Asymmetric Neutrino Emission from Strongly Magnetized Neutron Stars

Tomoyuki MARUYAMA BRS, Nihon Univ. (Japan)

Collaborators

Toshitaka KAJINO Nobutoshi YASUTAKE Myung-ki CHEOUN Chung-Yeol RYU Jun HIDAKA G.J. MATHEWS Takami KURODA Nao, Univ. of Tokyo(Japan)INFN, Catania(Italy)Soongs Univ.(Korea)Soongs Univ.(Korea)Nao(Japan)Univ. of Notre Dome(USA)Nao(Japan)

§ 1. Introduction

High Density Matter Study ⇒ Exotic Phases inside Neutron Stars
 Strange Matter, Ferromagnetism, Meson Condensation, Quark matter
 Observable Information ···· Neutrino Emissions
 S.Reddy, et al., PRD58 #013009 (1998) Influence from Hyperons Λ, ∑
 Magnetar 10¹⁵G in surface 10¹⁷⁻¹⁹G inside (?) → Large Asymmetry of v?
 P. Arras and D. Lai, PRD60, #043001 (1999), S. Ando, P.R.D68 #063002 (2003)
 (Non-Relativistic)

Our Works → Neutrino Reactions on High Density Matter wih Strong Mag. Fields in the Relativistic Mean-Field (RMF) Approach TM et al., PRD83, 081303(R) (2011)

Application to Phenomena related with ν – Asymmetric EmissionPulsar Kickin Poloidal Magnetic FieldSpin Decelerationin Toroidal Magnetic Field

 $v_e + B \rightarrow e^- + B^*$: absorption

S.Reddy, M.Prakash and J.M. Lattimer, P.R.D58 #013009 (1998)

3

§ 2-1 EOS of Proto Neutron-Star-Matter in RMF $N, \Lambda, \sigma, \omega, \rho$

§ 2-2 Dirac Equation under Magnetic Fields

μ_N	$B << \varepsilon_{\rm N} (\text{Chem.} \\ B \sim 10^{17} \text{G}$	Pot) $\rightarrow B$ can be treated perturbatively Landau Level can be ignored
L I	agrangian Dirac Eq.	$\mathcal{L}_{mag} \approx -\sum_{b} \mu_{n} B \bar{\psi}_{b} \sigma_{z} \psi_{b}$ $\hat{K}(p) u(p) = [\gamma_{\mu} p^{\mu} - M^{*} - \mu B \sigma_{z}] u(p) = 0$
		$\left[\left(\begin{array}{c} \sqrt{p_{T}^{2} + M^{*2}} \end{array}\right)^{\frac{1}{2}} \\ \sqrt{p_{T}^{2} + M^{*2}} \end{array}\right]$
Sin	gle Part. Eng.	$e(\boldsymbol{p},s) = \left[\left(\sqrt{p_x^2 + M^{*2} + s\mu B} \right) + p_z^2 \right] \approx E_p^* + s\mu B \frac{\sqrt{PT} + M}{E_p^*}$
Dir	ac Spinor	$u(\mathbf{p},s)\bar{u}(\mathbf{p},s) \approx \frac{(\mathbf{p}+M)(1+\gamma_5 \mathbf{a}(\mathbf{p})s)}{4E_p^*}$
1	ſ	
	Spin Vector	$a_z = \frac{E_p}{\sqrt{p_T^2 + M^2}}$ $a_T = 0$ $a_0 = \frac{p_z}{\sqrt{p_T^2 + M^2}}$

The Cross-Section of Lepton-Baryon Scattering

$$\frac{d^{2}\sigma}{dk'd\Omega_{k}'} = \frac{G_{F}^{2}}{8\pi^{2}}k'^{2}\sum_{s_{i},s_{f}}\int \frac{d^{3}p}{(2\pi)^{3}}\bar{W}_{BL}(2\pi)\delta(|k| - |k'| + c_{i}(p) - e_{f}(k + p - k'))$$

$$\times [1 - f_{i}'(k')]_{BE}(p_{i}) - p_{B'}(e_{f})$$

$$\tilde{W}_{BL} = \operatorname{Tr}\left\{\frac{(k' + m_{f})(1 + \gamma_{5}\phi_{l'})}{4|k'|}\gamma^{\mu}(1 - \gamma_{5})\frac{k'}{2|k|}\gamma^{\nu}(1 - \gamma_{5})\right\}$$

$$\times \operatorname{Tr}\left\{\frac{(p' + M_{f}^{*})(1 + \gamma_{4}\phi_{l}(p'))}{4E_{i}^{*}(p')}\gamma_{\mu}(c_{V} - c_{A}\gamma_{5})\frac{(p + M_{i}^{*})(1 + \gamma_{4}\phi_{l}(p))}{4E_{i}^{*}(p)}\gamma_{\nu}(c_{V} - c_{A}\gamma_{5})\right\}$$

$$m_{f} = 0 \quad \text{when } l_{f} = \nu \quad m_{f} = m_{e} \quad \text{when } l_{f} = e$$

$$\frac{\text{Fermi}}{\text{Distribution}} \quad n(e(p), s) \approx n(\varepsilon(p, s)) + n'(\varepsilon(p, s))\frac{\sqrt{p_{T}^{2} + M^{*2}}}{E_{p}^{*}}\mu Bs.$$

$$\frac{\text{Deformed Distribution}}{perturbative}$$

$$m_{f} = \sigma_{0} + \int \sigma \quad \Delta \sigma \propto B$$

$$\frac{\text{Non-Magnetic Part}}{perturbative}$$

§ 2-3 Magnetic parts of Cross-Sections

$\sigma = \sigma_0 + \varDelta \sigma \quad \varDelta \sigma \propto B$

 $k_i = \varepsilon_v$ (neutrino chem. pot.), $B = 2 \times 10^{17}$ G and $\theta_i = 0^\circ$

§ 2-4 Neutrino Transportation

Neutrino Phase Space Distribution Function

$$f(\boldsymbol{p},\boldsymbol{r}) \approx f_0(\boldsymbol{p},\boldsymbol{r}) + \Delta f(\boldsymbol{p},\boldsymbol{r}), \quad f_0(\boldsymbol{p},\boldsymbol{r}) = 1/\{1 + \exp[(|\boldsymbol{p}| - \varepsilon_v)/T]\}$$

Equib. Part Non-Equib. Part

Neutrino Propagation \Rightarrow Boltzmann Eq.

$$c\frac{\partial}{\partial r}f_{0}(\boldsymbol{p},\boldsymbol{r})\approx c\frac{\partial}{\partial r}f_{0}(\boldsymbol{p},\boldsymbol{r})+c\frac{\partial}{\partial r}\Delta f(\boldsymbol{p},\boldsymbol{r})=I_{coll}\approx -cb_{v}\Delta f(\boldsymbol{p},\boldsymbol{r}), \quad b_{v}=\frac{\sigma_{ab}}{V}$$
Neutrinos Propagate on Strait Line only absorption

Solution
$$\Rightarrow$$

$$\Delta f(\boldsymbol{p}, \boldsymbol{r}_T, \boldsymbol{z}) = \int_0^z d\boldsymbol{x} \left[-\frac{\partial}{\partial \boldsymbol{x}} f_0(\boldsymbol{p}, \boldsymbol{r}_T, \boldsymbol{x}) \right] \exp \left[-\int_x^z d\boldsymbol{y} b_v(\boldsymbol{y}) \right],$$
$$\boldsymbol{z} = \boldsymbol{r} \cdot \hat{\boldsymbol{p}}, \quad \frac{\partial}{\partial \boldsymbol{z}} f_0(\boldsymbol{p}, \boldsymbol{r}_T, \boldsymbol{z}) = \frac{d\varepsilon_v}{d\boldsymbol{z}} \frac{\partial}{\partial \varepsilon_v} f_0(\boldsymbol{p}, \boldsymbol{r}_T, \boldsymbol{z})$$

§ 3 Estimating Pulsar Kick Velocities of Proto-Neutron Star

A.G.Lyne, D.R.Lomier, Nature 369, 127 (94)

Asymmetry of Supernova Explosion kick and translate Pulsar with Kick Velocity: Average ... 400km/s, Highest ... 1500km/s

Explosion Energy ~ 10⁵³ erg (almost Neutrino Emissions) http://chandra.harvard.edu/photo/ 2004/casa/casa_xray.jpg

1% Asymmetry is sufficient to explain the Pulsar Kick

D.Lai & Y.Z.Qian, Astrophys.J. 495 (1998) L103

Estimating Kick Velocity of PNS with T = 20 MeV and $B = 2 \times 10^{17}$ G <u>Poloidal</u> Magnetic Field 2 - 3% Asymmetry in Absorption

- 1) Neutrinos propagate on the straight lines
- 2) Neutrino are produced and absorbed at all positions on the lines

Mean-Free path : V/σ_{ab}

 $M = 1.68 M_{solar}$, $Y_L = 0.4$, T = 20 MeV

Baryon density in PNS

Calculating Neutrino Propagation above $\rho_{\rm B} = \rho_0 \rho_0$

Mean-Free Paths

Magnetic Parts

$$\sigma_A = \sigma_A^0 \left(1 + S_A \cos \theta_{i,f} \right)$$

*S*_A: fitting function

Angular Dep. of Emitted Neutrinos in Uniform Poloidal Mag. Field

$$M_{NS} = 1.68 M_{solar}$$
 [g],
 $E_T = 3 \times 10^{53}$ [erg]

$$\frac{\langle p_z \rangle}{E_T} = \frac{P_1}{3P_0} = 2.0 \times 10^{-2} \qquad T = 20 \text{ MeV}$$

$$< p(\mathbf{n}) > \approx P_0 + P_1 \cos \theta$$

 $B = 2 \times 10^{17}$ [G]

$$v_{kick} = \frac{\langle p_z \rangle}{M} \approx 600 \, [\text{km/s}]$$

 $T = 20 \, \text{MeV}$

Observable Average ... 400 km/s, Highest ... 1500 km/s

§ 4 Angular Deceleration in Toroidal Magnetic Field

Stability of Magnetic Field in Compact Objects (Braithwaite & Spruit 2004)

Toroidal Magnetic Field is stable !!

> Mag. Field Parallel to Baryonic Flow

Assym. of V-Emit. must decelerate PNS Spin

No poloidal Magnetic Field at the beginning

Single Toroidal

by T. Kuroda

$$\boldsymbol{B}(r_T, z) = B_0 G_T(r_T) G_L(z) \hat{e}_{\phi}$$

$$G_T(r_T) = \frac{16 \exp\left[-(r_T - R_0)/\Delta r\right]}{\left\{1 + \exp\left[-(r_T - R_0)/\Delta r\right]\right\}^2}$$

$$G_L(z) = \frac{\exp\left[-z/\Delta r\right]}{\left\{1 + \exp\left[-z/\Delta r\right]\right\}^2}$$

$$\hat{e}_{\phi} = (-\sin\varphi, \cos\varphi, 0)$$

$$\Delta r = 0.5 \text{ (km)}$$
$$R_0 = 8 \text{ (km)}$$
$$Mag. - A$$
$$R_0 = 5 \text{ (km)}$$
$$Mag. - B$$

Angular Deceleration			Neutrino Luminosity				
$\frac{dL_z}{dr} = c \int dr \int dn \int dn \int dr \int dr (r n_z n) (r \times n)$				$(dE_T/dt)_v \sim 3 \times 10^{52} \mathrm{erg/s}$			
dt	S_{S_N}	$\int ap_L df (\mathbf{r}, p)$	L^{z}	$M_{NS} = 1.68M$	M _{solar} P	eriod $P = 10s$	
$\dot{\omega} = \frac{d\alpha}{dt}$	$\frac{P}{I_{NS}} = \frac{1}{I_{NS}} \frac{dI}{dI}$	$\frac{L_z}{dt} = \frac{1}{I_{NS}} \left(\frac{dE_T}{dt}\right)$	$\int_{V} \frac{cdL_{z} / dt}{dE_{T} / dt}$	Magnetic Dipole Rad	$\frac{\dot{P}}{P} = \frac{P}{2\pi c I_1}$	$_{_{NS}}\left(rac{cdL_z/dt}{dE_T/dt} ight)\mathcal{L}_t$	
Mag	Bary.	$-rac{cdL_z/dt}{dE_{_T}/dt}$	$-\dot{\omega}$		Ė∕P		
Distr.		(cm)	(rad/s)	$ ho_0$	$0.1 ho_0$	(Mg.Dpl-rad.)	
Mag-A	p,n	66.9	4.94×10^{-2}	7.82×10 ⁻²	1.03×10 ⁻²	5.32×10 ⁻¹²	
	p,n,A	109	7.07×10 ⁻²	11.26×10 ⁻²	1.11×10 ⁻²	6.77×10 ⁻¹¹	
Mag-B	p,n	9.64	7.09×10 ⁻³	1.13×10 ⁻³	4.50×10 ⁻⁵	5.32×10 ⁻¹²	
	p,n,A	7.81	5.07×10 ⁻³	8.07×10 ⁻⁴	2.29×10 ⁻⁵	6.77×10 ⁻¹¹	

In Early Stage (~ 10 s) ν Asymmetric Emission must affect PNS Spin

More Significantly than Magnetic Dipole *γ*-Radiation

§ 5 Summary

- **EOS** of Neutron-Star-Matter with p, n, Λ in RMF Approach
- Exactly Solving Dirac Eq. with Magnetic Field in Perturbative Way
- Cross-Sections of Neutrino Scattering and Absorption under Strong Magnetic Field, calculated in Perturbative Way
- Neutrinos are More Scattered and Less Absorbed

in Direction Parallel to Magnetic Field

 \Rightarrow More Neutrinos are Emitted in Arctic Area

Scattering 1.7 %

Absorption 2.2 % at $\rho_{\rm B}=3\rho_0$ and $T=20~{\rm MeV}$

 \Rightarrow Convection, Pulsar-Kick

Pulsar Kick in <u>Poroidal</u> Mag. Field $B = 2 \times 10^{17} \text{G} \Rightarrow \text{PerturbativerGal.Dir.}$

 $v_{\text{kick}} = 580 \text{ km/s} (\text{p,n}), 610 \text{ km/s} (\text{p,n,}\Lambda) \text{ at } T = 20 \text{ MeV}$ = 230 km/s (p,n), 270 km/s (p,n, Λ) at T = 30 MeV

400 km/s (Average of Observed Values)

Spin Deceleration in <u>Toroidal</u> Magnetic Field

Γ/Γ [S]

Asymmetric Neutrino Emit. $10^{-2} \sim 10^{-5}$ when B ~ 10^{17} G Magnetic Dipole Radiation $10^{-11} \sim 10^{-12}$

Asymmetric V-Emission plays an important role in PNS Spin in Early Time

Future Plans

v-Scattering Iso-Temp. \Rightarrow Iso-Entropy Exact Solution of Dirac Eq. in Non-Perturbative Cal. \rightarrow Landau Level at least for Electron

> Neutrino Propagation in Low Density $e^- + p \rightarrow v_e + n$

Making Data Table and Applying it to Supernovae Simulations