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Motivation

Point of reference: heavy-ion collision at RHIC/LHC:

3 / 34



Motivation

Point of reference: heavy-ion collision at RHIC/LHC:

3 / 34



Motivation

Point of reference: heavy-ion collision at RHIC/LHC:

3 / 34



Motivation

Point of reference: heavy-ion collision at RHIC/LHC:

3 / 34



Motivation

Point of reference: heavy-ion collision at RHIC/LHC:

3 / 34



Motivation

Point of reference: heavy-ion collision at RHIC/LHC:

3 / 34



Motivation

Point of reference: heavy-ion collision at RHIC/LHC:

3 / 34



Key question:

Why can we apply a hydrodynamic description so
early after the collision?

This problem is commonly reformulated as the problem of early
thermalization (since local thermal equilibrium is commonly assumed to
be a prerequisite of thermalization)

Motivation: Understand the features of (early) thermalization for an
evolving (boost-invariant) plasma system

What do we mean by thermalization here?

4 / 34



Key question:

Why can we apply a hydrodynamic description so
early after the collision?

This problem is commonly reformulated as the problem of early
thermalization (since local thermal equilibrium is commonly assumed to
be a prerequisite of thermalization)

Motivation: Understand the features of (early) thermalization for an
evolving (boost-invariant) plasma system

What do we mean by thermalization here?

4 / 34



Key question:

Why can we apply a hydrodynamic description so
early after the collision?

This problem is commonly reformulated as the problem of early
thermalization (since local thermal equilibrium is commonly assumed to
be a prerequisite of thermalization)

Motivation: Understand the features of (early) thermalization for an
evolving (boost-invariant) plasma system

What do we mean by thermalization here?

4 / 34



Key question:

Why can we apply a hydrodynamic description so
early after the collision?

This problem is commonly reformulated as the problem of early
thermalization (since local thermal equilibrium is commonly assumed to
be a prerequisite of thermalization)

Motivation: Understand the features of (early) thermalization for an
evolving (boost-invariant) plasma system

What do we mean by thermalization here?

4 / 34



Key question:

Why can we apply a hydrodynamic description so
early after the collision?

This problem is commonly reformulated as the problem of early
thermalization (since local thermal equilibrium is commonly assumed to
be a prerequisite of thermalization)

Motivation: Understand the features of (early) thermalization for an
evolving (boost-invariant) plasma system

What do we mean by thermalization here?

4 / 34



Key question:

Why can we apply a hydrodynamic description so
early after the collision?

This problem is commonly reformulated as the problem of early
thermalization (since local thermal equilibrium is commonly assumed to
be a prerequisite of thermalization)

Motivation: Understand the features of (early) thermalization for an
evolving (boost-invariant) plasma system

What do we mean by thermalization here?

4 / 34



Thermalization

I At weak coupling the obvious definition would be to require thermal
momentum distributions for quarks and gluons...

I At strong coupling, the picture of a gas of gluons is not really valid
— alternatively require that observables such as 2-point

functions/spatial Wilson loops/ entanglement entropy are the same
as for a thermal system...

explored in the AdS/CFT context

I This is very good for studying relaxation processes where the final
state is some uniform static plasma system — this is not so for the
plasma undergoing expansion

I For an expanding plasma fireball we need local equilibrium — bilocal
probes get contaminated by collective flow

I We adopt an operational definition of effective thermalization — the
point when plasma starts being describable by (viscous)
hydrodynamics.
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Hydrodynamics

I Hydrodynamics isolates long wavelength effective degrees of
freedom of a theory

I The energy-momentum tensor Tµν is expressed in terms of a local
temperature T and flow velocity uµ

I Tµν is expressed as an expansion in the gradients of the flow
velocities (shown here for N = 4 SYM)

Tµν
rescaled = (πT )4(ηµν + 4uµuν)︸ ︷︷ ︸

perfect fluid

− 2(πT )3σµν︸ ︷︷ ︸
viscosity

+

+ (πT 2)
(

log 2Tµν
2a + 2Tµν

2b + (2− log 2)

(
1
3

Tµν
2c + Tµν

2d + Tµν
2e

))
︸ ︷︷ ︸

second order hydrodynamics

I The coefficients of the various tensor structures are the transport
coefficients. In a conformal theory these are pure numbers times
powers of T .

I Full nonlinear hydrodynamic equations follow now from ∂µTµν = 0
I The above form of Tµν for N = 4 SYM at strong coupling is not an

assumption but can be proven from AdS/CFT
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Fluid/gravity duality versus nonequilibrium physics

The approach of [Bhattacharyya, Hubeny, Minwalla, Rangamani]

I Start from a static black hole with fixed temperature T which
describes a fluid at rest, uµ = (1, 0, 0, 0) with constant energy
density

I Perform a boost to obtain a uniform fluid moving with constant
velocity uµ

I The resulting metric (in Eddington-Finkelstein coordinates) is

ds2 = −2uµdxµdr−r2
(

1− T 4

π4r4

)
uµuνdxµdxν+r2(ηµν+uµuν)dxµdxν

where r =∞ corresponds to the boundary, r = T/π is the horizon
while r = 0 is the position of the singularity.

Promote T and uµ to (slowly-varying) functions of xµ

Caveat: The metric is no longer an exact solution of Einstein’s equations
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Fluid/gravity duality versus nonequilibrium physics

I Perform an expansion of the Einstein equations in gradients of
spacetime fields.

I Find corrections to the metric at first and second order
I Require nonsingularity to fix integration constants
I Read off the resulting energy-momentum tensor Tµν
I Tµν is expressed in terms uµ and T and their derivatives

Tµν
rescaled = (πT )4(ηµν + 4uµuν)︸ ︷︷ ︸

perfect fluid

− 2(πT )3σµν︸ ︷︷ ︸
viscosity

+

+ (πT 2)
(

log 2Tµν
2a + 2Tµν

2b + (2− log 2)

(
1
3

Tµν
2c + Tµν

2d + Tµν
2e

))
︸ ︷︷ ︸

second order hydrodynamics

Question: The above construction, extended to all orders, seems to give
an equivalence between Einstein’s equations and (all-order) viscous
hydrodynamics???
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Fluid/gravity duality versus nonequilibrium physics

I Fluid/gravity duality is an expansion around some specific 0th order
geometry — this 0th order geometry need not be relevant for the
appropriate physics

I There exist interesting examples which are ‘orthogonal’ to
hydrodynamics — cannot be described at all within this framework
Example: isotropisation of uniform anisotropic plasma

Tµν =


ε 0 0 0
0 p‖(t) 0 0
0 0 p⊥(t) 0
0 0 0 p⊥(t)


I Plasma equilibration in heavy-ion collisions is a mixture of both

types of physics...
I In the boost-invariant setting we may unambigously determine when

deviations from (even all-order) viscous fluid dynamics start to be
important

I Physically this means that then nonhydrodynamic degrees of
freedom become relevant...
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The equilibration of some global plasma system is difficult to study
because either

— there is no small parameter...

or

— there is a transition between two distinct asymptotic expansions...

generically need Numerical Relativity methods...
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Boost-invariant flow

Bjorken ’83
Assume a flow that is invariant
under longitudinal boosts and does
not depend on the transverse
coordinates.

I In a conformal theory, Tµ
µ = 0 and ∂µTµν = 0 determine, under the

above assumptions, the energy-momentum tensor completely in
terms of a single function ε(τ), the energy density at mid-rapidity.

I The longitudinal and transverse pressures are then given by

pL = −ε− τ d
dτ
ε and pT = ε+

1
2
τ

d
dτ
ε .

I In this setting we may determine whether all-order viscous
hydrodynamics is applicable (even without knowing its explicit form)

I We may also study the fine details of fluid-gravity to higher orders
(convergence, asymptotics, possible resummations) Work in progress
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Large τ behaviour of ε(τ)

I Current result for large τ : RJ, Peschanski; Nakamura, S-J Sin; RJ; RJ,
Heller; Heller

ε(τ) =
1

τ
4
3

− 2

2
1
2 3
3
4

1
τ 2

+
1 + 2 log 2

12
√

3

1

τ
8
3

+
−3 + 2π2 + 24 log 2− 24 log2 2

324 · 2 12 3 14
1

τ
10
3

+. . .

I Leading term — perfect fluid behaviour
second term — 1st order viscous hydrodynamics
third term — 2nd order viscous hydrodynamics
fourth term — 3rd order viscous hydrodynamics...

I As we decrease τ more and more dissipation will start to be
important
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Question 1: If we start from various initial conditions at τ = 0 when
does the above hydrodynamic form of ε(τ) starts being applicable?

Question 2: When are nonhydrodynamic degrees of freedom rele-
vant for the plasma evolution?
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Large τ behaviour of ε(τ)

I New results for large τ : Work in progress

ε(τ) =
1

τ
4
3

− 0.6204
1
τ 2

+ 0.1148
1

τ
8
3

+ 0.03622
1

τ
10
3

+ 0.009934
1

τ
12
3

+

+0.0007284
1

τ
14
3

+ . . .+O
(
τ−

24
3

)
I Obtained by iteratively solving numerically equations within the

fluid-gravity duality
I We can explore convergence properties of the hydrodynamic

description
I Relevant for ‘small initial data’
I Phenomenological ‘all-order’ proposals were put forward by Lublinski

and Shuryak

Question 1: If we start from various initial conditions at τ = 0 when
does the above hydrodynamic form of ε(τ) starts being applicable?

Question 2: When are nonhydrodynamic degrees of freedom rele-
vant for the plasma evolution?
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Aim: Study the evolution of ε(τ) all the way from τ = 0 to large τ
starting from various initial conditions and investigate the transition to
hydrodynamic behaviour...

Method: Describe the time dependent evolving strongly coupled plasma
system through a dual 5D geometry — given e.g. by

ds2 =
gµν(xρ, z)dxµdxν + dz2

z2
≡ g5Dαβdxαdxβ

i) use Einstein’s equations for the time evolution

Rαβ −
1
2

g5DαβR − 6 g5Dαβ = 0

ii) read off 〈Tµν(xρ)〉 from the numerical metric gµν(xρ, z)

gµν(xρ, z) = ηµν + z4g (4)
µν (xρ) + . . . 〈Tµν(xρ)〉 =

N2c
2π2
· g (4)
µν (xρ)
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Initial conditions for the evolution of the plasma system

I Our point of departure — start with arbitrary initial conditions and
look for common features/regularities

I In weakly coupled gauge theory, the analog would be to start from
arbitrary momentum distributions of gluons and follow the evolution
until equilibration

I At strong coupling the analog is a specific initial geometry in the
bulk

I However, not unexpectedly, there is no direct quantitative
interpretation in terms of e.g. gluon momenta distributions

We developed a quite different approach from Chesler’s and Yaffe’s since

1. We want to study the evolution right from τ = 0 with
energy-momentum conservation satisified throughout the evolution

2. Throughout the evolution we keep the physical 4D Minkowski metric

3. We did not want to mix the equilibration dynamics with the
response of the gauge theory to a change in the physical metric
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Initial conditions for the evolution of the plasma system

I In a previous work [Beuf, Heller, RJ, Peschanski], we analyzed
possible initial conditions in the Fefferman-Graham coordinates

ds2 =
1
z2

(
−ea(z,τ)dτ 2 + eb(z,τ)τ 2dy2 + ec(z,τ)dx2⊥

)
+

dz2

z2

I The initial conditions are determined in terms of a single function,
say c0(z). a0(z) = b0(z) are determined through a constraint
equation.

I A typical solution of the constraint equations is

a0(z) = b0(z) = 2 log cos z2 c0(z) = 2 log cosh z2

I There is a coordinate singularity at z =
√
π/2 where

ds2 =
−cos2(z2)dτ 2 + . . .

z2

I This can be cured ala Kruskal-Szekeres by modifying the metric
ansatz but keeping the initial hypersurface identical
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The metric ansatz and numerical formalism

I The key problem is what boundary conditions to impose in the
bulk. For a sample initial profile c0(u) = cosh u (u ≡ z2), there is a
curvature singularity at u =∞.

I A-priori we do not know where is the event horizon!
I We use the ADM freedom of foliation to ensure that all

hypersurfaces end on a single spacetime point in the bulk — this
ensures that we will control the boundary conditions even though
they may be in a strongly curved part of the spacetime

I This also ensures that no information flows from outside our region
of integration...

I It is crucial to optimally tune the cut-off u0 in the bulk...
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The metric ansatz and numerical formalism

I Depending on the relation of u0 to the event horizon we can get
quite different behaviours of the numerical simulation

I In order to extend the simulation to large values of τ neccessary for
observing the transition to hydrodynamics we need to tune u0 to be
close to the event horizon.

I Fortunately, this is quite simple in practice...
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The metric ansatz and numerical formalism

black line – dynamical horizon, arrows – null geodesics, colors represent
curvature
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The metric ansatz and numerical formalism

We use an ADM metric ansatz:

ds2 =
−a2(u)α2(t, u)dt2 + t2a2(u)b2(t, u)dy2 + c2(t, u)dx2⊥

u
+

d2(t, u)du2

4u2

I We set the lapse to always vanish at the boundary in the bulk
I Consequently, we set the (nondynamical) function a(u) to

a(u) = cos
(
π

2
u
u0

)
I The remaining part of the lapse, α(t, u) is chosen to be a function

of the metric coefficients

α ∝ dc2

b
or α ∝ bd

1 + u
u0

b2
or α ∝ d

b

19 / 34



The metric ansatz and numerical formalism

We use an ADM metric ansatz:

ds2 =
−a2(u)α2(t, u)dt2 + t2a2(u)b2(t, u)dy2 + c2(t, u)dx2⊥

u
+

d2(t, u)du2

4u2

I We set the lapse to always vanish at the boundary in the bulk
I Consequently, we set the (nondynamical) function a(u) to

a(u) = cos
(
π

2
u
u0

)
I The remaining part of the lapse, α(t, u) is chosen to be a function

of the metric coefficients

α ∝ dc2

b
or α ∝ bd

1 + u
u0

b2
or α ∝ d

b

19 / 34



The metric ansatz and numerical formalism

We use an ADM metric ansatz:

ds2 =
−a2(u)α2(t, u)dt2 + t2a2(u)b2(t, u)dy2 + c2(t, u)dx2⊥

u
+

d2(t, u)du2

4u2

I We set the lapse to always vanish at the boundary in the bulk
I Consequently, we set the (nondynamical) function a(u) to

a(u) = cos
(
π

2
u
u0

)
I The remaining part of the lapse, α(t, u) is chosen to be a function

of the metric coefficients

α ∝ dc2

b
or α ∝ bd

1 + u
u0

b2
or α ∝ d

b

19 / 34



The metric ansatz and numerical formalism

We use an ADM metric ansatz:

ds2 =
−a2(u)α2(t, u)dt2 + t2a2(u)b2(t, u)dy2 + c2(t, u)dx2⊥

u
+

d2(t, u)du2

4u2

I We set the lapse to always vanish at the boundary in the bulk
I Consequently, we set the (nondynamical) function a(u) to

a(u) = cos
(
π

2
u
u0

)
I The remaining part of the lapse, α(t, u) is chosen to be a function

of the metric coefficients

α ∝ dc2

b
or α ∝ bd

1 + u
u0

b2
or α ∝ d

b

19 / 34



Initial conditions

I We have used 29 initial geometries at τ = 0 which encode the initial
conditions for the boost-invariant plasma system

I Technically each geometry is determined by a choice of the metric
coefficient c(τ = 0, u).

I We have chosen quite different looking profiles e.g.

c1(u) = cosh u

c3(u) = 1 +
1
2

u2

c7(u) = 1 +
1
2u
2

1 + 3
2u
2

c10(u) = 1 +
1
2

u2e−
u
2

c15(u) = 1 +
1
2

u2eu

c19(u) = 1 +
1
2

tanh2
(

u +
1

25
u2
)
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Some kinematic variables

It is convenient to eliminate explicit dependence on the number of
degrees of freedom and use an effective temperature Teff instead of ε(τ)

〈Tττ 〉 ≡ ε(τ) ≡ N2c ·
3
8
π2 · Teff

4

Introduce the dimensionless quantity

w(τ) ≡ Teff (τ) · τ
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Nonequilibrium vs. hydrodynamic behaviour

Question: Can we describe the plasma system using just a flow
velocity uµ and (arbitrary number of) transport coefficients?

I Viscous hydrodynamics (up to any order in the gradient expansion)
leads to equations of motion of the form

τ

w
d

dτ
w =

Fhydro(w)

w

where Fhydro(w) is a universal function completely determined in
terms of the hydrodynamic transport coefficients e.g.

FN=4
hydro (w)

w
=

2
3

+
1

9πw
+

1− log 2
27π2w2

+
15− 2π2 − 45 log 2 + 24 log2 2

972π3w3
+. . .

I Therefore if plasma dynamics would be given by viscous
hydrodynamics (even of arbitrary high order) a plot of
F (w) ≡ τ d

dτ w as a function of w would be a single curve for all the
initial conditions

I Genuine nonequilibrium dynamics would, in contrast, lead to several
curves...
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Nonequilibrium vs. hydrodynamic behaviour

A plot of F (w)/w versus w for various initial data

Questions:
i) How good is the agreement with hydrodynamics?
ii) To what extent is the plasma there truly thermalized?
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Nonequilibrium vs. hydrodynamic behaviour

I An observable sensitive to the details of the dissipative dynamics
(e.g. hydrodynamics) is the pressure anisotropy

∆pL ≡ 1− pL

ε/3
= 12F (w)− 8

I For a perfect fluid ∆pL ≡ 0. For a sample initial profile we get

I For w = Teff · τ > 0.63 we get a very good agreement with viscous
hydrodynamics

I Still sizable deviation from isotropy which is nevertheless completely
due to viscous flow.
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Entropy

I The AdS/CFT prescription for 〈Tµν〉 is on a very solid ground in the
framework of the AdS/CFT correspondence — in contrast entropy,
especially for nonequillibrium systems is much less understood

I It is even not clear whether an exact local notion makes sense on the
QFT side...

I However, phenomenological notion of local entropy density is widely
used in (dissipative) hydrodynamics

I On the AdS side entropy is obtained from the area element of an
apparent horizon joined to the point on the boundary by a null
geodesic

I This definition passes all tests but there is no really good
justification...

I For the boost-invariant setup fortunately most ambiguities are
absent...
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Entropy

I We consider the entropy per unit rapidity and unit transverse area in
units of initial temperature introducing a dimensionless entropy
density s through

s =
S

1
2N
2
c π
2T 2eff (0)

I Determine initial entropy from the area of a dynamical horizon at a
point where a null geodesic from τ = 0 intersects the horizon
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Final entropy

I For large proper-time, the dynamics is given by hydrodynamics,
leading to the large τ expansion

Teff (τ)= Λ

(Λτ)1/3

{
1− 1
6π(Λτ)2/3

+ −1+log 2
36π2(Λτ)4/3

+ −21+2π2+51 log 2−24 log2 2
1944π3(Λτ)2+...

}

I We obtain the Λ parameter from a fit to the late time tail of our
numerical data.

I Knowing Λ, we may use the standard perfect fluid expression for the
entropy at τ =∞

sfinal =
Λ2

T 2eff (0)
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Entropy production

Consider the entropy production sfinal − sinitial as a function of sinitial

Recall the complicated nonequilibrium dynamics...
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Entropy production

Consider the entropy production sfinal − sinitial as a function of sinitial

Yet the entropy production depends in surprisingly clean way on sinitial ...

The initial entropy turns out to be a key characterization of the
initial state
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Properties of (effective) thermalization

I We want to study systematically the properties of the plasma at the
point when the dynamics becomes describable by viscous
hydrodynamics...

I We adopted a numerical criterion for (effective) thermalization∥∥∥∥∥ τ d
dτ w

F 3rd order
hydro (w)

− 1

∥∥∥∥∥ < 0.005
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I will describe the following features of (effective) thermalization:

1. The dimensionless quantity w = Teff · τ
2. The thermalization time in units of initial effective temperature

τth · Teff (0)
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w = Teff · τ at thermalization

I w at thermalization is approximately constant and for the initial
profiles considered does not exceed w = 0.7. It seems to decrease
for profiles with smaller initial entropy

I N.B. sample initial conditions for hydrodynamics at RHIC
(τ0 = 0.25 fm, T0 = 500 MeV ) assumed in [Broniowski, Chojnacki,
Florkowski, Kisiel] correspond to w = 0.63

I The pressure anisotropy at thermalization is still sizable

∆pL ≡ 1− pL

ε/3
= 12F (w)− 8 ' 12Fhydro(w)− 8 ∼ 0.72− 0.73
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τth · Teff (0) at thermalization

I Thermalization time in units of the initial effective temperature
Teff (0)

I Again we see a clean dependence on the initial entropy sinitial
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Conclusions

I AdS/CFT provides a very general framework for studying
time-dependent dynamical processes

I For w = Tth · τth > 0.7 we observe hydrodynamic behaviour but
with sizeable pressure anisotropy (described wholly by viscous
hydrodynamics)

I The plasma system at the transition to hydrodynamic description is
still quite far from true thermal equilibrium (in agreement with
results obtained by Chesler, Yaffe for their specific initial states)

I Even though genuine nonequilibrium dynamics is very complicated,
we observed surprising regularities

I Initial entropy seems to be a key physical characterization of the
initial state determining the total entropy production and
thermalization time and temperature

I Still many open questions...
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