

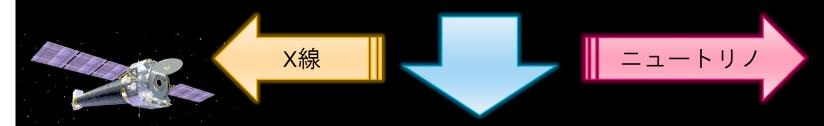
QCD相転移とカラー超伝導を考慮した高密度星の冷却

野田常雄(九大理)

Collaboration with

橋本正章(九大理)、安武伸俊(千葉工大) 丸山敏毅(JAEA)、巽敏隆(京大理)、藤本正行(北大理)

基研研究会


「ハドロン物質の諸相と状態方程式—中性子星の観測に照らして—」

arXiv: 1109.1080, Submitted to ApJ Lett.

Introduction

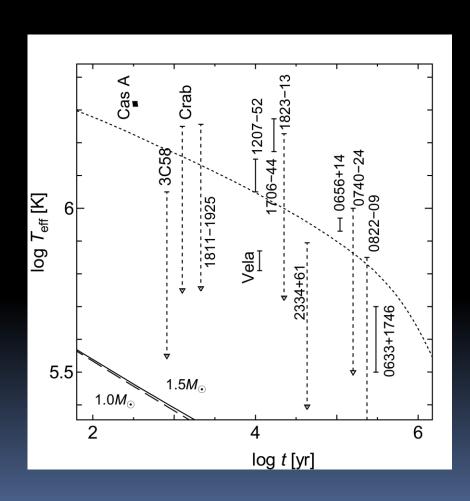
■ 中性子星は熱源を持たない

超新星爆発で誕生

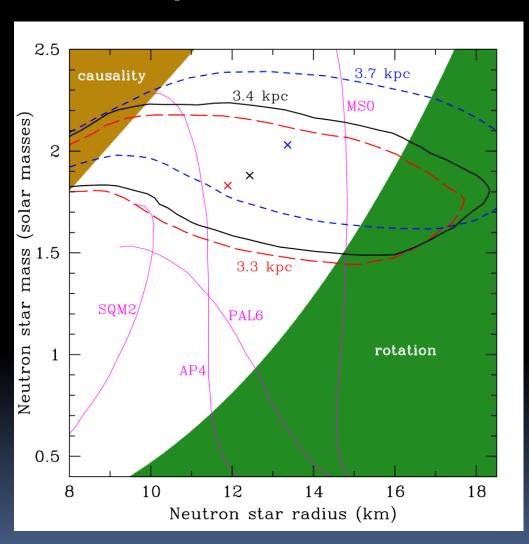
冷えた中性子星

- 冷却のメカニズム(主にニュートリノ)で冷え方が異なる
- ニュートリノの放射率は内部の状態を反映

高密度星の冷却


- EOS
 - EOSは星ごとに違うことはない (ひとつのThe EOS)
- Standard Cooling Processes
 - □ 核物質中で普遍的に効く冷却プロセス
 - Modified URCA + Bremsstrahlung
- Exotic Cooling Processes
 - Standard Coolingでは説明できない星がある
 - 3C58、 Vela
 - 高密度でExotic Phaseが出現 ⇒ Exotic Cooling
- NSの質量によってCooling Processが決定
 - 重い星 ⇒ 中心でExotic Phase出現 ⇒ Exotic Cooling
 - 軽い星⇒中心まで普通の核物質⇒Standard Cooling

Cassiopeia A (問題I)


- 168o年前後の超新星残骸
 - 中心天体(中性子星?)が Chandraで観測
- Ho & Heinke

Nature 462, 71 (2009)

- $^{\circ}$ 2.4 M_{\odot} >M>1.5 M_{\odot}
- $1.75 \times 10^6 \text{ K} > T_{\text{eff}} > 1.56 \times 10^6 \text{ K}$
- M-R観測 (単独星では珍しい)

Cassiopeia A

距離の不定性あり

半径については不定性が大 きい

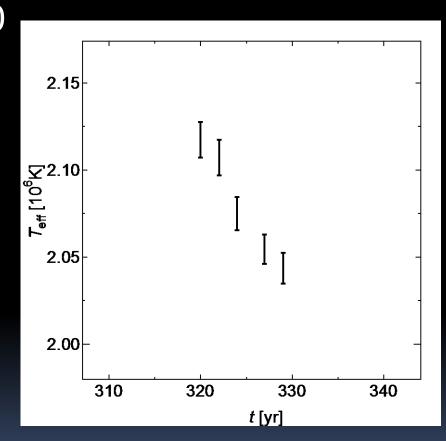
ここでは質量のみを考える

Cassiopeia Aの観測結果から

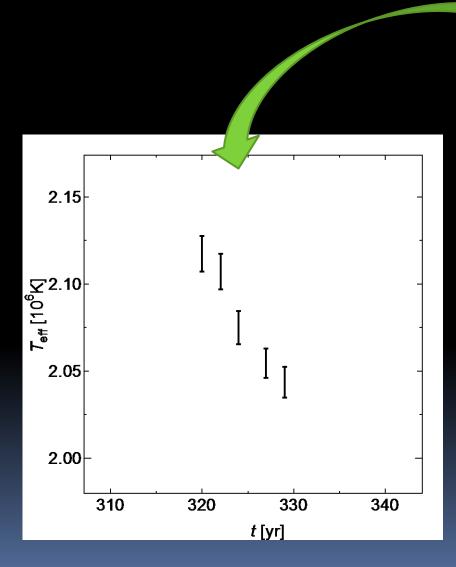
- Cas Aは重くて熱い
 - $M_{\text{Cas A}} > 1.5 M_{\odot}$
 - 中心密度が高いが冷えていない
 - Standard Coolingと同等
- 他の冷えている高密度星との整合性
 - Cas AはStandardなNS、冷えているのはもっと重い
 - 質量の観測値(NSbinary: ~1.4M_☉)と比較して不自然
 - Cas Aは重く、Exoticな状態を持つが冷えない
 - ▶実現方法は…?

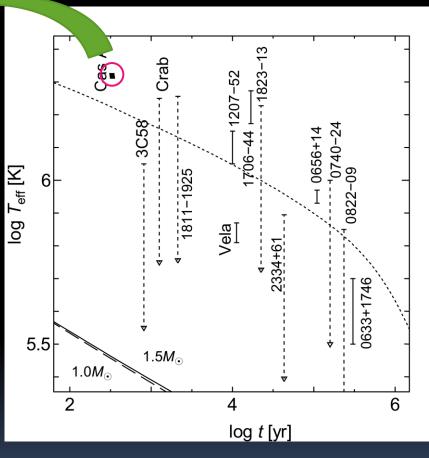
カラー超伝導 in Quark Phase

Cassiopeia A (問題II)

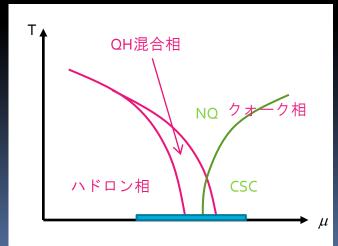

■ 観測されているここ10 年間程度で急激な有効 温度の低下

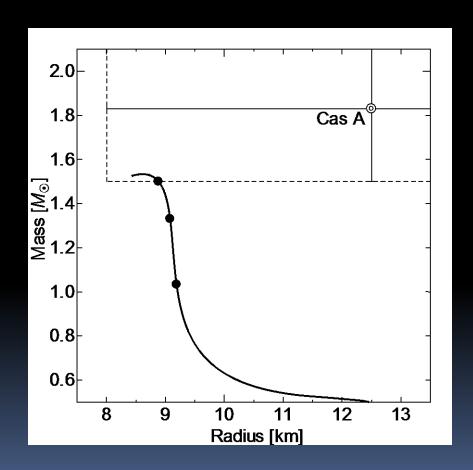
Heinke & Ho, ApJ L719, 167 (2010)


■ 従来の冷却理論と比較 すると速すぎる

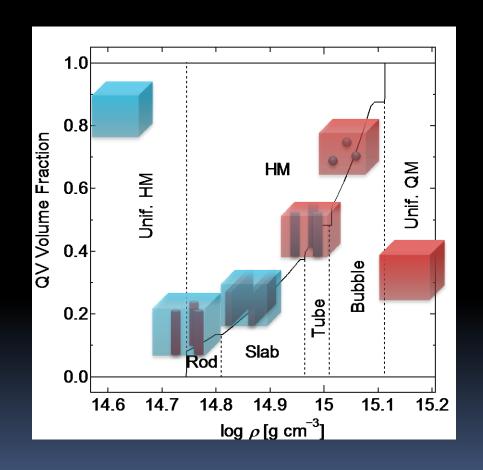


- 核子の超流動遷移に伴 うニュートリノ放射
 - □ 臨界温度や放射プロセ スの不定性大

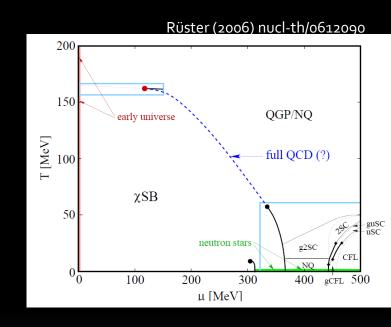

Cassiopeia A

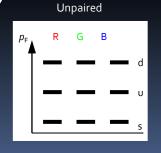

Motivation

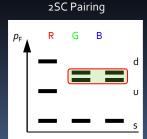
- Cas Aの質量一温度関係を説明する
 - □ Cas Aは<u>重い</u>
 - □ クォーク物質を含み、内部でカラー超伝導
 - 他の観測とも矛盾しないように
- Cas Aの急激な冷却についても説明する
 - □ ハドロン相中での超流動

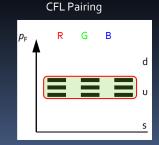

EOS/Model

- 構造までMixed Phase入り EOS
 - 構造部分もQM-HM MPを考慮
 - Yasutake (2009) / Maruyama (2007)
 - 「柔らかい」EOS
 - □ 中心密度は上昇しやすい
 - Cas Aの質量・半径ともぎりぎりconsistent
- B=100MeV/fm³
 - $\alpha_s = 0.2$
 - σ = 40 MeV/fm²
- M=1.5, 1.3, 1.0 M_{\odot}

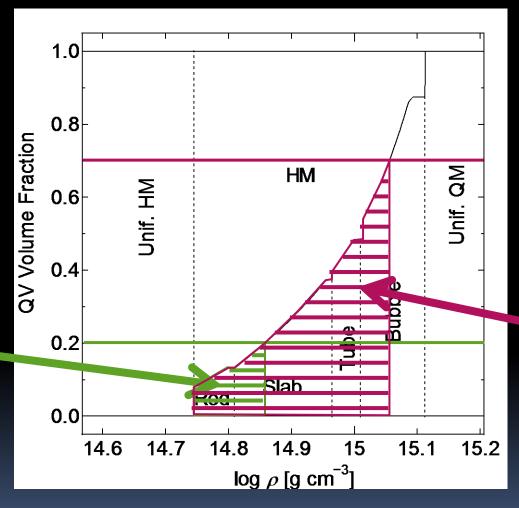

Mixed Phase


- HM⇔QM間でMixed Phase を考慮
- それぞれの密度で
 - Wigner-Seitz Cell Radius
 - Bag Radius
 - 形状 (droplet/rod/slab/tube/bubble) からQM/HM比を求める
- QM/HM比をQuark β-decay
 のν放射率に乗じる
 - なめらかなv放射率の上昇?




カラー超伝導

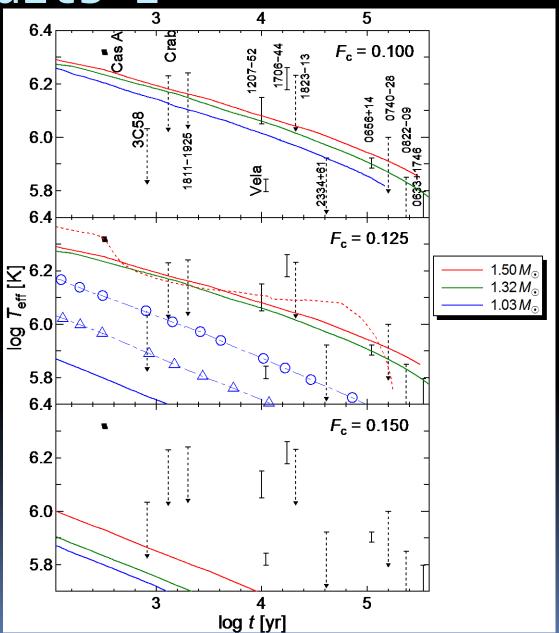
- 低温高密度領域でカラー超 伝導相が出現
 - クォーク相中
 - クォークがペアを作る
 - ペアの組み方
 - CFL? 2SC? Or others?
- 核子の超流動と同様の効果
 - Large gap energy △ (~数十MeV)
 - ニュートリノ放射を抑制
 - $\propto \exp(-\Delta/k_{\rm B}T)$
 - 放射率を~o



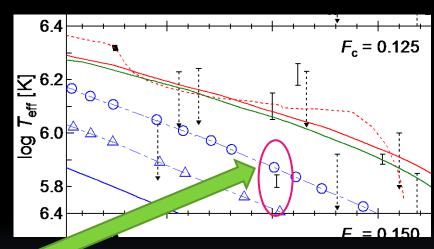
カラー超伝導

F_C=70%で Quark Coolingが 効く範囲

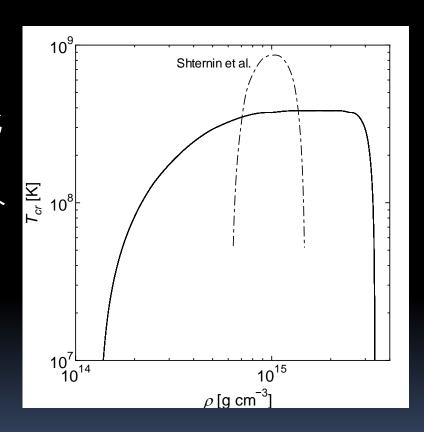
F_C=20%で Quark Coolingが 効く範囲


> カラー超伝導の臨界密度に対応する値としてFcを導入 この点より高密度側ではカラー超伝導 (Quark Cooling を OFF)

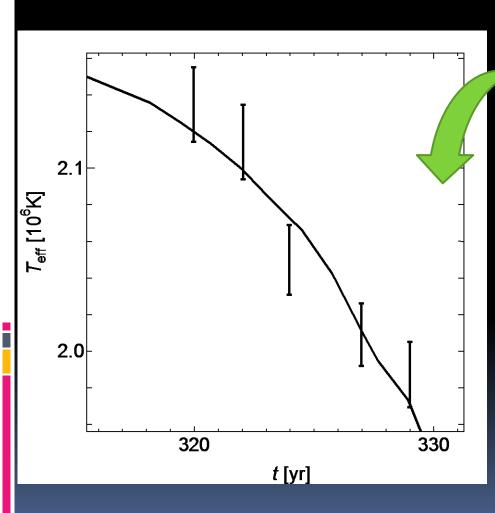
星の構造 with カラー超伝導

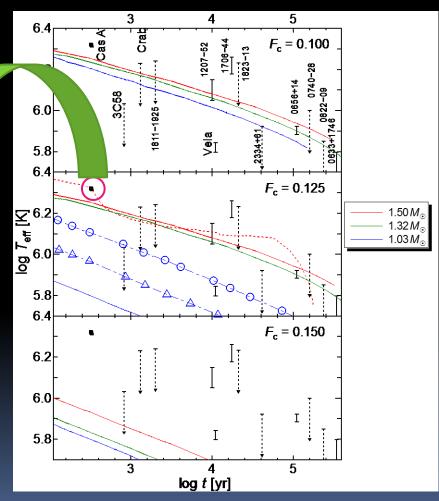

カラー超伝導の領域では、Quark β -decay(QBD)が効かない F_{c} を変化させることで、QBDの領域を調整できるQM-normal: 通常のQM QM-super: カラー超伝導

Results I


Results I

- カラー超伝導で重い星を冷 えにくく
 - Cas Aの領域は組成で対応可
 - 冷えている星は軽い
- ■問題点
 - Cas Aの最近の冷え方
 - P Quark β-decayが効くとやはり 冷えすぎる
 - Quark β-decayが1ケタ~2ケタ 小さかったら...
 - <u>□ ファインチューニングが必要</u>




Cas Aの温度低下

- 超流動によるニュートリ ノ放射を考慮
 - 臨界温度のρ- T_{cr}関係を変化
 - ▶ 放射率の不定性も考慮
 - MP中ではハドロン相の割合 をニュートリノ放射率に乗 じる
- MP中のクォークによる ニュートリノ放射は変更 なし
- 表面組成をC

Results II

Results II

- 超流動の効果を入れるとCas Aの温度低下 は説明可能
 - ρ T_{cr} 関係とニュートリノ放射率のファインチューニングが必要
- ■「重いと冷えない」状態は維持したまま

まとめ

- カラー超伝導を考慮すると重い星を冷え にくくすることができる
 - 軽い星が冷えやすくなる
 - ■従来と逆センス
 - □ Cas Aの温度と質量については説明可能
- 核子の超流動によるニュートリノ放射で Cas Aの冷え方は再現できる
 - □ ファインチューニングが必要
- 2M_☉の観測値についてはEOSの変更が必要
 - □ 同じ手法の冷却計算は可能

今後の展望

- 2*M*_☉まで到達できるEOSを使った計算
- カラー超伝導の取り扱い
 - P-ρ関係への影響
 - □出現する相、△
- 核子の超流動の取り扱い
- その他の高密度星現象を説明
 - X線バースト等...