New Derivation of QCD Sum Rules Based on Commutation Relations

Tomoya Hayata (Univ. of Tokyo/ RIKEN)

In collaboration with Tetsuo Hatsuda (RIKEN) and Shoichi Sasaki (Tohoku Univ.)

早田 智也@基研研究会「ハドロン物質の諸相と状態方程式 -中性子星の観測に照らして-」

Introduction I

O Dipole sum rule in nuclear physics (Giant dipole resonance)

Introduction II

5.3

O QCD sum rules from OPE (演算子積展開) [Shifman, Vainshtein & Zhakharov (SVZ)]

$$\int_0^\infty \frac{\mathrm{d}s}{2\pi} \, s \Big(\rho_V(s) - \rho_V^{\mathrm{con}}(s) \Big) = \langle 0| - \frac{m_q}{2} \bar{q}q - \frac{\alpha_s}{24\pi} G^a_{\mu\nu} G^{a\mu\nu} |0\rangle_{\mathrm{NP}}$$

Resonances \Leftrightarrow quark & gluon condensates $\langle 0|\bar{q}q|0\rangle_{\rm NP}$, $\langle 0|G^2|0\rangle_{\rm NP}$

Derive/ Generalize QCD sum rules from CRs without OPE

早田 智也@ 基研研究会「ハドロン物質の諸相と状態方程式 -中性子星の観測に照らして-」

Canonical quantization of QCD [Kugo & Ojima, '78]

$$\mathcal{L}_{\text{eff}} = \bar{q}_f (i \not \!\!\!D - m_f) q_f - \frac{1}{4} G^{a\mu\nu} G^a_{\mu\nu} - \partial_\mu B^a A^{a\mu} + \frac{\alpha}{2} (B^a)^2 - i \partial^\mu \bar{c}^a D^{\text{ad}}_\mu c^a$$
QCD Hamiltonian

$$\begin{aligned} \mathcal{H}_{\text{eff}} &= -gA_{0}^{a}\bar{q}_{f}\gamma^{0}t^{a}q_{f} + \bar{q}_{f}(-i\gamma^{k}D_{k} + m_{f})q_{f} + \frac{1}{2}\Big((\vec{E}^{a})^{2} + (\vec{H}^{a})^{2}\Big) \\ &+ \vec{E}^{a} \cdot (\nabla A_{0}^{a} - gf_{abc}\vec{A}^{b}A_{0}^{c}) + \partial_{k}B^{a}A^{ak} - \frac{\alpha}{2}(B^{a})^{2} \\ &+ i\Pi_{c}^{a}\Pi_{\bar{c}}^{a} + gf_{abc}\Pi_{c}^{a}A_{0}^{b}c^{c} - i\partial^{k}\bar{c}^{a}D_{k}^{ad}c^{a} \end{aligned}$$

• Heisenberg fields:

 $\begin{array}{l} q_{f}, \ \bar{q}_{f}, \ A^{a}_{\mu}, \ B^{a}, \ E^{a}_{k}, \ c^{a}, \ \bar{c}^{a}, \ \Pi^{a}_{c}, \ \Pi^{a}_{\bar{c}} \end{array}$ quarks gluons ghosts $\{q, \bar{q}\}, \ [A^{a}, B^{b}], \ [A^{a}_{i}, E^{bj}], \ \{c^{a}, \Pi^{b}_{c}\}, \ \{\bar{c}^{a}, \Pi^{b}_{\bar{c}}\}$ $Q_{\rm B}|{\rm phys}\rangle = 0$

• BRST chargeless

• CCRs:

Sum rules for QCD current correlator

O Spectral function

$$p(q^2) = -\frac{1}{3q^2} \sum_{p} (2\pi)^4 \delta^{(4)}(q-p) \langle 0|j_{\mu}(0)|p\rangle \langle p|j^{\mu}(0)|0\rangle$$

O Energy weighted sum rules at zero 3MOM $s \rightarrow \omega^2$

$$\int_0^\infty \frac{\mathrm{d}s}{2\pi} \, s^n \rho(s) = -\frac{1}{3} \int \mathrm{d}^3 x \, \langle 0 | [[j_\mu(0,\vec{x}),\mathrm{H}]_{2n-1}, j^\mu(0)] | 0 \rangle$$

O Renormalization of perturbative UV divergence

$$\int_0^\infty \frac{\mathrm{d}s}{2\pi} \, s^n(\rho(s) - \rho^{\mathrm{con}}(s)) = -\frac{1}{3} \int \mathrm{d}^3x \, \langle 0|[[j_\mu(0,\vec{x}),\mathrm{H}]_{2n-1}, j^\mu(0)]|0\rangle_{\mathrm{NP}}$$

Commutators for QCD current correlator I

O Basic commutator

$$[\bar{u}\gamma^{\mu}u,\mathbf{H}] = -i\bar{u}\gamma^{\mu}\gamma^{0}\gamma^{k}\overrightarrow{D}_{k}u - i\bar{u}\gamma^{k}\overleftarrow{D}_{k}\gamma^{0}\gamma^{\mu}u + m_{u}\bar{u}[\gamma^{\mu},\gamma^{0}]u$$

O Double commutator

$$\begin{split} [[\bar{u}\gamma^{\mu}u,\mathbf{H}],\mathbf{H}] &= \bar{u}\gamma^{\mu}\gamma^{k}\overrightarrow{D}_{k}\gamma^{k'}\overrightarrow{D}_{k'}u - \bar{u}\gamma^{k}\overleftarrow{D}_{k}\gamma^{0}\gamma^{\mu}\gamma^{0}\gamma^{k}\overrightarrow{D}_{k}u \\ &+ 2im_{u}\bar{u}\gamma^{0}\gamma^{\mu}\gamma^{0}\gamma^{k}\overrightarrow{D}_{k}u + ig\bar{u}\gamma^{\mu}\gamma^{0}\gamma^{k}E_{k}^{a}t^{a}u \\ &+ m_{u}^{2}\bar{u}(\gamma^{\mu}-\gamma^{\mu\dagger})u + \mathbf{h.~c.} \end{split}$$

Canonical commutation relations alone, no OPE at all

Commutators for QCD current correlator II

 $O 1^{st}$ moment

$$[[\bar{u}\gamma^{\mu}u,\mathbf{H}],\bar{u}\gamma_{\mu}u] = -4i\bar{u}\gamma^{k}\overleftarrow{D}_{k}u + 12m_{u}\bar{u}u$$

O 2nd moment

$$\begin{split} [\bar{u}\gamma^{\mu}u,\mathbf{H}]_{2}, [\bar{u}\gamma_{\mu}u,\mathbf{H}]] &= 20i\bar{u}\overleftarrow{D}^{k}\overleftarrow{D}_{k}\gamma^{k'}\overrightarrow{D}_{k'}u + 4i\bar{u}\overleftarrow{D}^{k}\gamma^{k'}\overrightarrow{D}_{k'}\overrightarrow{D}_{k}u \\ &- 16m_{u}\bar{u}\overleftarrow{D}^{k}\overleftarrow{D}_{k}u - 8igm_{u}\bar{u}\gamma^{0}\gamma^{k}E_{k}u \\ &+ 24im_{u}^{2}\bar{u}\gamma^{k}\overrightarrow{D}_{k}u - 24m_{u}^{3}\bar{u}u \\ &- 4g\bar{u}\gamma^{0}\gamma^{k'}\overleftarrow{D}_{k'}\gamma^{k}E_{k}u + 4g\bar{u}\gamma^{0}\overleftarrow{D}^{k}E_{k}u \\ &+ 4g\bar{u}\gamma^{0}\overrightarrow{D}_{k}^{ad}E^{k}u \\ &- 4g^{2}(\bar{u}\gamma^{k}\gamma^{5}t^{a}u)(\bar{u}\gamma_{k}\gamma^{5}t^{a}u) + (\mathbf{h.~c.}) \end{split}$$

Weinberg sum rules

O Difference between vector and axial-vector currents; $j_V^{\mu} = (\bar{u}\gamma^{\mu}u - \bar{d}\gamma^{\mu}d)/2 / j_A^{\mu} = (\bar{u}\gamma^{\mu}\gamma^5 u - \bar{d}\gamma^{\mu}\gamma^5 d)/2$ O Chiral transformation; $q = {}^t(u, d) \rightarrow e^{i\theta^a \tau^a \gamma^5}q$

O Non-OPE derivation of Weinberg sum rules

• 1st moment

$$\int_{0}^{\infty} \frac{\mathrm{d}s}{2\pi} \, s\rho_{V(A)}(s) = -\frac{1}{3} \int \mathrm{d}^{3}x \, \langle 0|[[j^{\mu}_{V(A)}(0,x),\mathrm{H}], j_{V(A)\mu}(0,0)]|0\rangle$$

• 2nd moment

$$\int_{0}^{\infty} \frac{\mathrm{d}s}{2\pi} \, s^{2} \rho_{V(A)}(s) = -\frac{1}{3} \int \mathrm{d}^{3}x \, \langle 0 | [[j_{V(A)}^{\mu}(0,x),\mathrm{H}]_{2}, [j_{V(A)\mu}(0,0),\mathrm{H}]] | 0 \rangle$$

Weinberg sum rules

O Difference between vector and axial-vector currents; $j_V^{\mu} = (\bar{u}\gamma^{\mu}u - \bar{d}\gamma^{\mu}d)/2 / j_A^{\mu} = (\bar{u}\gamma^{\mu}\gamma^5 u - \bar{d}\gamma^{\mu}\gamma^5 d)/2$ O Chiral transformation; $q = {}^t(u, d) \rightarrow e^{i\theta^a \tau^a \gamma^5}q$

O Non-OPE derivation of Weinberg sum rules

• 1st moment

$$\int_0^\infty \frac{\mathrm{d}s}{2\pi} \, s(\tilde{\rho}_A(s) - \rho_V(s)) = \langle 0| \frac{4m_u}{3} \bar{u}u + \frac{4m_d}{3} \bar{d}d|0\rangle_{\mathrm{NP}}$$

• 2nd moment

 $\int_0^\infty \frac{\mathrm{d}s}{2\pi} \, s^2(\tilde{\rho}_A(s) - \rho_V(s)) = \langle 0|8\pi\alpha_s(\bar{q}_L\gamma^\mu t^a\tau_z q_L)(\bar{q}_R\gamma_\mu t^a\tau_z q_R)|0\rangle_{\mathrm{NP}}$

⇔ consistent with SVZ sum rules from OPE

Sum rules for vector correlation I

O 1st moment bare sum rule

$$j_V^\mu = (\bar{u}\gamma_\mu u - \bar{d}\gamma_\mu d)/2$$

$$\int_{0}^{\infty} \frac{\mathrm{d}s}{2\pi} s \rho_{V}(s) = -\frac{1}{3} \int \mathrm{d}^{3}x \, \langle 0|[[j_{V}^{\mu}(0,x),\mathrm{H}], j_{V\mu}(0,0)]|0]$$
$$= \langle 0|\frac{i}{3}\bar{u}\overleftrightarrow{D_{k}}\gamma^{k}u - m_{u}\bar{u}u|0\rangle + (u \Leftrightarrow d)$$

O Renormalized sum ruleDirac Eq. + Lorentz invariance

$$\langle 0|\bar{q}\gamma^{\mu}\overrightarrow{D}^{\nu}q|0\rangle = \frac{g^{\mu\nu}}{4}\langle 0|\bar{q}\overrightarrow{D}q|0\rangle$$

$$\int_0^\infty \frac{\mathrm{d}s}{2\pi} \, s \Big(\rho_V(s) - \rho_V^{\mathrm{con}}(s) \Big) = \langle 0| - \frac{m_u}{2} \bar{u}u - \frac{m_d}{2} \bar{d}d|0\rangle_{\mathrm{NP}}$$

• No gluon condensate in (axial) vector sum rule!?

$$\langle 0|G^{a\mu\nu}G^a_{\mu\nu}|0
angle_{\mathrm{NP}}$$

Commutator by BJL limit [Bjorken, Johnson, Low, 66]

O Causality

$$[A(x), B(0)]_{\rm ET} = \sum C_i \hat{O}_i(x, \nabla_x) \delta^{(3)}(x)$$

O Commutator btw asymptotic states

$$\int \mathrm{d}^3 x \langle \alpha | [A(x), B(0)]_{\mathrm{ET}} | \beta \rangle = \lim_{q^0 \to \infty} (-iq^0) \int \mathrm{d}^4 x \, \mathrm{e}^{iq^0 x^0} \langle \alpha | \mathrm{T}^*[A(x), B(0)] | \beta \rangle$$

○ Point splitting regularization → Anomalous matrix elements (Higher orders in α_s)

O Tree diagrams = Results of CCRs $\langle quark | [\bar{q}\Gamma q, \bar{q}\Gamma' q]_{ET} | quark \rangle$

• Diagram (a)

$$\begin{aligned} \int \mathrm{d}^{3}x \, \langle \mathrm{quark} | [\bar{q}\Gamma q(x), \bar{q}\Gamma' q(0)]_{\mathrm{ET}} | \mathrm{quark} \rangle \\ &= (-iq^{0}) \Big(\langle \mathrm{quark} | \bar{q}_{i}\Gamma_{ij}\Gamma'_{kl}q_{l} | \mathrm{quark} \rangle S_{F}^{jk}(p-q) \\ &- \langle \mathrm{quark} | \bar{q}_{k}\Gamma'_{kl}\Gamma_{ij}q_{j} | \mathrm{quark} \rangle S_{F}^{li}(p+q) \Big) \end{aligned}$$

Tree diagrams = Results of CCRs

(b)(a)Free propagators in BJL limit = CCRs • BJL limit; $q \rightarrow (\infty, 0)$ $\int d^3x \langle quark | [\bar{q}\Gamma q(x), \bar{q}\Gamma' q(0)]_{ET} | quark \rangle$ $= (-iq^{0}) \Big(\langle \text{quark} | \bar{q}_{i} \Gamma_{ij} \Gamma'_{kl} q_{l} | \text{quark} \rangle S_{F}^{jk} (p-q) \Big]$ $-\langle \operatorname{quark} | \bar{q}_k \Gamma'_{kl} \Gamma_{ij} q_j | \operatorname{quark} \rangle S_F^{li}(p+q) \rangle$

 $\langle \text{quark} | [\bar{q}\Gamma q, \bar{q}\Gamma' q]_{\text{ET}} | \text{quark} \rangle$

 \bigcirc Tree diagrams = Results of CCRs $\langle \alpha \rangle$

 $\langle \text{quark} | [\bar{q}\Gamma q, \bar{q}\Gamma' q]_{\text{ET}} | \text{quark} \rangle$

• BJL limit; $q \to (\infty, 0)$

$$\int d^{3}x \, \langle quark | [\bar{q}\Gamma q(x), \bar{q}\Gamma' q(0)]_{ET} | quark \rangle = \langle quark | \bar{q}_{i}\Gamma_{ij}\gamma_{jk}^{0}\Gamma'_{kl}q_{l} | quark \rangle - \langle quark | \bar{q}_{k}\Gamma'_{kl}\gamma_{li}^{0}\Gamma_{ij}q_{j} | quark \rangle$$

⇔ consistent with CCRs

O Loop diagrams ≠ Results of CCRs

 $\langle \text{gluon} | [\bar{q}\Gamma q, \bar{q}\Gamma' q]_{\text{ET}} | \text{gluon} \rangle$

reproduce $\langle \text{gluon} | \bar{q} \Gamma \gamma^0 \Gamma' q - \bar{q} \Gamma' \gamma^0 \Gamma q | \text{gluon} \rangle$

Deviation written by pure gluonic operator $\alpha_s G^a_{\mu\nu} G^{a\mu\nu}$

Sum rules for vector correlation II

O Bare sum rule

$$\int_0^\infty \frac{\mathrm{d}s}{2\pi} \, s\rho_V(s) = -\frac{1}{3} \int \mathrm{d}^3 x \, \langle 0|[[j_V^\mu(0,x),\mathrm{H}], j_{V\mu}(0,0)]|0\rangle$$

O BJL modified commutator

$$[[\bar{u}\gamma^{\mu}u,\mathbf{H}],\bar{u}\gamma_{\mu}u] = -4i\bar{u}\gamma^{k}\overleftarrow{D}_{k}u + 12m_{u}\bar{u}u$$

 $j_V^{\mu} = (\bar{u}\gamma_{\mu}u - \bar{d}\gamma_{\mu}d)/2$

$$[[\bar{u}\gamma^{\mu}u,\mathbf{H}],\bar{u}\gamma_{\mu}u] = -4i\bar{u}\gamma^{k}\overleftarrow{D}_{k}u + 12m_{u}\bar{u}u + \frac{\alpha_{s}}{2\pi}G^{a}_{kk'}G^{a}_{kk}$$

O Renormalized sum rule

$$\int_0^\infty \frac{\mathrm{d}s}{2\pi} \, s \Big(\rho_V(s) - \rho_V^{\mathrm{con}}(s)\Big) = \langle 0| - \frac{m_q}{2} \bar{q}q - \frac{\alpha_s}{24\pi} G^a_{\mu\nu} G^{a\mu\nu} |0\rangle_{\mathrm{NP}}$$

⇔ consistent with SVZ sum rules from OPE

Summary of sum rules by QCD commutator

O 1st and 2nd Weinberg sum rules

$$\int_0^\infty \frac{\mathrm{d}s}{2\pi} \, s(\tilde{\rho}_A(s) - \rho_V(s)) = \langle 0|\frac{4m_u}{3}\bar{u}u + \frac{4m_d}{3}\bar{d}d|0\rangle_{\mathrm{NP}}$$
$$\int_0^\infty \frac{\mathrm{d}s}{2\pi} \, s^2(\tilde{\rho}_A(s) - \rho_V(s)) = \langle 0|8\pi\alpha_s(\bar{q}_L\gamma^\mu t^a\tau_z q_L)(\bar{q}_R\gamma_\mu t^a\tau_z q_R)|0\rangle_{\mathrm{NP}}$$

O Sum rule for vector and axial-vector currents

$$\int_0^\infty \frac{\mathrm{d}s}{2\pi} s \left(\rho_V(s) - \rho_V^{\mathrm{con}}(s) \right) = \langle 0| - \frac{m_q}{2} \bar{q}q - \frac{\alpha_s}{24\pi} G^a_{\mu\nu} G^{a\mu\nu} |0\rangle_{\mathrm{NP}}$$
$$\int_0^\infty \frac{\mathrm{d}s}{2\pi} s (\tilde{\rho}_A(s) - \tilde{\rho}_A^{\mathrm{con}}(s)) = \langle 0| \frac{5}{6} m_q \bar{q}q - \frac{\alpha_s}{24\pi} G^a_{\mu\nu} G^{a\mu\nu} |0\rangle_{\mathrm{NP}}$$

CCR commutator → Chiral condensate Commutator anomaly → Gluon condensate

Comparison btw SVZ approach and our approach

SVZ approach	Our approach
OPE as an operator identity	Commutators btw currents and the effective Hamiltonian
Perturbative calculation of Wilson coefficients	Perturbative calculation of commutator anomalies
Subtraction of perturbative contribution from the unit operator	Subtraction of perturbative vacuum graph

早田 智也@ 基研研究会「ハドロン物質の諸相と状態方程式 -中性子星の観測に照らして-」

New sum rules based on CRs (Details -> Poster talk)

O Energy weighted sum rules at zero 3MOM $s \rightarrow \omega^2$ • Odd

$$\int_{0}^{\infty} \frac{\mathrm{d}s}{2\pi} \, s^{n}(\rho(s) - \rho^{\mathrm{con}}(s)) = -\frac{1}{3} \int \mathrm{d}^{3}x \, \langle 0|[[j_{\mu}(0,\vec{x}),\mathrm{H}]_{2n-1}, j^{\mu}(0)]|0\rangle_{\mathrm{NP}}$$

• Even

$$\int_0^\infty \frac{\mathrm{d}s}{2\pi} \, s^{n-\frac{1}{2}} (\rho(s) - \rho^{\mathrm{con}}(s)) = \frac{2}{3V} \langle 0 | ([Q_\mu, \mathrm{H}]_{n-1})^2 | 0 \rangle_{\mathrm{NP}}$$

where
$$Q^{\mu} = \int \mathrm{d}^3 x \; j^{\mu}(0, \vec{x})$$

 \bigcirc 1st moment

$$\int_0^\infty \frac{\mathrm{d}s}{2\pi} \ s^{\frac{1}{2}}(\rho(s) - \rho^{\mathrm{con}}(s)) = \frac{8}{3}\chi_{\mathrm{NP}}$$

Resonances ⇔ Charge fluctuations *y*

$$\chi_{\rm NP} = \langle 0 | Q_0^2 | 0 \rangle_{\rm NP} / V$$

Summary

○ New derivation of QCD sum rules by commutator approach ⇔ simple & straightforward generalization of dipole sum rule based on Kugo-Ojima operator formalism commutator anomaly suitable subtractions of UV divergences

○ Weinberg and (axial) vector sum rules are derived
 ⇔ consistent with SVZ sum rules based on OPE
 ○ New sum rules are derived

- Hadronic resonances ⇔ Charge fluctuations

<u>Future</u>

- Hadrons in dense matters
- Nucleon sum rules in finite chemical potential
- Application to other strongly interacting systems e.g., ultra-cold atom gases and graphene

Thank you for your kind attention!!

早田 智也@基研研究会「ハドロン物質の諸相と状態方程式 -中性子星の観測に照らして-」