states can be obtained by diagonalizing H_{θ} with Gaussian basis, in the same way as calculating bound state.

[†] J. Aguilar and J. M. Combes, Commun. Math. Phys. 22 (1971),269.E. Balslev and J. M. Combes, Commun. Math. Phys. 22 (1971),280

2. Scattering problem solved with Complex Scaling Method

Calculation of K^{bar}N scattering amplitude

• Formalism

• Test with AY potential

Calc. of scattering amplitude with CSM

A. T. Kruppa, R. Suzuki and K. Katō, PRC 75, 044602 (2007)

$$H_{l}\psi_{l,k}^{(+)}(r) = E\psi_{l,k}^{(+)}(r)$$

$$Point 1$$

$$Separate the incoming wave j_{l}(kr) !$$

$$\psi_{l,k}^{(+)}(r) = \hat{j}_{l}(kr) + \psi_{l,k}^{sc}(r).$$

$$Point 1$$

$$Separate the incoming wave j_{l}(kr) !$$

$$h_{l}^{(+)}(x) \rightarrow \exp\left[i\left(kr - \frac{l\pi}{2}\right)\right]$$

$$(E - H_{l})\psi_{l,k}^{sc}(r) = V(r)\hat{j}_{l}(kr).$$

$$Point 2$$

$$\psi_{l,k}^{sc,\theta}(r) \xrightarrow{e^{i\theta/2}kf_{l}(k)i^{-l}e^{ikr\cos\theta - kr\sin\theta}}{square-integrable for 0 < \theta < \pi}$$

$$(E - H_{l}(\theta))\psi_{l,k}^{sc,\theta}(r) = e^{i\theta/2}V(re^{i\theta})\hat{j}_{l}(kre^{i\theta}).$$
Expanding with square-integrable basis function (ex: Gaussian basis).

Calc. of scattering amplitude with CSM

0 0

A. T. Kruppa, R. Suzuki and K. Katō, PRC 75, 044602 (2007)

<u>Calculation of scattering amplitude</u>

$$f_l(k) = -\frac{2m}{\hbar^2 k^2} \int_0^\infty dr \hat{j}_l(kr) V(r) \psi_{l,k}^{(+)}(r)$$

$$f_l^{Born}(k) = -\frac{2m}{\hbar^2 k^2} \int_0^\infty dr \hat{j}_l(kr) V(r) \hat{j}_l(kr)$$

$$f_l^{sc}(k) = -\frac{2m}{\hbar^2 k^2} \int_0^\infty dr \,\hat{j}_l(kr) V(r) \psi_{l,k}^{sc}(r)$$

Point 3 Cauchy theorem $\oint dz \ j(kz)V(z)\psi_{l,k}^{SC}(z) = 0$ $r e^{i\theta}$ r We don't have $\Psi_{l,k}^{SC}(r)$ which is a solution along r, but we have $\Psi_{l,k}^{SC,\theta}(r)$ which is a solution along $re^{i\theta}$.

$$f_l^{sc}(k) = -\frac{2m}{\hbar^2 k^2} e^{i\theta/2} \int_0^\infty dr \hat{j}_l(kre^{i\theta}) V(re^{i\theta}) \psi_{l,k}^{sc,\theta}(r).$$

expressed with Gaussian base $f_{l}^{SC}(k)$ is independent of θ .

Test calculation with AY potential

Phenomenological, E-independent

<u>Unitarity violation</u> <u>of S-matrix</u>

E_{KbarN} [MeV]

<u>Phase shift sum</u>

Checked by Continuum Level Density method (R. Suzuki, A. T. Kruppa, B. G. Giraud, and K. Katō, PTP119, 949(2008))

E_{KbarN} [MeV]

Test calculation with AY potential

K^{bar}N (I=0) scattering amplitude

Scattering length (Scatt. amp. @ $E_{KbarN}=0$) = -1.77 + *i* 0.47 fm

Y. Akaishi and T. Yamazaki. PRC65, 044005 (2002)

> Scattering length $= -1.76 + i 0.46 \, \text{fm}$

3. Set up for the calculation of I=0 K^{bar}N-πΣ system

- Kinematics
- Non-rela. approximation of KSW potential

<u>Kinematics</u>

1. Non-relativistic

$$H_{NR} = \sum_{c=K^{bar}N,\pi\Sigma} \left[m_c + M_c + \frac{\mathbf{p}^2}{2\mu_c} \right] |c\rangle \langle c| + V_{KSW}$$

$$E = M_c + \frac{\hbar^2 k_c^2}{2M_c} + m_c + \frac{\hbar^2 k_c^2}{2m_c}$$
$$\mu_c = \frac{M_c m_c}{M_c + m_c} \quad \text{Reduced mass}$$
$$\hbar k_c = \left[2\mu_c \left(E - M_c - m_c\right)\right]^{1/2}$$

2. Semi-relativistic

$$H_{SR} = \sum_{c=K^{bar}N,\pi\Sigma} \left[\sqrt{m_c^2 + \mathbf{p}^2} + \sqrt{M_c^2 + \mathbf{p}^2} \right] |c\rangle \langle c|$$
$$+ V_{KSW}$$

$$E = \Omega_{c} + \omega_{c} = \sqrt{M_{c}^{2} + \hbar^{2}k_{c}^{2}} + \sqrt{m_{c}^{2} + \hbar^{2}k_{c}^{2}}$$
$$\varepsilon_{c} = \frac{\Omega_{c}\omega_{c}}{\Omega_{c} + \omega_{c}} \qquad \textbf{Reduced energy}$$
$$\hbar k_{c} = \left[\omega_{c}^{2} - m_{c}^{2}\right]^{1/2}$$

Non-rela. approximation of KSW potential

<u>A. Original</u>

$$V_{ij}^{(I=0)}(r) = -\frac{C_{ij}^{(I=0)}}{8f_{\pi}^{2}} \left(\omega_{i} + \omega_{j}\right) \sqrt{\frac{M_{i}M_{j}}{s\,\omega_{i}\,\omega_{j}}} g_{ij}(r)$$

B. Non-rela. approx. version 1

$$\omega_i \sim \mu_i$$

$$V_{ij}^{(I=0)}(r) = -\frac{C_{ij}^{(I=0)}}{8f_{\pi}^{2}} (\omega_{i} + \omega_{j}) \frac{1}{E_{Tot}} \sqrt{\frac{M_{i}M_{j}}{\mu_{i} \mu_{j}}} g_{ij}(r)$$

<u>C. Non-rela. approx. version 2</u>

 $m_i/\omega_i, M_i/\Omega_i \rightarrow 1$ @ non-rela. limit (small p^2)

$$V_{ij}^{(I=0)}(r) = -\frac{C_{ij}^{(I=0)}}{8f_{\pi}^{2}} (\omega_{i} + \omega_{j}) \sqrt{\frac{1}{m_{i} m_{j}}} g_{ij}(r)$$

• Normalized Gaussian

$$g_{ij}(r) = \frac{1}{\pi^{3/2} d_{ij}^{3}} \exp\left[-\left(r/d_{ij}\right)^{2}\right]$$

 Range parameter for coupling potential

$$d_{ij} = \left(d_{ii} + d_{jj}\right)/2$$

Comparison of the flux factor for differential cross section between non-rela. and rela.

<u>Kinematics</u>

Non-rela.

Semi-rela.

A. Original

$$V_{ij}^{(I=0)}(r) = -\frac{C_{ij}^{(I=0)}}{8f_{\pi}^{2}} (\omega_{i} + \omega_{j}) \sqrt{\frac{M_{i}M_{j}}{s \,\omega_{i} \,\omega_{j}}} g_{ij}(r)$$

B. Non-rela. approx. version 1

$$V_{ij}^{(I=0)}(r) = -\frac{C_{ij}^{(I=0)}}{8f_{\pi}^{2}} (\omega_{i} + \omega_{j}) \frac{1}{E_{Tot}} \sqrt{\frac{M_{i}M_{j}}{\mu_{i} \mu_{j}}} g_{ij}(r)$$

C. Non-rela. approx. version 2

$$V_{ij}^{(I=0)}(r) = -\frac{C_{ij}^{(I=0)}}{8f_{\pi}^{2}}(\omega_{i} + \omega_{j}) \sqrt{\frac{1}{m_{l} m_{j}}} g_{ij}(r)$$

4. Result

Using Chiral SU(3) potential (KSW) ... r-space, Gaussian form, Energy-dependent

- I=0 K^{bar}N scattering length and the range parameters of the KSW potential
- Scattering amplitude
- Resonance pole ... wave function and size

I=0 K^{bar}N scattering length and the range parameters of KSW potential

Potential:

 $V_{ij}^{(I=0)}(r) = V_{ij}^{(I=0)}(\sqrt{s}) \frac{1}{\pi^{3/2} d_{ij}^{3}} \exp\left[-\left(r/d_{ij}\right)^{2}\right]$

$$a_{K^{bar}N}^{I=0} = f_{K^{bar}N}^{I=0} \left(\sqrt{s}_{K^{bar}N thr.} \right)$$

Range parameters:

$$d_{ij} = \begin{pmatrix} d_{K^{bar}N,K^{bar}N} & d_{K^{bar}N,\pi\Sigma} \\ & d_{\pi\Sigma,\pi\Sigma} \end{pmatrix}$$

$$d_{K^{bar}N,\pi\Sigma} \equiv \left(d_{K^{bar}N,K^{bar}N} + d_{\pi\Sigma,\pi\Sigma}\right) / 2$$

† A. D. Martin, Nucl. Phys. B 179, 33 (1981)

$\frac{I=0 \ K^{bar}N \ scattering \ length}{and \ the \ range \ parameters \ of \ KSW \ potential} f_{\pi}=90 \ MeV$

Data : $a^{l=0}_{KbarN} = -1.70 + i 0.68 \text{ fm}$ (A. D. Martin)

	Kinematics		Semi−rela.		
	KSW potential	Original	Non-rela. v1	Non-rela. v2	Original
Range	$d_{_{KbarN}}$	0.593	0.576	0.574	0.487
parameter [fm]		0.541	0.725	0.751	0.457
KbarN Scatt.	Re	-1.701	-1.700	-1.700	-1.703
Ieng. [fm]	Im	0.679	0.677	0.687	0.677

In all cases, a set of range parameters $(d_{KbarN}, d_{\pi\Sigma})$ is found to reproduce the Martin's value.

<u>Scattering amplitude</u> ... KSW org. – Non. rela.

$$V_{ij}^{(I=0)}(r) = -\frac{C_{ij}^{(I=0)}}{8f_{\pi}^{2}} \left(\omega_{i} + \omega_{j}\right) \sqrt{\frac{M_{i}M_{j}}{s \omega_{i} \omega_{j}}} g_{ij}(r)$$

Singular behavior at $\pi\Sigma$ threshold ... due to mismatch of potential and kinematics.

<u>Scattering amplitude</u> ... KSW NRv1 – Non. rela. _{Vi}

$$f_{\pi}=90~MeV$$

$$V_{ij}^{(I=0)}(r) = -\frac{C_{ij}^{(I=0)}}{8f_{\pi}^{2}}(\omega_{i} + \omega_{j})\frac{1}{E_{Tot}}\sqrt{\frac{M_{i}M_{j}}{\mu_{i} \mu_{j}}} g_{ij}(r)$$

Singular behavior at $\pi\Sigma$ threshold disappears.

<u>Scattering amplitude</u> <u>... KSW NRv2 – Non. rela.</u>

$$V_{ij}^{(I=0)}(r) = -\frac{C_{ij}^{(I=0)}}{8f_{\pi}^{2}}(\omega_{i} + \omega_{j}) \sqrt{\frac{1}{m_{i} m_{j}}} g_{ij}(r)$$

Essentially same as NRv1 case.

<u>Scattering amplitude</u> <u>... KSW org. – Semi rela.</u>

$$V_{ij}^{(I=0)}\left(r\right) = -\frac{C_{ij}^{(I=0)}}{8f_{\pi}^{2}}\left(\omega_{i}+\omega_{j}\right)\sqrt{\frac{M_{i}M_{j}}{s\,\omega_{i}\,\omega_{j}}}\,g_{ij}\left(r\right)$$

Compared with NR cases, less attractive far below K^{bar}N threshold.

Position of resonant structure in the scattering amplitude

[MeV]

Pole position of the resonance

fpi	Org-NR		NRv1-NR		NRv2-NR			Org-SR		
	М	-Γ /2	Μ	-Γ/2		М	-Γ/2	Μ		-Γ/2
90	1423.3	-28.5	1419.8	-26.0		1419.9	-23.1		1419.0	-14.4
100	1421.7	-28.0	1417.3	-23.1		1418.0	-19.8		1419.6	-13.2
110	1420.5	-26.6	1416.6	-19.5		1417.8	-16.6		1420.0	-12.8
120	1419.5	-25.6	1416.9	-16.7		1418.3	-14.0		1418.9	-11.7

Pole position of the resonance

fpi	Org-NR		NRv1-NR			NRv2-NR			Org-SR		
	М	-Γ /2	М	-Γ/2		М	-Γ /2		М	-Γ /2	
90	1423.3	-28.5	1419.8	-26.0		1419.9	-23.1		1419.0	-14.4	
100	1421.7	-28.0	1417.3	-23.1		1418.0	-19.8		1419.6	-13.2	
110	1420.5	-26.6	1416.6	-19.5		1417.8	-16.6		1420.0	-12.8	
120	1419.5	-25.6	1416.9	-16.7		1418.3	-14.0		1418.9	-11.7	

Pole position of the resonance

fpi	Org-NR		NRv1-NR			NRv2-NR			Org-SR		
	Μ	-Γ /2	Μ	-Γ/2		М	-Γ/2	Μ		-Γ/2	
90	1423.3	-28.5	1419.8	-26.0		1419.9	-23.1		1419.0	-14.4	
100	1421.7	-28.0	1417.3	-23.1		1418.0	-19.8		1419.6	-13.2	
110	1420.5	-26.6	1416.6	-19.5		1417.8	-16.6		1420.0	-12.8	
120	1419.5	-25.6	1416.9	-16.7		1418.3	-14.0		1418.9	-11.7	

M [MeV]

"Wave function" of the resonance pole

$\pi\Sigma$ component also localized due to Complex scaling.

* The wave functions shown above are multiplied by a phase factor so that the K^{bar}N wfn. becomes real at r=0.

"Size" of the resonance pole state

Mean distance between meson and baryon

4. Result

Using Chiral SU(3) potential (KSW) ... r-space, Gaussian form, Energy-dependent

• <u>l=1 case</u>

- The range parameters of the KSW potential
- Scattering amplitude

Potential:

 $V_{ij}^{(I=1)}(r) = V_{ij}^{(I=1)}(\sqrt{s}) \frac{1}{\pi^{3/2} d_{ij}^{3}} \exp\left[-\left(r/d_{ij}\right)^{2}\right]$

Range parameters:

$$d_{ij} = \begin{pmatrix} d_{K^{bar}N,K^{bar}N} & d_{K^{bar}N,\pi\Sigma} & d_{K^{bar}N,\pi\Lambda} \\ & d_{\pi\Sigma,\pi\Sigma} & d_{\pi\Sigma,\pi\Lambda} \\ & & d_{\pi\Lambda,\pi\Lambda} \end{pmatrix}$$

† A. D. Martin, Nucl. Phys. B 179, 33 (1981)

Potential:

 $V_{ij}^{(I=1)}(r) = V_{ij}^{(I=1)}(\sqrt{s}) \frac{1}{\pi^{3/2} d_{ij}^{3}} \exp\left[-\left(r/d_{ij}\right)^{2}\right]$

$$a_{K^{bar}N}^{I=1} = f_{K^{bar}N}^{I=1} \left(\sqrt{s}_{K^{bar}N thr.}\right)$$

Range parameters:

$$d_{ij} = \begin{pmatrix} d_{K^{bar}N,K^{bar}N} & d_{K^{bar}N,\pi\Sigma} & d_{K^{bar}N,\pi\Lambda} \\ & d_{\pi\Sigma,\pi\Sigma} & d_{\Sigma,\pi\Lambda} \\ & & d_{\tau,\pi\Lambda} \end{pmatrix}$$

$$C^{(I=1)}_{ij} = \begin{pmatrix} 1 & -1 & -\sqrt{3/2} \\ & 2 & 0 \\ & & 0 \end{pmatrix}$$

$$d_{K^{bar}N,\pi\Sigma} \equiv \left(d_{K^{bar}N,K^{bar}N} + d_{\pi\Sigma,\pi\Sigma}\right) / 2$$

Potential:

 $V_{ij}^{(I=1)}(r) = V_{ij}^{(I=1)}(\sqrt{s}) \frac{1}{\pi^{3/2} d_{ij}^{3}} \exp\left[-\left(r/d_{ij}\right)^{2}\right]$

$$a_{K^{bar}N}^{I=1} = f_{K^{bar}N}^{I=1} \left(\sqrt{s}_{K^{bar}N thr.}\right)$$

Range parameters:

$$d_{ij} = \begin{pmatrix} d_{K^{bar}N,K^{bar}N} & d_{K^{bar}N,\pi\Sigma} & d_{K^{bar}N,\pi\Lambda} \\ & d_{\pi\Sigma,\pi\Sigma} & d_{\chi\pi\Lambda} \\ & & d_{\chi\pi\Lambda} \end{pmatrix}$$

$$C^{(I=1)}_{ij} = \begin{pmatrix} 1 & -1 & -\sqrt{3/2} \\ & 2 & 0 \\ & & 0 \end{pmatrix}$$

$$d_{K^{bar}N,\pi\Sigma} \equiv \left(d_{K^{bar}N,K^{bar}N} + d_{\pi\Sigma,\pi\Sigma}\right) / 2$$

Data ... 2 real values

Unknown parameters ... 3 real values

$$a^{l=1}_{KbarN} = 0.37 + i \ 0.60 \ fm$$

$$\left\{ d_{K^{bar}N, K^{bar}N}, d_{\pi\Sigma, \pi\Sigma}, d_{K^{bar}N, \pi\Lambda} \right\}$$

$d_{KN,KN}$ is fixed to that for I=0 channel.

- ✓ In a chiral unitary model, isospin symmetric subtraction constants have been often used.
- In a study with separable potential, the cutoff parameter for K^{bar}N is not so different between I=0 and 1 channels.[†]

$$\left\{ d_{K^{bar}N,K^{bar}N}^{(I=0)}, d_{\pi\Sigma,\pi\Sigma}, d_{K^{bar}N,\pi\Lambda} \right\}$$

 $d_{\pi\Sigma, \pi\Sigma}$ and $d_{KN, \pi\Lambda}$ are searched to reproduce the complex value $a^{l=1}_{KbarN}$.

† Y. Ikeda and T. Sato, Phys. Rev. C 76, 035203 (2007)

 $\pi\Lambda$

A narrow resonance exists at a few MeV below $\pi\Sigma$ threshold

NRv2

SR

5. Summary and Future plan

5. Summary

K^{bar} nuclear system is one of nuclear systems with strangeness. It may be related to dense matter such as neutron star.

<u>Scattering and resonant states of K^{bar}N-πY system is studied with</u> <u>a coupled-channel Complex Scaling Method using a chiral SU(3) potential</u>

- Coupled Channel problem = $K^{bar}N + \pi Y$
- Solved with Gaussian base
- A Chiral SU(3) potential (KSW) ... r-space, Gaussian form, energy dependence
- Calculated scattering amplitude with help of CSM

Non-rela. / Semi-rela. kinematics and two types of non-rela. approximation of KSW potential are tried.

The KSW potential can be determined by the K^{bar}N scattering length obtained by Martin's analysis of old data.

5. Summary and future plans

Non-rela. / Semi-rela. kinematics and two types of non-rela. approximation of KSW potential are tried.

- > f_{π} dependence ($f_{\pi} = 90 \sim 120$ MeV) ... Small for Semi-Rela. case
- ➢ Constrained by I=0 K^{bar}N scattering length ...
 - Pole position

> A potential for I=1 channel ($K^{bar}N-\pi\Sigma-\pi\Lambda$) is also constructed.

Future plans

Three-body system ($K^{bar}NN-\pi YN$); Updated data of $K^{-}p$ scattering length by SHIDDARTA

A. D. is thankful to Prof. Katō for his advice on the scattering-amplitude calculation in CSM, and to Dr. Hyodo for useful discussion.