

ハドロン物質の諸相と状態方程式ー中性子星の観測に照らして一、2012年8月30日、京都大学基礎物理学研究所

12年9月22日土曜日

12年9月22日土曜日

Which EOS parameter dominates macroscopic properties of neutron-rich nuclei in laboratory and in neutron-star crusts?

Approaches to obtain the EOS of (uniform) nuclear matter

approach	starts from	ingredients	Theory/Model
empirical	parametrized EOS	nuclear mass, size,	Liquid-Drop Model Droplet Model Thomas-Fermi Theory
Phenomenological	effective NN int. (Hamiltonian, Lagrangean)	nuclear mass, size,	Skyrme HF RMF AMD
microscopic	bare NN int. (AVI8, Bonn, Paris,)	NN scattering,	Variational Calc. DBHF

不安定核と中性子星クラスト

• 不安定核

● 質量

• 半径、反応断面積

- 中性子星 ● クラストの原子核
- クラスト・コア境界

- EOS
 - 対称核物質
 - 飽和密度、飽和エネルギー、非圧縮率
 - 対称エネルギー
 - 密度依存性、非対称度依存性

Step 1

Generate all empirically allowed EOS's systematically

K. Oyamatsu and K. Iida, Prog. Theor. Phys. 109, 631 (2003).

Adopted macroscopic model

Energy per cell (or Energy of a nucleus)

$$W = \int_{cell} d\mathbf{r} \left[\frac{\varepsilon_0(n_n, n_p) + m_n n_n + m_p n_p}{n_n (n_p) : \text{local neutron (proton) density,}} - \frac{1}{2} + \left(\text{electron kinetic energy} \right) + \left(\text{Coulomb} \right) \right]$$

$$n_n(n_p) : \text{local neutron (proton) density,} - n = n_n + n_p : \text{total density}$$

$$\varepsilon_0(n_n, n_p) : \text{EOS of uniform nuclear matter (energy density)}$$

$$F_0 : \text{surafce energy parameter}$$

Parametrization of the EOS (energy density)

$$\varepsilon_0(n_n, n_p) = \frac{3}{5} \left(3\pi^2 \right)^{2/3} \left(\frac{\hbar^2}{2m_n} n_n^{5/3} + \frac{\hbar^2}{2m_p} n_p^{5/3} \right) + \left[1 - \left(1 - 2Y_p \right)^2 \right] v_s(n) + \left(1 - 2Y_p \right)^2 v_n(n)$$

Fermi kinetic energy density potential energy density

potential energy densities of symmetric and neutron matter

$$V_s(n) = a_1 n^2 + \frac{a_2 n^3}{1 + a_3 n}$$
 $V_n(n) = b_1 n^2 + \frac{b_2 n^3}{1 + b_3 n}$

★ $a_1 \sim b_2$ and F_0 : masses and radii of stable nuclei ($b_3=1.59 \text{ fm}^3$, a fit to FP EOS) ★very flexible function form: a_3 can vary K₀ widely. (better than Skyrme) The function can be fitted to SIII and TM1 EOS very well.

Simplified Thomas-Fermi calculation (The sam

(The same method as Shen EOS)

energy minimization with respect to parameters of $n_n(r)$ and $n_p(r)$ (and lattice constant)

The values of parameters $a_1 \sim b_3(EOS)$ and F_0 are determined

to fit masses and radii of stable nuclei.

=> about 200 sets of empirical EOS+F₀

12年9月22日土曜日

Step 2

Calculate neutron-rich nuclei in labs with the 200 EOS's

K. Oyamatsu and K. lida, Prog. Theor. Phys. 109, 631 (2003).

Oyamatsu and Iida, PRC81, 054302, 2010.

The mass, radius and neutron skin are dependent on L but not on K_0 .

L dependence comes from surface symmetry energy

(>_<) volume symmetry energy</pre>

Larger L => larger volume symmetry energy $S_0 =>$ larger mass

(^_^) surface symmetry energy

Oyamatsu and Iida, PRC81, 054302, 2010.

Surface energy comes from ...

in the cases of beta-stable nuclei in neutron-star crusts and in laboratories

I/2 from
$$F_0 \int d\mathbf{r} |\nabla n(\mathbf{r})|^2$$

the remaining I/2 mainly from

$$\int d\mathbf{r} \varepsilon \left(n_n(\mathbf{r}), n_p(\mathbf{r}) \right) \quad \text{(EOS)}$$

Anyway, L dependence emerge through density distribution.

Oyamatsu and Iida, PTP109, 631-650, 2003.

S_{2p}, S_{2n} : clear L dependence better than mass

scatterings due to numerical errors in optimizing n_0 , w_0 , and K_0

neutron and proton drip lines

Step 3

Calculate nuclei in neutron star crusts with 200 EOS's Proton number and fraction Density region of pasta nuclei

K. Oyamatsu and K. Iida, Phys. Rev. C75 (2007) 015801.

12年9月22日土曜日

Fig. 2-4. The neutron (upper) and proton (lower, shaded) distributions along the straight lines joining the centers of the nearest nuclei. Calculations are performed in the case of spherical nuclei with model I interaction in chapter 4.

原子核の体積比

Estimate of density region of pasta nuclei

C.J. Pethick and D.G. Ravenhall, Annu. Rev. Nucl. Part. Sci.45, 429 (1995).

lower boundary

stability against fission of spherical nuclei

In the liquid drop model, (Coulomb self energy)=2*(surface energy) ==> (volume fraction of nucleus) = 1/8

upper boundary (core-crust boundary)

instability against forming proton clusters

$$v(Q) = v_{0} + 2(4\pi e^{2}\beta)^{1/2} - \beta k_{\text{TF}}^{2} > 0$$

$$Q^{2} = \left(\frac{4\pi e^{2}}{\beta}\right)^{1/2} - k_{\text{TF}}^{2}$$

$$v(Q) \approx v_{0} = \frac{\partial \mu_{p}}{\partial n_{p}} - \frac{\left(\frac{\partial \mu_{p}}{\partial n_{n}}\right)^{2}}{\partial \mu_{n}/\partial n_{n}} = \left(\frac{\partial \mu_{p}}{\partial n_{p}}\right)_{\mu_{n},\mu_{e}}$$

$$\mu \mathcal{O} 微分 = > L 依存性を示唆$$

$$\beta = D_{pp} + 2D_{np}\zeta + D_{nn}\zeta^{2}, \qquad \zeta = -\frac{\partial \mu_{p}/\partial n_{n}}{\partial \mu_{n}/\partial n_{n}},$$

$$k_{\text{TF}}^{2} = \frac{4\pi e^{2}}{\partial \mu_{e}/\partial n_{e}} = \frac{4\alpha}{\pi} (3\pi^{2}n_{e})^{1/3}.$$

中性子星のコア・クラスト境界

Oyamatsu and lida, PRC75, 015801, 2007.

Dark domains means nuclei (proton clusters). At low densities in neutron-star crusts, we have nuclei which are more or less spherical. In the core we have uniform matter. Pasta nuclei could exists in between.

uniform

matter

K.Oyamatsu, NPA561, 431 (1993

Existence of pasta nuclei depends on the EOS.

Inner-crust nuclei: Proton number and fraction decrease with L

For large L, S(n) at $n < n_0$ is small so that nuclei become more neutron-rich.

まとめ:対称エネルギーSOとL 通常はSoが支配的

- 安定原子核の質量・大きさ
- Lの感度はそれほど強くない : 核図表のdrip line、中性子星のdrip point
- Lを見るには工夫(微分)が必要
 - 中性子過剰核
 - S_{2n}, S_{2p}のN,Z依存性
 - 原子核の大きさ、中性子スキンのN,Z依存性
 - 中性子星物質:コア(核密度)に近づくほど感度が増す
 - 陽子混在度
 - 中性子星のコア・クラストの境界、パスタ原子核の存在
- 中性子星の観測からLの値を評価する試み =>祖谷さん