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1 Introduction

AdS/CFT 1997 ∼

Diverse aspects in diverse set-ups

⇓ sophisticated means

A large body of non-trivial evidence

Especially, spectacular matches in the prototypical duality

N = 4 SYM/AdS5 × S5 string duality

(focus of attention of this talk)
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But, still quite ignorant of the basic physical picture

¨ Any sort of intuitive explanation based on the conventional open-

closed duality fails:

It cannot capture the strong/weak nature.

¨ Often invoked explanation based on the dual nature of the

multiple D-brane system cannot be precise:

Need only the zero-mode part of the open string for the SYM

side.

⇔ “Closed string” must already be recognized in local

field theory.

But it is quite different from QCD. The correspondence is holo-

graphic.
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Possible strategy for discovering hidden physical mechanism

¨ Put aside D-brane type picture (at least tentatively).

¨ Focus more on the firm generic properties common to both

sides of the duality

⇓

Conformal field theory
(in more than 2 dimensions)

• Understand “dynamically” how the same CFT structure emerges
— How crossing symmetry of 4-point functions is realized on
both sides ⇒ valuable hint
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First need to understand 2-point and 3-point functions

〈O1(x1)O2(x2)〉 , 〈O1(x1)O2(x2)O3(x3)〉

Oi(xi) =

{
Tr (φ1(xi)φ2(xi) · · · ) SYM side∫

d2ziVi(zi; xi) xi ∈ ∂(AdS5) string side

Vigorous studies of these basic correlation functions have naturally evolved in the

manner1

BPS (kinematical ) =⇒ Non-BPS (dymanical)

2-point =⇒ 3-point

For large operators and/or non-BPS operators, various integrability-based meth-

ods have been utilized:

Integrable spin chains, Bethe ansatz, method of spectral curves, etc.

Most recently, the focus has been on

1See the review by Beisert et al (2010))
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Non-BPS 3-point functions

SYM side Technology to compute the overlaps of Bethe eigenstates

Okuyama, Tseng, Roiban, Volovich, Alday, Gava, Narain, . . . ,

2011 ∼ Escobedo, Gromov, Sever, Vieira, Caetano, Foda, Serban, Wheeler,

Kostov, Matsuo, . . .

String side Use of semi-classical integrability for “heavy” states

¨ Heavy-Heavy : Tsuji, Janik-Surowka-Wereszczynski, Buchbinder-Tseytlin,. . .

¨ Heavy-Heavy ⊕ Light(BPS) or near BPS

2010 ∼ Zarembo, Costa-Monteiro-Santos-Zoakos, Roiban-Tseytlin, . . . ,

2011∼ Klose-McLoughlin, Buchbinder-Tseytlin, . . .

¨ Genuine Heavy-Heavy-Heavy: ⇐= focus of this talk

2011 ∼ Janik-Wereszczynski, Kazama-Komatsu
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Holographic 3-point function in the saddle-point approximation

Structure¶ ³

G(x1, x2, x3) = e−S[X∗]
3∏

i=1

Vi[X∗; zi, xi, Qi]

µ ´

xi = Points on the boundary of AdS

S ∼ log Vi[Qi] ∼ O(
√

λ)

δ

δX

(
−S[X] +

∑

i

log Vi[X]

) ∣∣∣∣
X∗

= 0 V1(x1) V2(x2) V3(x3)
• Vi = (1, 1) primary =⇒ No zi dependence.

• Near each xi, the solution X∗ ∼ the saddle point solution for 〈Vi(x1)Vi(x2)〉
holcorfn-8



Serious obstacles

¨ No systematic method to construct conformally invariant vertex

operators of interest (even semi-classically) in curved spacetime.

¨ No three-pronged saddle solutions in curved spacetime are known.

Nontheless

It is possible to overcome these difficulties by exploiting the classical

integrability of the string in AdS? × S∗

Key: The global information is connected to the local infor-

mation through underlying integrability and analyticity
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¨ R. Janik and A. Wereszczynski, arXiv:1109.6262

• Strings in AdS2 × Sk

Computed the contribution of the AdS2 part of the string ∼ evaluation of

the action. (Contribution of the vertex operators ∼ trivial since string is

structureless on the boundary )

Contribution of the (spinning) Sk part (action ⊕ vertex) remains to be com-

puted.

¨ Y.K. and S. Komatsu

– arXiv:1110.3949: Part I

• Large spin limit of GKP spinning strings in AdS3 (LSGKP)

Evaluated the finite part of the action S[X∗]

– arXiv:1205.6060: Part II:

? Developed a general method for evaluating the contribution of the

vertex operators ⇒ Applied to GKP strings

? Complete finite result for the LSGKP 3-point function .
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Part I
Computation of the finite part of the action

(∼ Calculation of the area of the Wilson loop for gluon-scattering)

¨ Integrability for strings in AdS3 and GKP string I

? Method of Pohlmeyer reduction

¨ Action in terms of contour integrals

(Generalized) Riemann bilinear identity

¨ Analysis of the eigenfunctions of auxiliary linear problem

– Monodromy matrices and their eigenfunctions

– WKB analysis of eigenfunctions

¨ Computation of the finite part of the action
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Part II
Contribution of the vertex operators

¨ state-operator correspondence

vertex operators ⇒ wave functions

in terms of action-angle variables

– Integrability for strings in AdS3 and GKP string II

? Framework of spectral curve and finite gap solution

– Sklyanin’s method ⊕ global symmetry transformations

to construct and evaluate the action-angle variables:

⇒ contributions of wave functions

¨ Computation of two point functions

¨ Computation of the three point function for LSGKP strings
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Part I
Computation of the finite part of the action

holcorfn-13



2 Integrability for strings in AdS3 and GKP strings I

Method of Pohlmeyer reduction

2.1 String in Euclidean AdS3 ⊂ AdS5

String in Euclidean AdS3 (radius set to 1)

~X = (X−1, X0, X1, X2, X3, X4) ⊂ AdS5

~X · ~X = −X2
−1 + X2

1 + X2
2 + X2

4 = −1

Poincaré coordinates: Boundary of AdS3 at z = 0, described by (x, x̄)

X+ ≡ X−1 + X4 =
1

z
, X− ≡ X−1 − X4 = z +

xx̄

z

X ≡ X1 + iX2 =
x

z
, X̄ ≡ X1 − iX2 =

x̄

z
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Convenient matrix representation and global symmetry transformation

X≡
(

X+ X

X̄ X−

)
, detX = 1

X′= VLXVR

VL ∈ SL(2, C)L , VR ∈ SL(2, C)R

Global symmetry: G ≡ SO(4, C) = SL(2, C)L × SL(2, C)R ,

Action

S = T · Area = 2T

∫
d2z∂ ~X · ∂̄ ~X , ~X · ~X = −1

Eq. of motion and Viraosoro conditions

∂∂̄ ~X = (∂ ~X · ∂̄ ~X) ~X , ∂ ~X · ∂ ~X = ∂̄ ~X · ∂̄ ~X = 0
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2.2 A brief review of Pohlmeyer reduction

Describe the system with G-invariant fields α, p, p̄ ( ~N ⊥ ~X, ∂ ~X, ∂̄ ~X)

e2α =
1

2
∂ ~X · ∂̄ ~X , p =

1

2
~N · ∂2 ~X , p̄ = −1

2
~N · ∂̄2 ~X

Eq. of motion + Virasoro ⇔ Flatness of certain left and right connections

BR,L
z,z̄ = BR,L

z,z̄ (α, p, p̄)

[
∂ + BL

z , ∂̄ + BL
z̄

]
= 0 ,

[
∂ + BR

z , ∂̄ + BR
z̄

]
= 0

⇓

∂∂̄α − e2α + pp̄e−2α = 0

p = p(z) , p̄ = p̄(z̄)
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Integrability ⇒ Extend to flat Lax connections Bz(ξ), Bz̄(ξ)

with ξ = complex spectral parameter

Bz(ξ) =
1

ξ
Φz + Az , Bz̄(ξ) = ξΦz̄ + Az̄

They are expressed in terms of α, p and p̄ as

Az ≡
(

1
2
∂α 0

0 −1
2
∂α

)
, Az̄ ≡

(
−1

2
∂̄α 0

0 1
2
∂̄α

)

Φz ≡
(

0 −eα

−pe−α 0

)
, Φz̄ ≡

(
0 −p̄e−α

−eα 0

)

BL and BR are identified as

• BL
z = Bz(ξ = 1) , BL

z̄ = Bz̄(ξ = 1)

• BR
z = U†Bz(ξ = i)U , BR

z̄ = U†Bz̄(ξ = i)U

U = eiπ/4

(
0 1

i 0

)
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2 Auxiliary linear problem and reconstruction formula:

Flatness condition ⇔ compatibility of the set of linear equa-

tions:

Auxiliary linear problem

(∂ + Bz(ξ))ψ(ξ, z, z̄) = 0 , (∂̄ + Bz̄(ξ))ψ(ξ, z, z̄) = 0

Two independent solutions for ψ(ξ, z, z̄) contain all the important
information

⇒ Two sets of independent solutions for the left and the right problems

ψL
a = ψa(ξ = 1) , ψR

ȧ = U †ψȧ(ξ = i) , a, ȧ = 1, 2

holcorfn-18



SL(2)-invariant product

〈ψ, χ〉 ≡ εαβψαχβ , (εαβ = −εβα , ε12 ≡ 1)

ψL,R are normalized as

〈ψL
a , ψL

b 〉 = εab , 〈ψR
ȧ , ψR

ḃ
〉 = εȧḃ

Reconstruction formula for the string coordinates

Xaȧ = ψL
1,aψR

1̇,ȧ
+ ψL

2,aψR
2̇,ȧ

( To be used in part II)
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2.3 GKP string spinning in X1-X2 plane

“Reference” (elliptic) GKP solution (Gubser-Klebanov-Polyakov, 2002)

Xref
GKP =

(
X+ X

X̄ X−

)
=

(
e−κτ cosh ρ(σ) eωτ sinh ρ(σ)

e−ωτ sinh ρ(σ) eκτ sinh ρ(σ)

)
, τ = it

ρ(σ)
1 2 3 4 5 6

-0.5

0.5

(expressed in terms of Jacobi elliptic functions)

SL2 × SL2

=⇒

boundary ⇒ horizon boundary ⇒ boundary

(τ = −∞ → τ + ∞) (τ = −∞ → τ + ∞)
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Large spin limit of GKP (LSGKP) : ω → κ

Xref
LSGKP =

(
e−κτ cosh ρ(σ) eκτ sinh ρ(σ)

e−κτ sinh ρ(σ) eκτ sinh ρ(σ)

)

Global charges are expressed in terms of one parameter κ

SL(2)L (left) charge `+≡ 1

2
(∆ + S) =

√
λ

2π
sinh κπ

SL(2)R (right) charge `−≡ 1

2
(∆ − S) =

√
λ

2π
κπ ¿ `+ for large κ

∆ = dilatation charge

S = spin
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2 View from the Pohlmeyer reduction:

From the definitions of p, p̄ and α,

p(z)= − κ2

4z2
, p̄(z̄) = − κ2

4z̄2

e2α(z,z̄)=
√

pp̄

Auxiliary linear problem: (∂ + Bz(ξ))ψ = 0 and (∂̄ + Bz̄(ξ))ψ = 0

Solution

ψ = Aψ̃ , A =

(
p−1/4eα/2 0

0 p1/4e−α/2

)

ψ̃± = exp

(
±κi

2

(
ξ−1ln z − ξln z̄

))
(

1

±1

)
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Monodromy around the origin

(
ψ̃′

+

ψ̃′
−

)
= M

(
ψ̃+

ψ̃−

)
, M =

(
eip̂(ξ) 0

0 e−ip̂(ξ)

)

p̂(ξ)= iκπ
(
ξ−1 + ξ

)

This characterizes the behavior around each singularity (leg).
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3 Action in terms of contour integrals

3.1 Finite part of the area

Definition of the “regularized area” ( for N -point function)

A = 2

∫
d2z ∂ ~X · ∂̄ ~X = 4

∫
d2z e2α = Afin + Adiv

Adiv = 4

∫
d2z

√
pp̄ 3 4

∫
d2z

|δi|2
|z − zi|2

∼ log divergent

Afin = 4

∫
d2z

(
e2α − √

pp̄
) EoM

= 2Areg + π(N − 2)

V1(x1) V2(x2) V3(x3)
Areg ≡

∫
d2z

(
e2α + pp̄ e−2α − 2

√
pp̄

)
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We can write Areg as (cf. gluon scattering problem (Alday-Maldacena, . . . ) )

Areg =
i

4

∫

D
λdz ∧ ω

λ =
√

p

ω = udz̄ + vdz = closed 1-form

where

u = 2
√

p̄(cosh 2α̂ − 1) , v =
1

√
p
(∂α̂)2 , α̂ = α − 1

2
ln pp̄

Behavior of p(z) near the insertion points

p(z)
z→zi∼ −κ2

i

4(z − zi)
2
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For three point function, p(z) is actually uniquely determined globally

p(z) = −1

4

(
κ2

1z12z13

z − z1

+
κ2

2z21z23

z − z2

+
κ2

3z31z32

z − z3

)
1

(z − z1)(z − z2)(z − z3)

zij ≡ zi − zj

It has two zeros.

Define the function

Λ(z) ≡
∫ z

z0

λ(z′)dz′ =

∫ z

z0

√
p(z′)dz′

Λ(z) has

• three log branch cuts running from the singularities zi

• one square-root cut connecting 2 zeros of p(z)

Λ is single-valued on the double cover D of the world-
sheet.
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Stokes theorem ⇒ Areg as a contour integral

Areg =
i

4

∫

D
dΛ ∧ ω =

i

4

∫

D
d(Λω)= − i

4

∫

∂D
Λω

The contour ∂D for the LSGKP three-point function

Further, we can re-express
∫
∂D Λω more explicitly by using the

generalization of the Riemann bilinear identities.

holcorfn-27



3.2 Generalized Riemann bilinear identities

Usual Riemann bilinear identity for closed 1-forms λ and ω:

Example: Hyperelliptic Riemann surface with g = 1a 
y
leb 
y
le
∫

∂D

Λω =

∮

b

λ

∮

a

ω −
∮

a

λ

∮

b

ω

One can derive a generalization for the case with additional log branch

cuts
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The full identity is rather complicated.

• For LSGKP strings, substantial simplification occurs. The most convenient

form is

Areg =
π

12
+

i

4

3∑

j=1

∮

Ci

√
p(z)dz

∮

dj

ω

The contours dj ’s
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• The major task will be the evaluation of the integral
∮
dj

ω.

This information is contained in the behavior of

the eigenfunctions of the auxiliary linear problem

around zi and along paths connecting {zi, zj}
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4 Analysis of the auxililary linear problem

4.1 Monodromy matrices and their eigenfunctions

Globally we do not know the saddle point solution.

Locally around each zi, the solution ∼ LSGKP solution

Characterized by the local monodromy matrix Mi ∈ SL(2, C).

Each Mi separately can be diagonalized as

UiMiU
−1
i =

(
eip̂i(ξ) 0

0 e−ip̂i(ξ)

)
, p̂i(ξ) = iκiπ

(
ξ−1 + ξ

)

Eigenvectors i± of Mi

i±∼ exp

[
±

(
1

ξ

∫ √
p(z)dz + ξ

∫ √
p̄(z̄)dz̄

)]
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? Mi’s and the normalized eigenvectors i± (with 〈i+, i−〉 = 1) can be deter-

mined in terms of p̂i(ξ) by the basic properties

det Mi = 1 and global consistency M1M2M3 = 1

up to arbitrary rescaling i± → c±1
i i±, which keeps the normalization

〈i+, i−〉 = 1.

• Appropriate products are free of such rescaling ambiguities and com-

pletely determined in terms of p̂i(ξ)’s

Example

〈1+, 2−〉〈2+, 1−〉 =
sin p̂1(ξ)−p̂2(ξ)+p̂3(ξ)

2
sin p̂1(ξ)−p̂2(ξ)−p̂3(ξ)

2

sin p̂1(ξ) sin p̂2(ξ)

We will need to know each individual factor. This can be done by the use of

the Wiener-Hopf method if we know the analyticity property in ξ.
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4.2 WKB analysis of eigenfunctions

For this purpose, solve the auxiliary linear problem in powers of ξ (and

1/ξ)

(∂ + Bz(ξ))ψ(ξ) = 0 , (∂̄ + Bz̄(ξ))ψ(ξ) = 0

ψ = Aψ̃ =

(
ψ̃1

ψ̃2

)

ψ̃1 = exp

[
S−1

ξ
+ S0 + ξS1 + ξ2S2 + · · ·

]

We can solve for S−1, S0, S1, . . ..

In the vicinity of each zi, classify the two independent solutions as

si = small solution: exponentially decreasing, unambiguous

bi = big solution: exponentially increasing, ambiguous b′
i = bi + asi
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5 Computation of the finite part of the action

Combine the analysis of monodromy eigenstates and the WKB eigenstates:

Relate si with i±: This depends on the sign of Im ξ (S−1 is imaginary)

Im ξ > 0 region (with κ2 > κ1, κ3, κ1 + κ3 > κ2.)

⇒ Identification: s1 ∼ 1+ , s2 ∼ 2− , s3 ∼ 3+

Contour integrals
∫
di

ω appear in ratios of 〈si, sj〉

〈s2 , s3〉
〈s2 , s1〉〈s1 , s3〉

=
〈2−, 3+〉

〈2−, 1+〉〈1+, 3+〉
= exp

[
1

ξ

∫

d1

λdz + ξ

∫

d1

√
p̄dz̄ +

ξ

2

∫

d1

ω + · · ·
]

Im ξ < 0 region Identification with i± are reversed.
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Thus one finds

〈s1, s2〉 =

{
〈1+, 2−〉 Im ξ > 0

〈1−, 2+〉 Im ξ < 0
, etc.

Apply Wiener-Hopf decomposition formula

1

2πi

∫ ∞

−∞
dξ′ 1

ξ′ − ξ
(F (ξ′) + G(ξ′)) =

{
F (ξ) , (Im ξ > 0)

−G(ξ) , (Im ξ < 0)

to the (log of the ) previously obtained relation

log〈1+, 2−〉 + log〈2+, 1−〉 = log

(
sin p̂1(ξ)−p̂2(ξ)+p̂3(ξ)

2
sin p̂1(ξ)−p̂2(ξ)−p̂3(ξ)

2

sin p̂1(ξ) sin p̂2(ξ)

)

⇒ We obtain log〈1+, 2−〉 and log〈2+, 1−〉 separately in terms of p̂i(ξ).

So we can now evaluate Areg in terms of κi in the manner

Areg ⇐
∫

dj

ω ⇐ ratios of 〈si, sj〉 ∼ 〈i±, j±〉 ⇐ p̂i(ξ) 3 κi
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Result for Areg¶ ³

Areg =
π

12
+ π

[
−κ1K(κ1) − κ2K(κ2) − κ3K(κ3)

+
κ1 + κ2 + κ3

2
K(

κ1 + κ2 + κ3

2
)

+
| − κ1 + κ2 + κ3|

2
K(

| − κ1 + κ2 + κ3|
2

)

+
|κ1 − κ2 + κ3|

2
K(

|κ1 − κ2 + κ3|
2

)

+
|κ1 + κ2 − κ3|

2
K(

|κ1 + κ2 − κ3|
2

)

]

µ ´

where K(x)

K(x) =
1

π

∫ ∞

−∞
dθ e−θ log

(
1 − e−4πx cosh θ

)
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Part II
Contribution of the vertex operators
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6 Evaluating the contribution of the vertex operators via

state-operator correspondence

? State-operator correspondence
In the saddle point approximation

V [q∗(z = 0)]e−Sq∗(τ<τ0) = Ψ[q∗(τ0, σ)]z = e�+i� � = �0	[q�(�0; �)℄V (0)e�S(�<�0)
q∗(τ, σ) = saddle point configuration in some canonical variable q(τ, σ)
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If we can employ the action-angle variables (Jn, θn), the wave func-

tion can be expressed simply as

Ψ[θ]= exp

(
i
∑
n

Jnθn − E({Jn})τ

)

♠ Extremely hard to construct action-angle variables for non-linear
systems by solving Hamilton-Jacobi equation.

? For integrable systems, we may use Sklyanin’s method to
construct action-angle variables
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6.1 Integrability for strings in AdS3 and GKP strings II

Framework of spectral curve and finite gap methods

To make use of the Sklyanin’s method, we need to use the framework of spectral

curve and finite gap methods.

2 Right and left Lax connections:

Basic object = right flat current (SL(2)R-covariant, SL(2)L-invariant)

jz = X−1∂X , jz̄ = X−1∂̄X

Right Lax connection with spectral parameter x : ∃ singularities at x = ±1

Jr
z(x) ≡ 1

1 − x
jz , Jr

z̄(x) ≡ 1

1 + x
jz̄

[
∂ + Jr

z(x) , ∂̄ + Jr
z̄(x)

]
= 0

Relation between x and the previous parameter ξ : x = 1−ξ2

1+ξ2
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Similarly, we will need left flat current and left Lax connection

lz = ∂XX−1 , lz̄ = ∂̄XX−1

[
∂ + J l

z(x) , ∂̄ + J l
z̄(x)

]
= 0

J l
z(x) ≡ − 1

1 − (1/x)
lz , J l

z̄(x) ≡ − 1

1 + (1/x)
lz̄

Most important object: Monodromy matrix Ω(x, z0)

Ω(x; z0) = Pe− ∮
(Jr

z(x)dz+Jr
z̄(x)dz̄)

= u(x; z0)
−1

(
eip̂(x) 0

0 e−ip̂(x)

)
u(x; z0)

p̂(x) = quasi-momentum
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Properties of Ω is encoded in

Spectral curve Γ : hyperelliptic Riemann surface with singularities

Γ : Γ(x, y) ≡ det (y1 − Ω(x; z0)) = 0

⇔
(
y − eip̂(x)

) (
y − e−ip̂(x)

)
= 0

Property of Γ ⇐ behavior at x = ∞, 0 and at x = ±1.

¨ Conserved right and left charges S∞, S0 from the behaviors at x = ∞, 0

p̂(x) =
4π√
λx

S∞ + O(
1

x2
) (x → ∞)

p̂(x) = 2πm +
4πx√

λ
S0 + O(x2) (x → 0)

¨ Leading singular behavior of p̂(x) around x = ±1 is dictated by the Virasoro

condition

Tr (jzjz) = 0 ⇒ jz = u

(
0 1

0 0

)
u−1 = special Jordan block
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Diagonalizing Ω(x) carefully,

p̂(x) = ± c±√
1 ∓ x

+ O((x ∓ 1)) (x → ±1)

New feature: “Half-poles” at x = ±1, as opposed to simple poles for R×S3

case.

Structure of the spectral curve for g = 1

(X’s denote node-like singularities (eip̂(x) = e−ip̂(x) ) accumulating to ±1. )

Spectral curve with finite g ⇒ construct “finte gap” solution
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6.2 Construction of the action-angle variables

Sklyanin’s method

Normalized Baker-Akhiezer eigenvector ~h(x; τ ) of Ω(x; τ, σ = 0)

(?) Ω(x; τ, σ = 0)~h(x; τ ) = eip̂(x)~h(x; τ )

~n · ~h = 1 , ~n =

(
n1

n2

)
, ~h =

(
h1

h2

)

~h(x; τ ) has g+1 poles, as a function of x.

Their positions on Γ : (γ1, γ2, . . . , γg, γ∞)(τ )

γi(τ ) depends on ~n
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Ω(x) (hence p̂(γi))= dynamical variables ⇒ {
Ω(x), Ω(x′)

}
P

Through (?), γi(τ )’s become dynamical variables.

Sklyanin constructed canonical variables associated to these
poles 2

Canonical pairs “(q, p)”∼ (z(γi), p̂(γi))

{z(γi) ,

√
λ

4πi
p̂(γj)}P = δij

{z(γi) , z(γj)}P = {p̂(γi) , p̂(γj)}P = 0

z = x +
1

x
= Zhukovski variable

2Applied to string in R × S3 by Dorey and Vicedo. Applicable to Euclidean AdS3 case as

well.
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Action variables Si (∼ ∮
pdq)

Si ≡ i
√

λ

8π2

∫

ai

p̂(x)dz

= “filling fraction”

(i = 1, 2, . . . , g, ∞)

Angle variables φi conjugate to Si:

Generating function F (Si , z(γi)) for the canonical transformation

(∗)
∂F

∂z(γi)
=

√
λ

4πi
p̂(γi) , (∗∗)

∂F

∂Si

= φi

Integrating (∗)

F (Si , z(γi)) =

√
λ

4πi

∑

i

∫ z(γi)

z(x0)

p̂(x′)dz′
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To compute φi from (∗∗), vary Si with all other Sj’s fixed

⇔ Add to p̂dz a 1-form whose period integral along ai is non-vanishing ∝ ωi

with the properties

∮

aj

ωi = δij ,

∮

Cs

ωi = −1
−1 +1

Cs

Using this we get

φi(τ ) =
∂F

∂Si
= 2π

∑

k

∫ γk(τ )

x0

ωi = Abel map

• φi(τ ) indeed evolves linearly in τ for classical solutions.

• Need one more angle variable φ̃0 conjugate to the left global charge

S0. This is obtained from the left connection J l by the same procedure.
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2 Illustration: The case of LSGKP string:

Explicit form of the right-current

j = X−1dX = −κdτ

(
1 0

0 −1

)
+ κdσ

(
0 e2κτ

e−2κτ 0

)

jτ and jσ are independent of σ.

Monodromy matrix

Ω(x, τ ) = exp

(∫ σ+2π

σ

Jσ(x)dσ

)
=

2πκ

1 − x2
M(τ, x)

where M(τ, x) =

(
−ix e2κτ

e−2κτ ix

)

Eigenvalues of M(τ, x): λ± = ±√
1 − x2 = time-independent (conserved)

Eigenfunctions

ψ± =

(
e2κτ

±√
1 − x2 + ix

)
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Normalized Baker-Akhiezer vector (for λ+)

h =
1

f
ψ+ , 1 = n1h1 + n2h2

⇒ f = n1e
2κτ + n2(

√
1 − x2 + ix)

h has a moving pole at the zero of f .

x(t) =
1 −

(
n1
n2

)
e4κτ

2in1
n2

e2κτ
= sin(2κ(t + t0)) , (τ = it)

t0 = − i

2κ
log

n1

n2

Change of the normalization vector shifts the position of the pole.

The differential ω∞ with the correct properties is given by

ω∞ =
1

2π

dx√
1 − x2

(∮

a∞
ω∞ = 1 ,

∮

Cs

ω∞ = −1

)
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Angle variable is given by the Abel map

φ∞ = 2π

∫ x(t)

ω∞ = sin−1(sin(2κ(t + t0))) + const = 2κ(t + t0) + const

This is indeed linear in t.
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6.3 Evaluation of the angle variables and the wave function

Wish to evaluate the angle variables for a general “finite gap” solu-

tion X
Main idea:

¨ Produce the solution of interest X from a suitable reference solution Xref

by a global transformation X = VLXrefVR

¨ Compute the shift of angle variables ∆φi under this transformation

⇒
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Explicit formula:

• Case of the angle variables {φ1, . . . , φg, φ∞} describable by the right-

current.

Angle variables ⇔ Positions of the poles of BA vector

⇒ How do the poles move under the global transformations ?

Under a global right transformation VR, the normalized Baker-Akhiezer vec-

tor gets transformed as

~h′(x; τ ) =
1

f(x; τ )
V −1

R
~href(x; τ )

f(x; τ ) is needed to keep ~h′(x; τ ) normalized.

Under this transformations, the positions of poles change {γi} −→ {γ′
i}

1/f(x; τ ) must remove the poles {γi} and add the poles {γ′
i}

⇔ Divisor of f is (f) =
∑g+1

i=1 (γ′
i − γi).
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Meromorphic differential which encodes this is

$= d(log f) =
df

f
3 poles at γ′

i and γi with residues 1 and −1

By studying the structure of $, one can prove

¨ φi with i = 1 ∼ g do not change under the global transformation

⇒ Only φ∞ can possibly change.

¨ The change of φ∞ can be expressed as

∫

b∞
$ = log

(
f(∞+)

f(∞−)

)
= 2πi

g+1∑

i=1

∫ γ′
i

γi

ω∞ = i∆φ∞

One can explicitly evaluate this from the asymptotic behavior of
~href(x; τ ) at x = ±∞

¨ Similar analysis with the left-current ⇒ Similar formula for ∆φ̃0
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Altogether we obtain

Master formula¶ ³

∆φ∞ = −i log

(
v22 − n2

n1
v21

−n1
n2

v12 + v11

)
, ∆φ̃0 = −i log

(
ṽ11 + ñ2

ñ1
ṽ21

ñ1
ñ2

ṽ12 + ṽ22

)

µ ´

vij =components of VR, ṽij = components of VL

• Normalization vectors ~n and ~̃n are fixed by the requirement that the

wave function

Ψ[φ̃0[~̃n], φi[~n], φ∞[~n]] ≡ eiS0φ̃0[~̃n]+iS∞φ∞[~n]+i
∑

i Siφi[~n]

carrying definite ∆ and S ⇐⇒ conformal primary O∆,S(x = 0) ⇔ Invari-

ant under the special conformal transformation
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Practical master formula¶ ³

∆φ∞ = −i log

(
v22

v11

)
, ∆φ̃0 = −i log

(
ṽ11

ṽ22

)

µ ´

They depend only on the diagonal elements

⇔ Effects of dilatations and rotations, as expected.

Dilatation

X+ → λX+ , X− → 1

λ
X− , X, X̄ : invariant

V d
L (λ) =

( √
λ 0

0 1√
λ

)
, V d

R(λ) =

( √
λ 0

0 1√
λ

)

Rotation

X → ξX , X̄ → 1

ξ
X̄ , X± : invariant

V r
L (ξ) =

( √
ξ 0

0 1√
ξ

)
, V r

R(ξ) =

(
1√
ξ

0

0
√

ξ

)
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7 Computation of the two point functions

We now sketch how we can compute two-point functions:

Step 1. Wave function Ψ1

∣∣
X corresponding to V (0, 0)

∣∣
X can be computed

relative to Ψ1

∣∣
Xref in terms of the relative shift of the angle variables ∼

eiJ∆θX (J = S∞, S0, θ = φ∞, φ̃0)

Step 2. For the evaluation of Ψ2

∣∣
X corresponding to V (x0, x̄0)

∣∣
X, in order to

compare with the angle variables corresponding to Xref

• tranlate X so that the insertion point is brought to the origin.

• swith to the local cylinder coordinates ⇔ effectively (τ, σ) → (−τ, −σ).

translation ⇒
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⇒ “Translated reversed” solution X̃

Step 3. Ψ2

∣∣
X can now be computed relative to Ψ1

∣∣
Xref by comparing X̃ with

Xref .

⇒ General formula for the contribution of the wave functions

Ψ1 Ψ2

∣∣
X = (−1)P

(
Ψ1

∣∣
Xref(0)

)2

eiJ(∆θX+∆θX̃)

(z1 − z2)E+P(z̄1 − z̄2)E−P e−(Jω−E)(τf−τi)

Virasoro
=⇒

(
Ψ1

∣∣
Xref(0)

)2

eiJ(∆θX+∆θX̃) × e
+S

∣∣τf

τi︸ ︷︷ ︸
cancel with the action

Step 4. Compute ∆θX+∆θX̃ for the specific string states by using the master

formula and add the contribution from the action e
−S

∣∣τf

τi .
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Example: Case of the elliptic GKP string

Ψ1e
−SΨ2

∣∣
X =

(
Ψ1

∣∣
Xref(0)

)2

x
(∆−S)
0 x̄

(∆+S)
0

−→ 1

x
(∆−S)
0 x̄

(∆+S)
0

with the normalization Ψ1

∣∣
Xref(0) = 1
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8 Computation of the three point function for LSGKP

strings

Theme: Interlacing of local and global information

Around each vertex insertion point zi

• we can compute the local eigensolutions iL± and iR± for the left and

right auxiliary problems.

• We can expand the unknown global solutions ψL
a and ψR

ȧ as

ψL
a = 〈ψL

a , iL
−〉iL

+ − 〈ψL
a , iL

+〉iL
−

ψR
ȧ = 〈ψR

ȧ , iR
−〉iR

+ − 〈ψR
ȧ , iR

+〉iR
−

Plug into the reconstruction formula(
X+ X

X̄ X−

)

a,ȧ

= ψL
1,aψ

R
1̇,ȧ

+ ψL
2,aψ

R
2̇,ȧ

⇓
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Local string solutions around zi

X+ ' eκ̂iτβ−
i (α+

i sinh κ̂iσ − α−
i cosh κ̂iσ)

+ e−κ̂iτβ+
i (α−

i sinh κ̂iσ − α+
i cosh κ̂iσ)

X ' eκ̂iτβ−
i (α+

i sinh κ̂iσ − α−
i cosh κ̂iσ)

+ e−κ̂iτβ+
i (α−

i sinh κ̂iσ − α+
i cosh κ̂iσ)

X̄ ' · · ·
X− ' · · ·

Coefficients contain the local information about of the global

solution

α±
i ≡ 〈ψL

1 , îL
±〉 , β±

i ≡ 〈ψR
1̇

, iR
±〉 , îL

± ≡ 1√
2
(±iL

+ + iL
−) ,

α±
i ≡ 〈ψL

2 , îL
±〉 , β±

i ≡ 〈ψR
2̇

, iR
±〉

κ̂1,3 = κ1,3 , κ̂2 = −κ2
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Location of the vertex operators:

x(i) =
X

X+

∣∣∣∣
τ=−∞,σ=0

=

{
β+

i /β+
i for i = 1, 3

β−
i /β−

i for i = 2

x̄(i) = (β, β̄) → (α, ᾱ)

2 Computation of the contribution of the wave functions:

(1) Translate each leg to the origin by

X̃i = T−x(i)X

(2) Compare with Xref :

Find VL and VR such that

X̃i = VLXrefVR

(3) Use the master formula to find

∆φ
(i)
0 and ∆φ(i)

∞ from VL and VR

x(1) x(2) x(3)0XrefX T�x(1)X
⇓
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Contribution of the wave functions:

Ψ1Ψ2Ψ3

∣∣
X = exp

(
i

3∑

i=1

S
(i)
0 ∆φ

(i)
0 + S(i)

∞ ∆φ(i)
∞

)
3∏

i=1

Ψ
∣∣
Xref(log εi)

(?) ∆φ
(i)
0 and ∆φ(i)

∞ : Expressed in terms of α±
i ’s an β±

i ’s

(??) They can be expressed in the extremely useful form, such as

(β+
1 )2 = − (x(2) − x(3))

(x(1) − x(2))(x(3) − x(1))

〈1R
+, 2R−〉〈3R

+, 1R
+〉

〈2R−, 3R
+〉

Local information of the global solution ψ is written as

(info. about relative positions) × (overlaps of local solutions)
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Moreover,

〈1R
+, 2R−〉〈3R

+, 1R
+〉

〈2R−, 3R
+〉 ∝ 〈s1, s2〉〈s3, s1〉

〈s2, s3〉
(ξ = i)

: computed in Part I

Substitution of the results for various parts gives

Ψ1Ψ2Ψ3

∣∣
X =

Cw.f .

(x1 − x2)`−
1 +`−

2 −`−
3 (x2 − x3)`−

2 +`−
3 −`−

1 (x3 − x1)`−
3 +`−

1 −`−
2

×

(
Ψ

∣∣
Xref(0)

)3

(x̄1 − x̄2)`+
1 +`+2 −`+3 (x̄2 − x̄3)`+2 +`+3 −`+1 (x̄3 − x̄1)`+3 +`+1 −`+

2

where

`−
i =

1

2
(∆(i) − S(i)) , `+

i ≡ 1

2
(∆(i) + S(i))
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log Cw.f . =H− [h(x, ξ = i)] + H+ [h(x, ξ = 1)]

+
i
√

λ

2

3∑

j=1

κ̂j

(∫

dj

√
pdz −

∫

dj

√
p̄dz̄

)

︸ ︷︷ ︸
cancel with log Adiv

+
∑

j

`+
j log c̃ ,

H± [f(x)]≡ 2
3∑

j=1

`±
j f(κj) − (

`±
1 + `±

2 + `±
3

)
f(

κ1 + κ2 + κ3

2
)

−
∑

(i,j,k)=(1,2,3)+cyclic

(−`±
i + `±

j + `±
k )f(

−κi + κj + κk

2
)

h(x, ξ) ≡ − 1

πi

∫ ∞

0

dξ′ 1

ξ′2 − ξ2
log

(
1 − e−2πx(ξ′−1

+ξ′)
)

c̃ = 1 −
√∏

(i,j,k)=(1,2,3)+cyclic sinh(π(−κi + κj + κk))

sinh(π(κ1 + κ2 + κ3))
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In this notation the contribution from the finite part of the action can be written

as

log Caction = −
√

λ

2π
Afin = −7

√
λ

12
+ H− [K(x)]

K(x) =
1

π

∫ ∞

−∞
dθe−θ log

(
1 − e−4πx cosh θ

)

2 Final result for the 3-point function of LSGKP string

• Despite the lack of knowledge of Vi and X∗, one can obtain

a completely explicit result.

• Integrability is quite powerful, beyond the spectral problem.
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3pt function for LSGKP

= e−AΨ1Ψ2Ψ3

=
CLSGKP ({κi})

∏
i 6=j 6=k(x

(i) − x(j))`−
i +`−

j −`−
k (x̄(i) − x̄(j))`+

i +`+j −`+k

3pt coupling¶ ³

log CLSGKP({κi}) = −7
√

λ

12
+

∑

j

`+j log c̃

+ H−[K̃(x)] + H+[h(x, ξ = 1)]

µ ´
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where

K̃(x) ≡ K(x) + h(x, ξ = i)

=
1

2π

∫ ∞

−∞
dθ

cosh 2θ

cosh θ
log

(
1 − e−4πx cosh θ

)
,

h(x, ξ = 1) = −1

2
log

(
1 − e−4πx

)

• Corresponding result on the SYM side is not yet available.

• Consistency check: In the limit κ3 → 0, κ2 → κ1, the three point

function above reduces to the properly normalized two point function.
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9 Summary and perspectives

2 What have been achieved :

• We have developed a general method to compute semi-classical correlation

functions at strong coupling for non-BPS string states with large quantum num-

bers, when they are describable by the “finite gap method” of integrable systems.

Our method is quite powerful in that it can be applied

to cases where neither the vertex operators nor the

saddle point configurations are explicitly known.

• As an important example, we applied it to the three point function of the

large spin limit of the GKP folded spinning strings and obtained completely finite

answer with the expected dependence of the target space coordinates on ∆ and

S.
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2 Extensions:

¨ Application of our method to other types of strings .

In particular, it is important to complete the case of the string in AdS2 × S3

(work in good progress)

⇔ SU(2) sector on the SYM side, for which weak coupling results exist.

¨ Computation of the 4 point functions 3

Study how the crossing symmetry is realized.

¨ Use of the action-angle variable formalism on the SYM side (under investi-

gation)

3Some special cases are recently studied by Caetano and Toledo, arXiv:1208.4548 .
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2 Remarks on “integrability”:

¨ Use of integrability is a necessary “evil”. Most happy if we can understand

the essential mechanism of the AdS/CFT duality without invoking in-

tegrability. But until that time, calculability based on the integrability and

analyticity will continue to be a powerful guide and should be fully utilized.

¨ For the string and the SYM, what “integrability” means is not yet on

the same footing.

– For the spectral problem, integrable spin-chains and the integrable non-

linear sigma models correspond more or less directly.

– However, for the 3-point functions, the “integrability” which governs

their entire structure is still elusive on the SYM side: So far, only the

integrability associated with the spectral problem appears to be visible.

Very important to identify the integrability of the SYM theory at a deeper

level.
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Thank you
for

your kind attention
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