重力波とEOS

柴田 大 京都大学 基礎物理学研究所

重力波検出器

確実な重力波源=中性子星または ブラックホールからなる連星の合体

- 1. Invaluable laboratory for studying high-density nuclear matter
- 2. Possible origins of short-hard GRBs
- 3. Sources of strong transient **EM** emission (predicted, but no observation)
- 4. Possible sources for r-process nuclei

以下では、NS-NS連星、BH-NS連星からの 重力波を用いたEOSの制限可能性について 述べる。

連星中性子星 NS-NS

Gravitational waveforms **Chirp** signal **GR** gravity O.1 **Finite-size** h ($\times 10^{-21}$) **Hydrodynamics** Ο EOS -0.10.0150.020.0050.01 \mathbf{O} T (sec) **Numerical Post-Newtonian**, point-particle **Relativity** (L. Blanchet, Living Review)

Brief introduction of numerical relativity

$$G_{\mu\nu} = 8\pi \frac{G}{c^4} T_{\mu\nu} \longleftarrow$$

$$\begin{cases} \nabla_{\mu} T_{\nu}^{\mu} = 0 \\ \nabla_{\mu} \left(\rho u^{\mu} \right) = 0 \\ + EOS \end{cases}$$

• General relativistic gravity; including GW radiation reaction

- Hydodynamics/MHD
- Equations of state for nuclear matter

- $\begin{pmatrix} \nabla_{\mu}F^{\mu\nu} = -4\pi j^{\nu} \\ \nabla_{\mu}F_{\nu\lambda} = 0 \\ \text{Radiation} \end{pmatrix} \longleftrightarrow \bullet \text{Magnetic fields} \bullet \text{Neutrino emission} \\ \mathbf{現状は多様な第一原理} \\ \textbf{的計算が可能である}.$

Radius (km)

NS-NS merger with finite-temperature EOS + neutrino leakage

Example:

- EOS = Shen's EOS
- ➢ Maximum mass of spherical star
 M_{max}=2.2M_{sun} (T=0: zero temperature)
 ➢ R (1.4M_{sun}) ~ 14.5km → Stiff

Mass of NS-NS for simulation \rightarrow 1.5—1.5 M_{sun}

Long-lived hot HMNS is the outcome: Supported by thermal pressure & centrifugal force

Sekiguchi, Kiuchi, Kyutoku, Shibata PRL107, 2011

Two interesting phases

1. Late Inspiral

(Damour+, Baiotti+,): $\int_{1}^{2} \int_{1}^{1} \int_{0}^{1} \int_{0}^{$

10

 $t_{\rm ret}$ - $t_{\rm merge}$ [ms]

15

20

25

2. Merger \rightarrow HMNS $--\frac{1}{2}$ (Janka+, Hotokezaka+) GW from HMNS $f \sim 2 - 4$ kHz

Both waveforms play an important role for constraining EOS of neutron stars

1 Gravitational waves from late inspiral (Hotokezaka +)

Tidal effects in a binary inspiral (originally pointed out by Lai+ 1992)

Close Binary System Tidal deformation; Quadrupole is induced $\phi \sim -\frac{GM}{r} - \frac{C}{r^6}$

5PN correction: But $C \sim MR^5$, $R \sim 5$ —8 *M* For $r \sim 2R$, it could play a role.

 $h = h(t, M_1, M_2, C_1, C_2)$

2 Gravitational waves from hypermassive NS

Properties of GW from HMNS

- Gravitational-wave frequency from HMNS depends strongly on EOS
- The frequency has correlation with stiffness (Janka+, 11)
- Gravitational-wave frequency appears to be approximately constant (but not exactly constant due to GW reaction)
 → Gravitational waves make a broad peak in the Fourier spectrum

Fourier spectrum

f h_f (r=50 Mpc)

ブラックホール・ 中性子星連星 **BH-NS**

Evolution of BH-NS $(4.05M_{sun}-1.35M_{sun})$

Large EOS-dependence

$$\zeta = 1 - 6$$
 for $a/M_{\rm BH} = 0 - 1$
 $c = G = 1$

 ✓ Low-mass BH or
 ✓ Large NS radius or
 ✓ Large BH spin is necessary

BH(a=0)-NS with piecewise polytrope

 $M_{\rm BH} = 2.7 M_{\rm sun}$ $M_{\rm NS} = 1.35 M_{\rm sun}$ $R = 11.6 \,\rm km, \ Q = 2$ $M_{\rm BH} = 4.05 M_{\rm sun}$ $M_{\rm NS} = 1.35 M_{\rm sun}$ $R = 11.0 \,\rm{km}, \ Q = 3$

Kyutoku + PRD 2011

Spinning BH-NS; more promising

f h_f 100Mpc

f h(f)at 100Mpc

Summary

Late-inspiral waveforms of NSNS reflect NS EOS (although it is a small effect)

- GWs from HMNS reflect NS radius;
 Radius may be constrained with ~1 km
 error for small-distance events
- ➢ GWs at tidal disruption reflect NS radius; high-spin BH events could constrain EOS even by advLIGO/VIRGO/KAGRA

Thanks

Imprint of EOS in tidal disruption

 Large NS Radius → tidal disruption at a distant orbit, *i.e.*, at a *low frequency*

Assume the same mass

 Small NS Radius → tidal disruption at a *high frequency*

