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Introduction

In recent  years holography or gauge/gravity 
duality has provided  a new tool to handle 
strong coupling problems.

It has been spectacularly successful at explaining 
certain  features of the quark-gluon plasma such 
as its low viscosity/entropy density ratio.

An insightful picture, though not complete , has 
been developed for glueballs ,and  mesons  
spectra.

This naturally raises the question of whether 
one can apply  holography  to baryons and the 
“Strong interaction” namely to   nuclear  
interactions and nuclear matter.



Questions to investigate in nuclear holography

Is the large Nc and large l world similar to reality

Static properties of baryons

Nuclear interactions 

The nuclear  binding energy puzzle

Nuclear matter at zero and  finite temperature

The structure of the QCD  phase diagram  



Nuclear binding energy puzzle



Outline

Stringy holographic baryons

The  laboratory:  the  generalized  Sakai Sugimoto

model

Baryons as  flavor  gauge instantons

A brief review of static properties  of Baryons

Nuclear interaction: repulsion and attraction

The DKS model and the binding energy puzzle



Outline

Chains of  baryons-generalities

The 1d  and 3d toy models of point 
charges. 

Exact ADHM  1d chain of instantons

The two instanton approximation

Phase transitions between lattice 
structures

The phase diagram of QCD at large Nc

Summary and open questions



Stringy holographic Baryons



Stringy Baryons in hologrphy

How do we  identify a baryon in holography ?

Since a quark corresponds to a string,  the baryon  has to 
be  a structure with  Nc strings connected to it.

Witten proposed a baryonic vertex in AdS5xS5 in the form 
of a wrapped D5 brane over the S5.

On the world volume of the wrapped D5 brane there is a 
CS term  of the form

Scs=



Baryonic vertex

The flux  of the five form  is 

c

This   implies that there is a charge Nc for the 
abelian gauge field. Since in a compact space one 
cannot have non-balanced charges there  must be 

N c strings attached to it. 



External baryon

External baryon – Nc strings connecting the 
baryonic vertex and the boundary 

boundary

Wrapped

D brane



Dynamical baryon

Dynamical baryon – Nc strings connecting the baryonic 
vertex and flavor branes

boundary

Flavor brane dynami

Wrapped D 

brane



Baryons as instantons in the 

generalized Sakai Sugimoro

model



Baryons in a confining gravity background

Holographic baryons  have to include a baryonic 
vertex embedded in a gravity background ``dual” to 
the YM theory with flavor branes that admit chiral
symmetry breaking

A suitable candidate is the Sakai Sugimoto model 
which is based on the incorporation of D8 anti D8 
branes in Witten’s model



The brane setup of the Sakai Sugimoto model







Mesons in the gSS

The holographic meson=  string in curved space 
that connect the tip of the U shat at two points in x

Is mapped into a rotated string  with massive 
endpoints 





The location of the baryonic vertex

We need to determine the location of the baryonic 
vertex in the radial direction. 

In the leading order approximation it should 
depend on the wrapped brane tension and the 
tensions of the Nc strings.

We can do such a calculation in a background that 
corresponds to confining (like gSS) and to 
deconfining gauge theories. Obviously we expect 
different results for the two cases.



 The location of the baryonic vertex in the radial direction is 
determined by ``static equillibrium”.

 The energy is a decreasing function of x=uB/uKK and hence it 
will be located at the tip of the flavor brane



 It is interesting to check what happens in the 
deconfining phase. 

 For this case the result for the energy is

 For    x>xcr low temperature    stable baryon

 For   x<xcr high temperature   dissolved baryon

The baryonic vertex falls into the black hole 



The location of the baryonic vertex at finite temperature



Baryons as Instantons in the SS model  (  review)

In the SS  model the b.v is immersed in the flavor 
branes. 

The baryon takes the form of an instanton in the  
5d U(Nf) gauge theory.

The instanton is a  BPST-like instanton in the          
(xi,z)  4d curved space. In the leading order in l it 
is exact.



Baryon ( Instanton) size

For Nf= 2 the SU(2) yields  a rising  potential

The coupling to the U(1) via  the CS term  has a run 
away potential .

The combined effect   

“stable” size but unfortunately of the order of l-1/2 so 
stringy effects cannot be neglected in the large l 
limit.                                                                         



Baryons  as instantons in the SS model

The probe brane world volume 9d    5d  upon     

Integration over the S4. The 5d DBI+ CS  is approximated

where



Baryons in the SS  model

One decomposes the  flavor gauge fields to SU(2) and U(1)

In a 1/l expansion the leading term is the YM action

Ignoring the curvature the solution of the SU(2) gauge field 
with baryon #= instanton #=1  is the BPST instanton



Baryons in the generalized SS model

With the generalized non-antipodal with non trivial 
msep namely for u0 different from uL=  Ukk with general  

z =u0 / uKK

We found that the size scales in the same way  with l. 

We computed also the baryonic properties



Baryonic spectrum



The spectrum of nucleons and deltas

The spectrum using  best fit approach



Hadronic properties of the generalized model



Holographic nuclear interaction



holographic nuclear interaction



Zones of the nuclear interaction

The 3 zones in the nucleon-nucleon interaction



Intermediate  Zone  of the nuclear interaction

In the intermediate zone Rbaryon ≪ r ≪ (1/M)

The baryons do not overlap much and the fifth 
dimension is approximately flat. 

At first blush, the nuclear force in this zone is 
simply the 5D Coulomb repulsive force between two 
point sources, 



Nuclear attraction

We expect to find a holographic attraction due to the 
interaction of the instanton with the fluctuations of the 
embedding which is the dual of the scalar fields   

The attraction term should have the form  
Lattr ~fTr[F2] 

In the antipodal case ( the SS model) there is a symmetry
under  dx4    -> -dx4 and since asymptotically x4 is the 
transverse direction

f~dx4

such an interaction term does not exist.



Attraction versus repulsion

In  the generalized model the story is different.

Indeed the 5d effective action for AM and f  is

For instantons F=*F so there is a competition 
between

repulsion                                 attraction 

A TrF2 fTr F2

The attraction potential also behaves as 

Vscalar ~ 1/r2



Attraction versus repulsion

The ratio between the attraction and repulsion in the 
intermediate zone is 



Nuclear potential in the far zone 

We have seen the repulsive hard core and attraction in 
the intermediate zone.

To have stable nuclei the attractive potential has to 
dominate  in the far zone.

In holography this should follow from the fact that the 
lightest isoscalar scalar is lighter than the 
corresponding lightest  vector meson. 

In SS model this is not the case.

Maybe the dominance of the attraction associates with 
two pion exchange( sigma)?.  



Multi meson exhange at large l

What are the effects of large l    

Baryon mass increases, Mbaryon ∼ λNcMmeson, while 
baryon radius shrinks, Rbaryon ∼1/ λ^1/2 ×1/Mmeson. 

Meson’s couplings decrease as λ^−1/2:



The role of  the large l limit 

At one loop there are two types of diagrams



The role of  the large l limit 

However, for non-relativistic baryons, the box and 
the crossed-box diagrams almost cancel each other, 
with the un-canceled part having 

In other words, the contribution of the double-
meson exchange  carries the same power of Nc but 
is suppressed by a factor 1/λ



Nuclear interaction in the 

DKS model



A  holographic analog of Walecka’s model?

Can one find another holographic laboratory apart 
from the SS model where the lightest scalar particle 
is lighter than the lightest vector particle which 
interacts with the baryon.

Can we find a model of an almost cancelation?

Generically, similar to the gSS model in other 
holographic models the vector is lighter.

The Goldstone mechanism may provide a lighter 
scalar. 



The DKS model 

In the DKS model we placeNf D7 and anti-D7 
branesin the Klebanov Strassler model. 

In the undeformed conifold the D7 anti D7 branes
spontaneously break the conformal symmetry 



Spontaneous breaking of scale invariance

Adding brane anti-branes to the Klebanov Witten 
model is different than in the SS model. The 
asymptotic difference  is fixed          independent of  ro

The mode of changing r0 is a ``dilaton” a Goldstone 
boson associated with breaking scale invariance. 
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Baryons in the DKS model

The baryons are D3-branes wrapping the S3 of the 
conifold with M strings connecting the D3 and the flavor 
branes

When r0 is significantly close to re the geometry can be 
effectively approximated by the flat one and creates only 
a mild force. The string tension wins, and the D3-brane

is pulled towards the D7−D7 branes and dissolves there 
becoming an instanton

The model has the following hierarchy of ligh particles:

The mass of glueballs remains the same as in the KS  and 
therefore is r0-independent. The typical scale of the 
glueball mass is



Meson masses in the DKS model

In the regime r0 ≫ re the theory is (almost) 
conformal and therefore the mass of mesons can 
depend only on the scale of symmetry breaking r0

The pseudo-Goldstone boson σ is parametrically 
lighter 



The net baryonic potential

The net potential in the far zone in this case can be 
written in the form 

For r0 ∼ rǫ the approximate cancelation of the 
attractive and the repulsive force can occur naturally

It is valid only for |x| large enough.

If mσ < mω, the potential is attractive at large 
distances no matter what the couplings are. 



Binding energy and near cacelation

On the other hand if gσ is small enough, at 
distances shorter than  1/mω the vector interaction 
“wins” and the potential becomes repulsive. 

The binding energy 

is suppressed by a small dimensionless number κ, 
which is related to the smallness of the coupling gσ
and the fact that mσ and mω are of the same order. 

κ is phenomenologically promising as it represents 
the near-cancelation of the attractive and repulsive 
forces responsible for the small binding energy in 
hadron physics.



Nuclear matter in large Nc is 

necessarily in a solid phase



The crystal structure of holographic nuclear matter

Is nuclear matter at large Nc the same as for finite Nc?

Let’s take an analogy from condensed matter – some 
atoms that attract at large and intermediate distances 
but have a hard core- repulsion at short ones.

The parameter that determines the state at  T=0 p=0 is

de Bour parameter 

is the kinetic term rc is the radius of the atomic hard core and e is the maximal 
depth of the potential.



The solid structure of holographic nuclear matter

When         exceeds  0.2-0.3 the crystal melts.

For example,

Helium  has LB = 0.306,  K/U ≈ 1 quantum liquid 

Neon  has LB = 0.063 ,  K/U ≈ 0.05; a crystalline solid

For large Nc the leading nuclear potential behaves as

Since the well diameter is Nc independent  and the 
mass M scales as~Nc



The solid structure of holographic nuclear matter

The maximal depth of the nuclear potential is ~ 100 Mev
so we take it to be                                , the mass scales as

. 

Consequently

Hence the critical value is  Nc=8 

Liquid nuclear matter  Nc<8 

Solid Nuclear matter  Nc>8



Lattices ( chains) of 

holographic nuclear matter



. Lattice nuclear matter 

To zeroth order in 1/λ the SU(Nf ) gauge fields are 
self-dual ⇒ ADHM solutions with 4Nf degenerate 
moduli per baryon (the 4D locations of the 
instantons, their radii, and the SU(Nf orientations)

At first order, the degeneracy is lifted by Coulomb

interactions (via abelian electric and scalar fields) 
and the curvature which enters g(z)

As we have just seen at large Nc nuclear matter 
is a solid.



Lattice nuclear matter 

We study 3 types of toy models  of lattices

(i)  Baryons as point charges of 1d and 3d.

(ii) 1d exact instanton chains

(iii) Two instanton inteaction approximation

We investigate the phase diagram of  holographic 
solid nuclear matter.

In particular:  whether at high enough density  
instantons spill to the holgraphic spatial 
dimension?

Is the  GS configuration  abelian on non-abelian?



Forcing the system to be one dimensional

Recall the 5d flavor gauge action of the gSS model

We force  the system to be a 1d chain by adding a 
harmonic potential to the charge in the other directions



The general structure of holographic nuclear matter

At low densities  g(z)  dominates.  Each instanton
falls to the bottom of the U , i.e to  the z=0, 
hyperplane. The instantons form a 3d lattice

This  phase of the holographic nuclear matter  is 
dual to the baryonic crystal  of large Nc QCD



Zig Zag chain,  transition to 2,3,4 layers



The general structure of holographic nuclear matter

At higher density  the 1/r^2 repulsion  pushes the 
instantons into the holographic dimension forming a 4d 
lattice

In the z direction the lattice has a width  DZ>>  lattice 
spacing                many baryons  on each  3d point .                 



The general structure of holographic nuclear matter

From the 3D point of view, the 4D lattice means 
overlapping baryons

Quarks are no longer confined to individual 
baryons 

The 4D instanton lattice of the holographic QCD is 
dual to the quarkyonic phase of the nuclear matter. 
(Quark fermi liquid — weakly coupled for large Nc
— with baryon-like excitations near the fermi
surface.)



Point charge approximation



(ia) Phase transitions in chain of point charges

We want to consider a 1 D chain of point charges.

For that we turn on a potential  in the transverse 
directions x1, x2 and z. 

We put a preference to dislocations in z via

At low density the chain is straight

When the density is increased we find  



Phase transitions for chains of point particles

Let us now study the transitions quantitatively

The instanton density is replaced by

For the straight chain the non abelian energy  per instanton

The minimum is  at x1=x2=z=0

The Coulomb energy is 



The energy for a zig zag configuration

For a zig-zag with displacement e the total  Ec is

Expanding in e^2  we get 

Thus there is a critical separation distance 

For spacing slightly smaller that  dc the system 
admits a  zig-zag structure  with  



Transitions to multi-layers

At higher densities the following sequence of  
transitions take place           

1            2           4          3           4

The structure of the phase transition is given  in the 
figure of  the energy as a function of d( or r)

Thus the lesson from this toy model is that  when 
squeezed  the  baryons do not seat anymore in the 
regular chain sites but instead  pop into the 
holographic dimension 

The question of course is how is this picture 
modified once we discuss instantons.



Energy as a function of r and the phase transitions



1d point charges phase diagram



Point charges transitions into multi-layer system



(ib) 3D lattice of point charges

Repeating this analysis in 3D  we find that the 
minimal energy is achieved  for close packing.

This means the largest inter-distance between 
nearest neighbors for a given density.

In 3D it is the FCC lattice.

Above a critical density  the analog of the 1D zig-zag
will turn the FCC  into  two sublattices with broken 
cubic symmetry.  

A structure of BCC will transform into two SC sub-
lattices.

For a 2d case the transition is like that  a chessboard
where the white and the black are displaced



3D lattice of point charges

Now Ec diverges, however for the stability analysis 
we are interested only in the variation of the energy 
so constant infinity can be subtracted.

The regularized energy per instanton is

where 

This implies a critical spacing 



Exact ADHM  chains of 

instantons



1d chain : The ADHM construction

For the 1d chain of instantons, we first 
determine the ADHM data, namely solve   
the self duality condition subjected to the 
symmetries.

We then  compute the non-abelain and 
coulomb energies  of the chain as a 
function of the geometrical arrangement 
and the SU(2) orientations. 

From this we determine the  structure of 
the multi instanton configurations  and 
the corresponding phase transitions.



The ADHM construction of a chain of instantons

For  instanton # N  of SU(2)   the ADHM data includes

4 NxN real matrices                       4  real N vector

Pauli matrices        unit  matrix

They have to fulfill the following ADHM equation



The ADHM construction 

For a periodic  1D infinite chain, we impose 
translational symmetry 

The S tran. acts on                            as follows



The ADHM construction 

Consequently  translation symmetry requires 

The diagonal        are the 4D coordinates of the 
centers,        combine the radii and SU(2) orientations

Combining with the ADHM constraint we get 



Chain of instantons- The ADHM construction 

For our purposes we will need to know only the 
instanton density 

expressed in terms of the ADHM data.

where 



The ADHM construction 

To evaluate the determinant , it is natural to use 
Fourier transform from infinite matrices into linear 
operators acting on periodic functions of 

A lengthy  calculation yields the following determinant 
determinant



The total energy of the spin chain



The non-abelian energy

We add a ``potential” to constrain  the multi-
instanton configuration to a 1d by assuming a 5d  
guage coupling of the form

For small instanton the non-abelian
energy 



Coulomb energy

The abelian electric potential obeys

Thus the Coulomb energy per instanton is given by

For large lattice spacing  d>>a 



Minimum  for overlapping instantons

Combining the non-abelian and Coulomb  energies 
and minimizing with respect to the instanton radius 
and twist angle we find 

a0 is the equilibrium radius of a standalone instanton



The zig-zag chain

The gauge coupling  keeps the  centers lined up along 
the x4 axis for low  density.

At high density, such alignment becomes unstable 
because the abelian Coulomb repulsion makes them 
move away from each other in other directions. 

Since the repulsion is strongest between the nearest 
neighbors, the leading instability should have 
adjacent instantons move in opposite ways forming a 
zigzag pattern



The Zig-Zag

We study the instability against transverse motions.

In particular  we restrict the motion to  z=x3 by  
making the instaton energies rise faster in  x1 and x2

The ADHM data is based on keeping

While changing 



The energies of the zigzag deformation

The zigzag deformation changes the width 

Hence the non abelian energy  reads

The Coulomb energy 

The net energy cost for small zigzag 



The zigzag phase transition

For small lattice spacing d < dcrit, the energy 
function has a negative coefficient of     but positive 
coefficient of   .

Thus, for  d < dcrit the straight chain becomes 
unstable and there is a second-order phase 
transition to a zigzag configuration. 

The critical distance is 



The phase transitions

Free  energy, zig-zag parameter  and phase  as a 
function of the density



2. The two instanton

approximation



Two –instanton interaction approximation

In the low density regime  the two body forces 
dominate the interactions. The multi-body forces 
are suppressed by

We sketch the proof of this statement and compute 
the corresponding two body energy.

Recall the ADHM data

2)/( Da



Perturbative solution of the ADHM equation

We solve the ADHM equation and the constraints 
associated with the     SO(N)    symmetry  of an N 
instantons chain  in a power series of  

The leading term depends  only on two instanton data

)(AO

2)/( Da



Perturbative solution of the ADHM equation

Given the ADHM data   the instanton number 
density is

Using integration by parts we can compute several 
moments of the instanton density



The non-abelian energy 

The non-abelian energy is given by quadratic moment 
with 

individual pote

4==

4==

Individual 
potential energy

Two-body 
interactions



The non-abelian energy 

Thus to leading order of  the non abelian energy 
only the two intanton interaction are relevant

where 



The Coulomb energy

The  Coulomb energy  of the multi-instanton system

The diagonal terms of L(x) are much larger than the off-
diagonal  so we take a power series of the ratio

where



The net Coulomb energy

Note that the self interaction  terms dominate the net 
Coulomb energy                                       

Density in 
inter 

instanon
space

Point 
charge 

Coulomb 
repulsion

Self 
interaction 
including 

inteference

The Coulomb energy



The contribution of the  two instanton interference 
terms  is compareble to the direct repulsion. The 
three or more body interactions are negligable

The final expression for the Coulomb energy 

The Coulomb energy



The total tow body total energy 

Combining the non-abelain and Coulomb energies



The total tow body total energy 

We plug the equilibrium radii 

We finally get the two instanton interaction energy 



Linear chains of instantons

For  1D lattice geometry 

This 1d structure is enforced by a 5D gauge coupling

Let’s us consider first  the regime where

So the impact on the instanton size of              is 
negligble

32,mm



Linear chains of instantons

The net energy  as a function of the orientations

We minimize the energy with respect to the 
orientations of nearest neighbors pairs. 

The most general solution of these equations



Linear chains

All these configurations have the same energy, thus 
there is a huge degeneracy of chains with 



Regular patterns

Among the configurations are certain regular patterns



X1

X3

X2

X1

X3

X2

X1

X3

X2

antiferromagnetic

Klein  group 

prismatic group Z3 × Z3

dihedral group D6

X1

X3

X2



Yn=+1

Yn=-1

Yn=+it3

Yn=-it3

Yn= cos(/3)+sin(/3)it1

Yn= cos(2/3)+sin2/3)it1

Yn=+it1

Yn=-it1

Yn= cos(/3)+sin(/3)it1

Yn= cos(/3)+sin(/3)it1

Yn=+it2

Yn=-it2

Yn=+it1

Yn=-it1

Yn= cos(/6) it3+sin(/6)it2

1
Yn= cos(5/6) it3+sin(5/6)it2



The general case of linear chain

For the regime                   the huge degeneracy is 
lifted and the net energy is

where  

and with  

MMM ~, 32



Relaxation method

We now minimize the energy with respect to the 
orientation using  a computer relaxation method.

We take a lattice of 200 SU(2)  matrices      .

In each run we started with random elements of SU(2)

We let the       relax to the minimum energy via 

A mobility constant

ny

ny

ny



Link-periodic  chains

We find that the lattices are link-periodic with

The average interaction energy per instanton is 



Link-periodic  chains

Minimizing the energy with respect to      and  q 

Thus there are two degenerate ground states related 
by       



Instanton zigzags

The zigzag chains analyzed previously using the 
point charge approximation and the exact ADHM 
solution can be determined also using the two body 
approximation.

Recall the zigzag data

We work in the general 5d gauge coupling 



The phase diagram

The two body energy for the zigzag

We compute numerically the lowest energy 
configuration of the orientations 





The different phases



The different phases



The phase transitions

Both transitions from LP 1 to LP2 are second order 
all three angles a,b,f change continuously 

Likewise  the transition between LP2 and AF



The phase transitions

The transition between AB and LP1 and LP2 are first order

or 



The phase transitions

There are two triple points of the phase diagram

At the origin there is no triple point

The black dot  at                                                  is  an 
ordinary triple point between AB and LP1 LP2

The white circle  at                                          is a 
critical triple point between AF and AB of second 
order



The holographic QCD phase 

diagram



Large N Phase diagram

We can summarize in terms of the holographic 
QCD phase diagram in the ( temperature, chemical 
potential plane)



Large N Phase diagram

   Large Nc → ∞ but fixed Nf = 2 or 3.

Gluons dominate QGP.

Sharp confinement-deconfinement transition at Tc
almost independent on μ.

No color SC or CFL in a quark liquid at high μq = μ/Nc. 

For μq >> L QCD the quarks form a weakly coupled Fermi 
liquid. But near the Fermi surface, the quarks and the 
holes combine into meson-like and baryon-like 
excitations =⇒ the quarkyonic phase.

Mbaryon ∝ Nc → ∞ while Mmeson and Mglueball stay finite.

No baryons in glueball/meson gas for T < Tc, μ < Mbaryon.



Generic effects of large l



Transitions at large Nc and large λ



Generic effects of large l

V ≪ Mb =⇒ transitions between different phases of 
cold nuclear matter happen very close to μ = Mb =⇒
need to zoom into the μ ∼ Mb  region of the phase 
diagram to see all the phases. At T = 0



QCD Phase diagram

This is to be compared with the  “lore” of QCD 
phase diagram at finte Nc



Summary

The holographic  stringy picture for a baryon favors 
a baryonic vertex that is immersed in the flavor 
brane

Baryons as instantons lead to a picture  that is 
similar to  the Skyrme model.

We showed that on top of the repulsive hard core 
due to the abelian field there is an attraction
potential due the  scalar interaction in the 
generalized Sakai Sugimoto model. 



Summary

The  is no `` nuclear physics” in the gSS model

We showed that in the DKS model one may be able 
to get an attractive interaction at the far zone with 
an almost cancelation which will resolve the binding 
energy puzzle.

We showed that the holographic nuclear matter 
takes the form of a lattice of instantons

We found  that there is a second order phase + a 
first order transitions that drives  a  chain of 
instantons into a zigzag structure namely to split 
into two sub-lattices separated along the 
holographic direction

Using 2-instanton approximation we found a rich 
phase structure of nuclear matter



The phase transitions

At large densities  the straight chain of instantons is 
unstable against formation of a zigzag (ε≠ 0) in the 
holographic dimension.

There is a second order phase transition, which 
takes the straight chain to the zigzag. 

For small amplitude of the zigzag the neighboring 
instantons remain antiparallel as in the (ε=0) case. 

At some larger density (zigzag amplitude), the 
relative orientation of instantons changes from φ = 
π to φ ≃ 117◦. This occurs in a first order transition. 



The phase transitions

For densities larger than the one of the first order 
phase transition orientation changes smoothly to  
asymptotical value π/2. 

That it is the neighboring instantons in each of the 
two layers prefer to orient themselves in an 
antiferromagnetic way, φ = π. 

Notice that the orientation twist between 
instantons never becomes non-abelian.


