On M5 Branes

Kimyeong Lee KIAS

YKIS 2012 From Gravity to Strong Coupling Physics Yukawa Institute for Theoretical Physics Oct 2012

Ho-Ung Yee, KM [<u>hep-th/0606150</u>], Bolognesi, KM: On 1/4 BPS Junctions, [<u>arXiv:1105.5073</u>] Hee-Cheol Kim, Seok Kim, E. Koh, KM, Sungjay Lee: dyonic instantons [<u>arXiv:1110.2175</u>] Hee-Cheol Kim, K.M. Supersymmetric M5 Brane Theories on R×CP² [<u>arXiv:1210.0853</u>]

Outline

- * 6d (2,0) M5 brane theories in R^{1+5}
- * 1/4 BPS Junctions & 1/16 BPS Webs
 - * New 11 Equations for 1/16 BPS Objects
 - * Finite size BPS 't Hooft operators
 - * Degenerate Limit and speed of light
- * Dyonic Instantons Index and DLCQ on M5
- * New Supersymmetric M5 Brane Theories on R x CP²
- * Concluding Remarks

5d N=2 YM as the M5 brane theory

- * Circle compactifiction of 6d (2,0) superconformal field theories
- * coupling constant $1/g_{YM}^2 = 4\pi^2/R$
- * instanton = quantum of KK modes of unit momentum
- * complete by its own?
- * symmetry: super Poincare symmetry + Sp(2)=SO(5) R-symmetry
- * spatial SO(4) rotation: J_{1L} , J_{2L}
- * Sp(2)_R=SO(5) R-symmetry: J_{1R} , J_{2R}
- * Monopole strings in Coulomb phase
- * Electric description: nonabelian gauge field A^{a}_{μ} , F= dA + A²
- * Magnetic description: nonabelian $B^{a}_{\mu\nu}$, H=dB+...= *F ???

Instanton particles in 5d

- * KK modes of mass k/ R = a threshold bound states of k instantons
- * abelian action in 5d:

 $H^2 + inH \wedge B$, or $n^2B^2 + iH \wedge B$

- circle compactification and T-duality: D0 becomes D1 strings ending on D3 branes
- * KK modes becomes the fields in the adjoint representation of the magnetic gauge group.
- * The nonabelian version in 4d should be

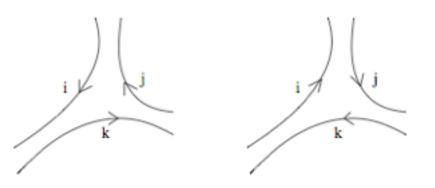
$$\partial_{\mu}B_{\rho\sigma} \Rightarrow \partial_{\mu}B_{\rho\sigma} - i[A^{magnetic}_{\mu}, B_{\rho\sigma}]$$

6d (2,0) M5 Brane Theory

- * 6d (2,0) superconformal field theory with symmetry $OSp(2,6|2) = O(2,6) \times Sp(4)$
- * 2-form tensor field B, spinor Ψ , scalar Φ_{I}
- * purely quantum (*H=H=dB): \hbar =1
- * nonabelian ADE types: N-M5, NM5+OM5, Type IIB on C^2/Γ
- * N³ degrees of freedom
- * AdS₇ x S⁴ correspondence

Selfdual Strings in Coulomb phase

- * Supersymmetric Transformation: $\Gamma^{012345}\epsilon = -\epsilon$, $\Gamma^{012345}\lambda = \lambda$
- * $\delta \lambda \sim H_{\mu\nu\rho} \Gamma^{\mu\nu\rho} \epsilon + D_{\mu} \Phi_{I} \Gamma^{\mu} \rho^{I} \epsilon$, $H_{\mu\nu\rho} = \epsilon_{\mu\nu\rho\alpha\beta\gamma} H^{\alpha\beta\gamma}/6$, $\epsilon^{012345} = 1$
- * 1/2 BPS selfdual strings along x^5 : $\Gamma^{05}\rho_5 \epsilon = \epsilon$, $H_{05\mu} \sim *H_{05\mu} \sim D_{\mu}\Phi_5$
- * 1/4 BPS string junctions: $\Gamma^{04} \rho_4 \epsilon = \epsilon$, $H_{04\mu} \sim H_{04\mu} \sim D_{\mu} \Phi_4$



- * 1/16 BPS webs of strings:
- * 5d Monopole string webs: Kapustin-Witten equation (Ho-Ung Yee, KL)
 - * $F_{ab} = \epsilon_{abcd} D_c \Phi_d -i[\Phi_a, \Phi_b], D_a \Phi_a = 0$ 7 equations = octonions
 - * $F_{a0} = D_a \Phi_5$ 4 equations: 7+4=11 equations
 - * Gauss law $D_a^2 \Phi_5 [\Phi_a, [\Phi_a, \Phi_5]] = 0$

Junctions and Webs in Coulomb Phase

- * 6d generalization of Kapustin-Witten equations
- * 1/16 BPS condition: $\Gamma^{0\mu} \rho_{\mu} \epsilon = \epsilon$, ($\mu = 1, 2, 3, 4, 5$):
- * $SO(5)_{rot} \times SO(5)_{R} \Rightarrow SO(5)_{locking}$
- * BPS equations: a generalization of KW
- * $H_{0\mu\nu} = *H_{0\mu\nu} = \partial_{\mu} \Phi_{\nu} \partial_{\nu} \Phi_{\mu}$, $\partial_{\mu} \Phi_{\mu} = 0$
- * 11 equations:
- * dH=d*H=0 is the equation of motion d*H=0, d*d Φ_{μ} =0

N-Cubic Degrees of Freedom

* Anomaly Coefficient: $C_G = h_G \times d_G / 3$

Group	r_G	d_G	h_G	$c_G/3$
$A_{N-1} = SU(N)$	N-1	$N^{2} - 1$	N	$\frac{1}{3}N(N^2-1)$
$D_N = SO(2N)$	N	N(2N-1)	2(N - 1)	$\frac{2}{3}N(2N-1)(N-1)$
E_6	6	78	12	312
E_7	7	133	18	798
E_8	8	248	30	2480

* 1/4 BPS objects in Coulomb phase

- * for ADE, dual Coxeter number=Coxeter number: $h = (d-r)/r \Rightarrow d=r(h+1)$
- * selfdual strings with left and right moving waves: number of roots = d-r = hr
- ∗ junctions and anti-junctions: su(3) roots imbedding = rh(h-2)/3 ← done by counting explicitly in Bolognesi &KM
- * total number of 1/4 BPS objects: rh(h+1)/3= hd/3=anomaly coefficient
- * More fundamental than 1/2 BPS selfdual strings?
- * Finite temperature phase transition in Coulomb phase
 - * beyond Hagedorn temperature, the webs of junctions could dominate the entropy

(2,0) 1/16 BPS equation for Webs of selfdual strings

- * 1/4 BPS objects are more fundamental than 1/2 BPS objects ?
- * Symmetric phase: New formalism including junctions?
 - * W-boson scattering => Nonabelian gauge theory...
 - * Vertex or Junction Fields?
- * Finite size BPS probes (tHooft operators)

 Degenerate limit: string+ momentum = S-dual of dyonic instanton

Index of Dyonic Instantons in 5d N=2 SYM

Index for BPS states with k instantons ¥

$$Q = Q^+_+ \qquad \begin{array}{c} SU(2)_{2R} \\ SU(2)_{1R} \end{array} \right\} \Rightarrow SU(2)_R$$

adjoint hyper flavor

$$I_k(\mu^i, \gamma_1, \gamma_2, \gamma_3) = \operatorname{Tr}_k \left[(-1)^F e^{-\beta Q^2} e^{-\mu^i \Pi_i} e^{-i\gamma_1(2J_{1L}) - i\gamma_2(2J_{2L}) - i\gamma_R(2J_R)} \right]$$

 μ_i : chemical potential for $U(1)^N \subset U(N)_{color}$

- $\gamma_{1}, \gamma_{2}, \gamma_{R}$: chemical potential for $SU(2)_{1L}, SU(2)_{2L}, SU(2)_{R}$
- *
- calculate the index by the localization: $I(q, \mu^i, \gamma_{1,2,3}) = \sum_{k=0}^{\infty} q^k I_k$ 5d *N=2** instanton partition function on R⁴ x S¹: t ~ t+ β ¥
- In $\beta \rightarrow 0$ and small chemical potential limit, the index becomes 4d Nekrasov ¥ instanton partition function :

*
$$a_{i} = \frac{\mu_{i}}{2} - \epsilon_{1} = i \frac{\gamma_{1} - \gamma_{R}}{2} \quad \epsilon_{2} = i \frac{\gamma_{1} + \gamma_{R}}{2}, \quad m = i \frac{\gamma_{2}}{2} \quad q = e^{2\pi i \tau}$$
instanton fugacity
Scalar Vev
Omega deformation parameter
Adj hypermultiplet mass

►

►

U(1) instantons

- * D0's on a single D4
- As instantons are KK modes of (2,0) theory, one expects a unique threshold bound state for each instanton number k.
- * U(1) index for k=1

$$I_{cm} = \frac{\sin\left(\frac{\gamma_1 + \gamma_2}{2}\right)\sin\left(\frac{\gamma_1 - \gamma_2}{2}\right)}{\sin\left(\frac{\gamma_1 + \gamma_R}{2}\right)\sin\left(\frac{\gamma_1 - \gamma_R}{2}\right)}$$

	$SU(2)_{1L}$	$SU(2)_{1R}$	$SU(2)_{2L}$	$SU(2)_{2R}$
B_2	3	1	1	1
ϕ_I	1	1	2	2
	1	1	1	1
λ	2	1	2	1
	2	1	1	2

* U(1) index [lqbal-Kozcaz-Shabbir 10]

$$I_{U(1)}(q, e^{\gamma_i}) = PE[\frac{q}{1-q}I_{cm}(e^{\gamma_i})], \text{Plythethytic exponential}$$

* Expand the single particle index in q

$$\sum_{k=0}^{\infty} q^k I_{cm}$$
 unique threshold bound state

* Shown to be true for some U(N) for small number of k

Nonrelativistic Superconformal index

- * To get the index in symmetric phase, integrate over $\mu_i = i a_i$ with Haar measure
- * DLCQ on null circle: Nonrelativistic superconformal symmetry
 - * P₋ on the null circle = instanton number

- [Aharony-Berkooz-Seiberg 97]
- * Superalgebra: $2i\{Q,S\} = iD \mp (4J_{2R} + 2J_{1R}) \rightarrow iD \ge \pm (4J_{2R} + 2J_{1R})$
- * Nonrelativistic superconformal index

$$I_{SC} = \text{Tr}\left[(-1)^F e^{-\beta \{\hat{Q}, \hat{S}\}} e^{-2i\gamma_R J_R} e^{-2i\gamma_1 J_{1L} - 2i\gamma_2 J_{2L}} e^{-i\alpha_i \Pi_i} \right]$$

- * In the limit $\beta \rightarrow 0$, this superconformal index becomes our index.
- * For single instanton with $t = e^{-i\gamma_R}$

$$I_{k=1} = \frac{e^{i\gamma_2} + e^{-i\gamma_2} - e^{i\gamma_1} - e^{-i\gamma_1}}{(1 - te^{i\gamma_1})(1 - te^{-i\gamma_1})} \left[t + \sum_{n=1}^{N-1} (e^{in\gamma_2} + e^{-in\gamma_2})t^{n+1} - \chi_{\frac{N-2}{2}}(\gamma_2)t^{N+1} \right]$$

* Large N
$$I_{N \to \infty, k=1} = \frac{e^{i\gamma_2} + e^{-i\gamma_2} - e^{i\gamma_1} - e^{-i\gamma_1}}{(1 - te^{i\gamma_1})(1 - te^{-i\gamma_1})} \frac{t - t^3}{(1 - te^{i\gamma_2})(1 - te^{-i\gamma_2})}$$

AdS7 x S4 calculation confirm it.

6d (2,0) Theory on RxS⁵

* 6d (2,0) theory on R⁶: radial quantization R x S⁵: OSp(2,6|2): SO(2,6) x Sp(2)=SO(5)_R $S = \int_{\mathbb{P} \times \mathbb{P}^5} dt d\Omega_{S^5} \left\{ -\frac{1}{12} H_{MNP} H^{MNP} - \frac{i}{2} \bar{\lambda} \Gamma^M \hat{\nabla}_M \lambda - \frac{1}{2} \partial_M \phi_I \partial^M \phi_I - \frac{2}{r^2} \phi_I \phi_I \right\}.$

$$S^5 = U(1)$$
 fiber over CP² : $ds^2_{S5} = ds^2_{CP2} + (dy + V)^2$, $dV = 2J$

- * SO(6)=SU(4) \supset SU(3) x U(1)
- * 32 Killing spinors = 24 (SU(3) triplet) + 8 (SU(3) singlet)
 - * (I) E₊ ~ exp(-it/2 +3i y/2)... : singlet
 - * (II) $\mathcal{E}_+ \sim \exp(-it/2 iy/2)...$: triplet
- * Write down abelian theory on $R \times S^5$ & Change the variables

(I)
$$\epsilon_{old} = e^{-\frac{3\rho_{45}}{2}y} \epsilon_{new}, \ \lambda_{old} = e^{-\frac{3\rho_{45}}{2}y} \lambda_{new}, \ (\phi_4 + i\phi_5)_{old} = e^{+3iy} (\phi_4 + i\phi_5)_{new}.$$

(II)
$$\epsilon_{old} = e^{+\frac{\rho_{45}}{2}y} \epsilon_{new}, \ \lambda_{old} = e^{+\frac{\rho_{45}}{2}y} \lambda_{new}, \ (\phi_4 + i\phi_5)_{old} = e^{-iy}(\phi_4 + i\phi_5)_{new}.$$

* Write down the theory in new variables

(I)
$$\partial_y \to \partial_y + 3iR_2$$
 (II) $\partial_y \to \partial_y - iR_2$.

¥

$Z_k \ Modding \ \& \ Dimensional \ Reduction \ to \ R \ x \ CP^2$

* Z_k modding of new variables

$$y \sim y + \frac{2\pi}{k}$$

- * New variables to be independent of y: preserve some supersymmetries
 - * (I) $\rho_{45} \epsilon = -i\epsilon$, 4 supersymmetries
 - * (ii) $\rho_{45} \epsilon = -i\epsilon$, 12 supersymmetries
- * Killing spinor equation on R x CP² $\partial_t \epsilon = \frac{i}{2} \gamma_0 \tilde{\epsilon}, \ D_m \epsilon = -\frac{i}{2} J_{mn} \gamma^n \epsilon + \frac{i}{2} \gamma_m \tilde{\epsilon},$

$$(\mathbf{I}) \quad \rho_{45}\epsilon_{+} = -i\epsilon_{+}, \quad D_{a} = \nabla_{a} + \frac{3\rho_{45}}{2}V_{a}, \qquad \tilde{\epsilon} = -\left[3\rho_{45} + \frac{1}{2}J_{ab}\gamma^{ab}\right]\epsilon,$$

$$(\mathbf{II}) \quad \rho_{45}\epsilon_{+} = -i\epsilon_{+}, \quad D_{a} = \nabla_{a} - \frac{\rho_{45}}{2}V_{a}, \qquad \tilde{\epsilon} = \left[\rho_{45} - \frac{1}{2}J_{ab}\gamma^{ab}\right]\epsilon,$$

- * Complete the supersymmetry with Abelian gauge field and its action
- * Non-abelianize it
- * Fix the coupling constant: instantons should represent KK modes

$$\frac{1}{g_{YM}^2} = \frac{k}{4\pi^2 r},$$

4 Supersymmetric Theory on R x CP²

* Lagrangian

$$S_{\mathbf{I}} = \frac{k}{4\pi^{2}} \int_{\mathbf{R}\times\mathbf{CP}^{2}} d^{5}x \, \mathrm{tr} \Big[-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} \epsilon^{\mu\nu\rho\sigma\eta} J_{\mu\nu} \Big(A_{\rho} \partial_{\sigma} A_{\eta} - \frac{i}{3} A_{\rho} A_{\sigma} A_{\eta} \Big) \\ -\frac{1}{2} D_{\mu} \phi_{I} D^{\mu} \phi_{I} + \frac{1}{4} [\phi_{I}, \phi_{J}]^{2} + \frac{i}{3} \epsilon_{abc} \phi_{a} [\phi_{b}, \phi_{c}] - 2\phi_{a}^{2} - \frac{13}{2} \phi_{i}^{2} \\ -\frac{i}{2} \bar{\lambda} \gamma^{\mu} D_{\mu} \lambda - \frac{i}{2} \bar{\lambda} \rho_{I} [\phi_{I}, \lambda] - \frac{1}{8} \bar{\lambda} \gamma^{mn} \lambda J_{mn} + \frac{3}{4} \bar{\lambda} \rho_{45} \lambda \Big], \quad (2.22)$$

* Covariant derivative

$$\begin{split} F_{\mu\nu} &= \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - i[A_{\mu}, A_{\nu}], \\ D_{\mu}\phi_{a} &= \partial_{\mu}\phi_{a} - i[A_{\mu}, \phi_{a}], \\ D_{\mu}\phi_{i} &= \partial_{\mu}\phi_{i} - i[A_{\mu}, \phi_{i}] + 3V_{\mu}\epsilon_{ij}\phi_{j}, \\ D_{\mu}\lambda &= \left[\partial_{\mu}\lambda + \frac{1}{4}\omega_{\mu}^{ab}\gamma^{ab} + \frac{3}{2}V_{\mu}\rho_{45}\right]\lambda - i[A_{\mu}, \lambda]. \end{split}$$

* Supersymmetric Transformation

$$\begin{split} \delta A_{\mu} &= +i\bar{\lambda}\gamma_{\mu}\epsilon = -i\bar{\epsilon}\gamma_{\mu}\lambda,\\ \delta\phi_{I} &= -\bar{\lambda}\rho_{I}\epsilon = \bar{\epsilon}\rho_{I}\lambda,\\ \delta\lambda &= +\frac{1}{2}F_{\mu\nu}\gamma^{\mu\nu}\epsilon + iD_{\mu}\phi_{I}\rho_{I}\gamma^{\mu}\epsilon - \frac{i}{2}[\phi_{I},\phi_{J}]\rho_{IJ}\epsilon - 3\epsilon_{ij}\phi_{i}\rho_{j}\epsilon - 2\phi_{I}\rho_{I}\tilde{\epsilon} \end{split}$$

12 Supersymmetric Theory on R x CP²

* Lagrangian

$$S_{\mathbf{II}} = \frac{k}{4\pi^2} \int_{\mathbf{R}\times\mathbf{CP}^2} d^5 x \, \mathrm{tr} \Big[-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} \epsilon^{\mu\nu\rho\sigma\eta} J_{\mu\nu} \Big(A_\rho \partial_\sigma A_\eta - \frac{i}{3} A_\rho A_\sigma A_\eta \Big) \\ -\frac{1}{2} D_\mu \phi_I D^\mu \phi_I + \frac{1}{4} [\phi_I, \phi_J]^2 + \frac{i}{3} \epsilon_{abc} \phi_a [\phi_b, \phi_c] - 2\phi_a^2 - \frac{5}{2} \phi_i^2 \\ -\frac{i}{2} \bar{\lambda} \gamma^\mu D_\mu \lambda - \frac{i}{2} \bar{\lambda} \rho_I [\phi_I, \lambda] - \frac{1}{8} \bar{\lambda} \gamma^{mn} \lambda J_{mn} - \frac{1}{4} \bar{\lambda} \rho_{45} \lambda \Big], \quad (2.25)$$

- * Covariant derivative $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - i[A_{\mu}, A_{\nu}],$ $D_{\mu}\phi_{a} = \partial_{\mu}\phi_{a} - i[A_{\mu}, \phi_{a}],$ $D_{\mu}\phi_{i} = \partial_{\mu}\phi_{i} - i[A_{\mu}, \phi_{i}] - V_{\mu}\epsilon_{ij}\phi_{j},$ $D_{\mu}\lambda = \left[\partial_{\mu}\lambda + \frac{1}{4}\omega_{\mu}^{ab}\gamma^{ab} - \frac{1}{2}V_{\mu}\rho_{45}\right]\lambda - i[A_{\mu}, \lambda].$
- * Supersymmetric Transformation

$$\begin{split} \delta A_{\mu} &= i \bar{\lambda} \gamma_{\mu} \epsilon = -i \bar{\epsilon} \gamma_{\mu} \lambda, \\ \delta \phi_{I} &= -\bar{\lambda} \rho_{I} \epsilon = \bar{\epsilon} \rho_{I} \lambda, \\ \delta \lambda &= + \frac{1}{2} F_{\mu\nu} \gamma^{\mu\nu} \epsilon + i D_{\mu} \phi_{I} \rho_{I} \gamma^{\mu} \epsilon - \frac{i}{2} [\phi_{I}, \phi_{J}] \rho_{IJ} \epsilon + \epsilon_{ij} \phi_{i} \rho_{j} \epsilon - 2 \phi_{I} \rho_{I} \tilde{\epsilon}. \end{split}$$

Properties

- * Hamiltonian on CP^2 = Hamiltonian on S^5 = Conformal Dimension D
- * Instanton number

$$v=rac{1}{16\pi^2}\int_{CP^2}{d^4x}~rac{1}{4}{
m tr}{m F}\wedge{m F}$$

KK-mode has mass k and so v instantons should have action ks: the coupling constant

$$\frac{1}{g_{YM}^2} = \frac{k}{4\pi^2}$$

* 5-d Chern-Simons term: Linander and Ohlsson
$$ds_{R \times S^5}^2 = ds_{R \times CP^2}^2 + (dy + V)^2$$

B, A are 2 and 1 forms in $R \times CP^2$
 $H = dB + F \wedge dy, F = dA$
 $H = (dB - F \wedge V) + F \wedge (dy + V), F = dA$
 $dB - F \wedge V = *F$ in $R \times CP^2$
 $d(dB - F \wedge V) = -2F \wedge J = d^*F$
 $d^*F + 2J \wedge F = 0$

* Myers term but no nontrivial vacuum

Harmonic Analysis on S⁵ & CP²

Pope,Hosomich at.al.,Kim&Kim

* Scalar harmonics on R x S⁵: $-\partial_t^2 \Phi = (-\Delta_{S5} + 4) \Phi$

 $(-\nabla_{S^5}^2 + 4)Y^{\ell_1,\ell_2} = (\ell_1 + \ell_2 + 2)^2 Y^{\ell_1,\ell_2}, \ -i\partial_y Y^{\ell_1,\ell_2} = (\ell_1 - \ell_2)Y^{\ell_1,\ell_2}.$

- * highest weight vector: $\ell_1 w_1 + \ell_2 w_2$ degeneracy: $(\ell_1 + 1)(\ell_2 + 1)(\ell_1 + \ell_2 + 2)/2$
- * On CP²: y-independent mode for $\Phi_{1,2,3}$: $(-\nabla_{CP^2}^2 + 4)Y^{\ell,\ell} = 4(\ell+1)^2 Y^{\ell,\ell}$,
 - * conformal dimension: $\varepsilon = 2\ell + 2$ $2(\ell + 1)^3$.
 - * first KK mode: $Y^{0,k}$ $Y^{k,0}$: $\epsilon = k+2$, (k+1)(k+2)/2
 - * higher KK modes: $\ell_1 \ell_2 = kn, n=1, -1, 2, -2, ...$
- * $\Phi_{4,5}$: $(-\nabla_{S^5}^2 + 4)Y^{\ell,\ell+3} = (-D_{CP^2}^2 + 13)Y^{\ell,\ell+3} = (\ell+5)^2 Y^{\ell,\ell+3}$
- * Fermions: 5/2+....

 $\Psi_1 = Y^{l,l+3}\epsilon_+ \,, \quad \Psi_2 = \gamma^\tau \gamma^m D_m Y^{l,l+3}\epsilon_+ \,, \quad \Psi_3 = Y^{l,l}\epsilon_- \,, \quad \Psi_4 = \gamma^\tau \gamma^m D_m Y^{l,l}\epsilon_- \,,$

* Vector bosons: 4+... $\mathcal{A}_{\tau} = Y^{l,l}, \quad \mathcal{A}_{m}^{1} = D_{m}Y^{l,l}, \quad \mathcal{A}_{m}^{2} = J_{mn}D^{n}Y^{l,l}, \quad \mathcal{A}_{m}^{3} = \epsilon_{-}^{\dagger}\gamma_{m}\gamma^{n}D_{n}Y^{l,l+3}\epsilon_{+}.$

Superconformal Index

* choose Q & S to be one of four supercharges: SU(3) singlet

$$\{Q, S\} = \varepsilon - j_1 - j_2 - j_3 + 2R_1 + 2R_2 \equiv \Delta,$$

- * (2,0) index $I(x, y_1, y_2, q) = \operatorname{tr}\left[(-1)^F x^{\varepsilon + R_1} y_1^{j_1 - j_2} y_2^{j_2 - j_3} q^j\right], \qquad x = e^{-\beta}, y_1 = e^{-i\gamma_1}, y_2 = e^{-i\gamma_2}, y_1 = e^{-i\gamma_2}, y_2 = e^{-i\gamma_2}, y_1 = e^{-i\gamma_2}, y_2 = e^{-i\gamma_2}, y_2 = e^{-i\gamma_2}, y_1 = e^{-i\gamma_2}, y_2 = e^{$
- * U(1) index: J. Bhattacharya, S. Bhattacharyya, S. Minwalla, S. Raju

$$I = \exp\left[\sum_{n=1}^{\infty} \frac{1}{n} f(x^n, y_i^n, q^n)\right],$$

$$f(x, y_1, y_2, q) = \frac{x + x^2 q^3 - x^2 q^2 (1/y_1 + y_1/y_2 + y_2) + x^3 q^3}{(1 - xqy_1)(1 - xqy_2/y_1)(1 - xq/y_2)}$$

* q=0 limit= half index (16 susy): S. Bhattacharyya, S. Minwalla

$$I_{1/2-\text{BPS}} = \prod_{m=1}^{N} \frac{1}{1-x^m}.$$

Path Integral

* Path integral
$$I(x, y_i, q) = \int_{S^1 \times CP^2} \mathcal{D}\Psi e^{-S_{\mathbf{I}}^E[\Psi]}$$
. $I = \frac{1}{N!} \int \prod_{i=1}^N \left[\frac{d\alpha_i}{2\pi} \right] \prod_{i < j}^N \left[2\sin\left(\frac{\alpha_i - \alpha_j}{2}\right) \right]^2 \times I_{1-loop}$.

- * Perturbative Contribution: split to hyper and vector multiplets
 - * $\rho_{12} \epsilon =-i \epsilon, \rho_{12} \psi =-i \psi, \rho_{12} \chi = i \chi$
 - * hyper: ϕ_1 +i ϕ_2 , ϕ_4 -i ϕ_5 , ψ
 - * vector: A_{μ} , χ , ϕ_3
- * hyper and vector contributions

$$\frac{\det_{H,f}}{\det_{H,b}} = \prod_{\alpha \in root} \frac{1}{\sin\left(\frac{\alpha - i\beta}{2}\right)} \sim \exp\left[\sum_{n=1}^{\infty} \sum_{i,j} \frac{1}{n} x^n e^{ni\alpha_{ij}}\right]. \qquad \qquad \frac{\det_{V,f}}{\det_{V,b}} = 1.$$

* 1-loop contribution= 1/2 index

$$I(x, y_1, y_2)_{k \to \infty} = \frac{1}{N!} \int \prod_{i=1}^{N} \left[\frac{d\alpha_i}{2\pi} \right] \prod_{i < j}^{N} \left[2 \sin\left(\frac{\alpha_i - \alpha_j}{2}\right) \right]^2 \exp\left[\sum_{n=1}^{\infty} \sum_{i,j} \frac{1}{n} x^n e^{ni\alpha_{ij}} \right] \\ = \prod_{m=1}^{N} \frac{1}{1 - x^m}.$$
(4.

Supergravity

* AdS₇ X S⁴
$$ds^2 = R^2 (-\cosh^2 \rho dt^2 + d\rho^2 + \sinh^2 \rho d\Omega_5^2) + \frac{1}{4} R^2 d\Omega_4^2,$$

 $F_4 \sim N\epsilon_4, \ R/\ell_p = 2(\pi N)^{1/3}.$

*
$$Z_k \mod ds_{S^5}^2 = ds_{CP^2}^2 + (dy' + V)^2,$$

 $ds_{S^4}^2 = d\vartheta^2 + \sin^2 \vartheta d\chi'^2 + \cos^2 \vartheta ds_{S^2}.$ $y' = \frac{y}{k}, \ \chi' = \chi + \frac{3y}{k},$

* Type IIA
$$ds_{11}^2 = e^{-2\sigma/3} ds_{10}^2 + e^{4\sigma/3} (dy + A)^2$$
,
 $F_{11}^4 = e^{4\sigma/3} F_{10}^4 + e^{\sigma/3} F_{10}^3 \wedge dy$.

* 10-d me
$$ds_{10}^2 = \frac{R^3}{2k} \Big[(-\cosh^2 \rho dt^2 + d\rho^2 + \sinh^2 \rho ds_{CP^2}^2) + \frac{1}{4} (d\vartheta^2 + \cos^2 \vartheta ds_{S^2}^2) \Big].$$
(5.15)

The curvature scale of the type IIA theory is of order $\sqrt{R^3/2k} \sim \sqrt{N/k}$ which is large when 't Hooft coupling $\lambda = N/k$ is large.

* Fiber radius

$$e^{2\sigma/3}\sim {N^{1/3}\over k} \sinh
ho$$

* M-region: $k < N^{1/3}$

Conclusion

- * Index of dyonic instantons should tell more about selfdual strings ending on multiple M5 branes, including the degenerated junctions
- * New supersymmetric theories on M5 are found.
- * We are working on the full Index calculation including instantons.
- * More work to be done on M5