A unifying description of Dark Energy (\& modified gravity)

David Langlois
(APC, Paris)

Outline

1. Motivations
2. Main formalism
3. Illustration: Horndeski's theories
4. Link with observations

Based on J. Gleyzes, D.L., F. Piazza \& F. Vernizzi, 1304.4840 [hep-th]

Introduction \& motivations

- Plethora of dark energy models:
- Dynamical dark energy: quintessence, K-essence
- Modified gravity
- Large amount of data from future large scale cosmological surveys (DES, LSST, Euclid, etc...)
- Goal: effective description as a bridge between models and observations.
- Assumptions:
- Single scalar field models
- All matter fields minimally coupled to the same metric $g_{\mu \nu}$

ADM approach

- The scalar field defines a preferred slicing Constant time hypersurfaces = uniform field hypersurfaces

- ADM decomposition based on this preferred slicing

ADM approach

- Basic ingredients:

$$
n_{\mu}=-\frac{\partial_{\mu} \phi}{\sqrt{-(\partial \phi)^{2}}}
$$

$$
h_{\mu \nu}=g_{\mu \nu}+n_{\mu} n_{\nu}
$$

- Intrinsic curvature tensor ${ }^{(3)} R_{\mu \nu}$
- Extrinsic curvature tensor $\quad K_{\mu \nu}=h_{\mu \sigma} \nabla^{\sigma} n_{\nu} \quad K=\nabla_{\mu} n^{\mu}$
- Generic action: $S=\int d^{4} x \sqrt{-g} L(t ; N, K, \mathcal{S}, \mathcal{R}, \mathcal{Z}, \ldots)$

$$
K \equiv K_{\mu}^{\mu}, \quad \mathcal{S} \equiv K_{\mu \nu} K^{\mu \nu}, \quad \mathcal{R} \equiv{ }^{(3)} R, \quad \mathcal{Z} \equiv{ }^{(3)} R_{\mu \nu}^{(3)} R^{\mu \nu}
$$

Note: dependence on ${ }^{(3)} R^{\mu \nu} K_{\mu \nu}$ can be reabsorbed.

Expansion of the Lagrangian

- Separation between FLRW background and perturbations

$$
\delta K \equiv K-3 H, \quad \delta K_{\mu \nu} \equiv K_{\mu \nu}-H h_{\mu \nu}
$$

which implies $\mathcal{S} \equiv K_{\mu \nu} K^{\mu \nu}=3 H^{2}+2 H \delta K+\delta K_{\nu}^{\mu} \delta K^{\nu}{ }_{\mu}$

- Lagrangian up to ... first order

$$
\begin{array}{r}
L(N, K, \mathcal{S}, \mathcal{R}, \mathcal{Z})=\bar{L}+L_{N} \delta N+\mathcal{F} \delta K+L_{\mathcal{R}} \delta \mathcal{R}+\ldots \\
\text { with } \mathcal{F} \equiv L_{K}+2 H L_{S}
\end{array}
$$

Using $\quad \mathcal{F} \delta K=\mathcal{F}(K-3 H)$
and $\quad \int d^{4} x \sqrt{-g} \mathcal{F} K=-\int d^{4} x \sqrt{-g} n^{\mu} \nabla_{\mu} \mathcal{F}=-\int d^{4} x \sqrt{-g} \frac{\dot{\mathcal{F}}}{N}$
$L(N, K, \mathcal{S}, \mathcal{R}, \mathcal{Z})=\bar{L}-\dot{\mathcal{F}}-3 H \mathcal{F}+\left(\dot{\mathcal{F}}+L_{N}\right) \delta N+L_{\mathcal{R}} \delta \mathcal{R}+\ldots$

Expansion (up to second order)

Up to quadratic order in the perturbations, one finds

$$
\begin{aligned}
L(N, K, \mathcal{S}, \mathcal{R}, \mathcal{Z}) & =\bar{L}-\dot{\mathcal{F}}-3 H \mathcal{F}+\left(\dot{\mathcal{F}}+L_{N}\right) \delta N+L_{\mathcal{R}} \delta \mathcal{R} \\
& +\frac{\mathcal{A}}{2} \delta K^{2}+L_{\mathcal{S}} \delta K^{\mu}{ }_{\nu} \delta K^{\nu}{ }_{\mu}+\left(\frac{1}{2} L_{N N}-\dot{\mathcal{F}}\right) \delta N^{2} \\
& +\frac{1}{2} L_{\mathcal{R} \mathcal{R}} \delta \mathcal{R}^{2}+\mathcal{B} \delta K \delta N+\mathcal{C} \delta K \delta \mathcal{R}+L_{N \mathcal{R}} \delta N \delta \mathcal{R}+L_{\mathcal{Z}} \delta \mathcal{Z}
\end{aligned}
$$

with the coefficients

$$
\begin{aligned}
\mathcal{A} & \equiv 4 H^{2} L_{\mathcal{S S}}+4 H L_{\mathcal{S K}}+L_{K K} \\
\mathcal{B} & \equiv 2 H L_{\mathcal{S N}}+L_{K N} \\
\mathcal{C} & \equiv 2 H L_{\mathcal{S R}}+L_{K \mathcal{R}} \\
\mathcal{F} & \equiv 2 H L_{\mathcal{S}}+L_{K}
\end{aligned}
$$

Background equations

- FLRW metric: $d s^{2}=-N^{2}(t) d t^{2}+a^{2}(t) \delta_{i j} d x^{i} d x^{j}$
- Homogeneous action:

$$
S_{0}=\int d t d^{3} x N a^{3} L\left[N, K=\frac{3 H}{N}, \mathcal{S}=\frac{3 H^{2}}{N^{2}}, \mathcal{R}=0, \mathcal{Z}=0\right]
$$

- Friedmann equations

$$
\begin{gathered}
\delta S_{0}=\int d t d^{3} x\left[a^{3}\left(\bar{L}+L_{N}-3 H \mathcal{F}\right) \delta N+(\bar{L}-3 H \mathcal{F}-\dot{\mathcal{F}}) \delta\left(a^{3}\right)\right] \\
\bar{L}+L_{N}-3 H \mathcal{F}=0, \quad \bar{L}-3 H \mathcal{F}-\dot{\mathcal{F}}=0
\end{gathered}
$$

- Including matter

$$
\bar{L}+L_{N}-3 H \mathcal{F}=\rho_{m}, \quad \bar{L}-3 H \mathcal{F}-\dot{\mathcal{F}}=-p_{m}
$$

Quadratic Lagrangian

- Explicit gauge choice:

$$
h_{i j}=a^{2}(t) e^{2 \zeta} \delta_{i j}, \quad N_{i}=\partial_{i} \psi
$$

- Quadratic Lagrangian: $\quad \mathcal{L}_{2}=\mathcal{L}_{2}\left[\zeta, \delta N, \partial^{2} \psi\right]$

$$
\mathcal{L}_{2} \supset \frac{1}{a}\left[\frac{1}{2}\left(\mathcal{A}+2 L_{\mathcal{S}}\right)\left(\partial^{2} \psi\right)^{2}+4 \mathcal{C} \partial^{2} \psi \partial^{2} \zeta+2\left(4 L_{\mathcal{R} \mathcal{R}}+3 L_{\mathcal{Z}}\right)\left(\partial^{2} \zeta\right)^{2}\right]
$$

- One can get rid of higher spatial derivatives by imposing

$$
\mathcal{A}+2 L_{\mathcal{S}}=0, \quad \mathcal{C}=0, \quad 4 L_{\mathcal{R} \mathcal{R}}+3 L_{\mathcal{Z}}=0
$$

The momentum constraint then reduces to: $\quad \delta N=\frac{4 L_{\mathcal{S}}}{\mathcal{B}+4 H L_{\mathcal{S}}} \dot{\zeta}$

Quadratic Lagrangian

- One finally obtains the quadratic Lagrangian in the form

$$
\mathcal{L}_{2}=\frac{a^{3}}{2}\left[\mathcal{L}_{\dot{\zeta} \dot{\zeta}} \dot{\zeta}^{2}+\mathcal{L}_{\partial_{i} \zeta \partial_{i} \zeta} \frac{\left(\partial_{i} \zeta\right)^{2}}{a^{2}}\right]
$$

with the coefficients

$$
\begin{aligned}
& \mathcal{L}_{\zeta \zeta \zeta} \equiv\left(L_{N N}+2 L_{N}-6 H \mathcal{B}-12 H^{2} L_{\mathcal{S}}\right) \mathcal{D}^{2}+12 L_{\mathcal{S}} \\
& \mathcal{L}_{\partial_{i} \zeta \partial_{i} \zeta} \equiv 4\left[L_{\mathcal{R}}-\frac{1}{a} \frac{d}{d t}\left(a \mathcal{D}\left(L_{\mathcal{R}}+L_{N \mathcal{R}}\right)\right)\right] \quad \quad \mathcal{D} \equiv \frac{4 L_{\mathcal{S}}}{\mathcal{B}+4 H L_{\mathcal{S}}}
\end{aligned}
$$

- Absence of ghosts: $\mathcal{L}_{\dot{\zeta} \dot{\zeta}}>0$
- Effective speed of sound: $c_{s}^{2}=-\frac{\mathcal{L}_{\partial_{i} \zeta \partial_{i} \zeta}}{\mathcal{L}_{\zeta \zeta}}$

Simple example: K-essence

- K-essence Lagrangian

$$
L=P(\phi, X), \quad X \equiv \nabla_{\mu} \phi \nabla^{\mu} \phi
$$

- Total Lagrangian in the ADM formulation

$$
L=\frac{1}{2}\left(\mathcal{S}-K^{2}+\mathcal{R}\right)+P(X, \phi) \quad X=-\frac{\dot{\phi}^{2}}{N^{2}}
$$

- Background Lagrangian and its derivatives:

$$
\begin{aligned}
& \bar{L}=P-3 H^{2}, L_{N}=-2 X P_{X}, L_{K}=-3 H, L_{S}=\frac{1}{2}, L_{R}=\frac{1}{2} \\
& \mathcal{F}=2 H L_{\mathcal{S}}+L_{K}=-2 H, \mathcal{A}=-1, \mathcal{B}=0, \mathcal{C}=0
\end{aligned}
$$

- Speed of sound: $c_{s}^{2}=\frac{P_{X}}{P_{X}+2 X P_{X X}}$

Link with the EFT formalism

Creminelli et al. 06, Cheung et al. 07; Creminelli et al. 08; Gubitosi et al. 12

- Action up to quadratic order (with no higher derivatives)

$$
\begin{aligned}
L= & \frac{M_{*}^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}+\frac{M_{2}^{4}(t)}{2}\left(\delta g^{00}\right)^{2}-\frac{m_{3}^{3}(t)}{2} \delta K \delta g^{00} \\
& -m_{4}^{2}(t)\left(\delta K^{2}-\delta K_{\nu}^{\mu} \delta K_{\mu}^{\nu}\right)+\frac{\tilde{m}_{4}^{2}(t)}{2}{ }^{(3)} R \delta g^{00}
\end{aligned}
$$

- Background evolution described by only three functions $f(t), \Lambda(t), c(t)$

$$
c+\Lambda=3 M_{*}^{2}\left(f H^{2}+\dot{f} H\right), \quad \Lambda-c=M_{*}^{2}\left(2 f \dot{H}+3 f H^{2}+2 \dot{f} H+\ddot{f}\right)
$$

- Link between the ADM \& EFT formulations

$$
R={ }^{(3)} R+K_{\mu \nu} K^{\mu \nu}-K^{2}+2 \nabla_{\nu}\left(n^{\nu} \nabla_{\mu} n^{\mu}-n^{\mu} \nabla_{\mu} n^{\nu}\right) \quad g^{00}=-\frac{1}{N^{2}}
$$

Explicit dictionary for the EFT coefficients

Generalized Galileons

- Most general action for a scalar field leading to at most second order equations of motion (Horndeski ‘74)

Combination of the following four Lagrangians

$$
\begin{array}{ll}
L_{2} & =G_{2}(\phi, X), \quad \text { with } X \equiv \phi^{; \mu} \phi_{; \mu} \\
L_{3}=G_{3}(\phi, X) \square \phi, \\
L_{4} & =G_{4}(\phi, X) R-2 G_{4 X}(\phi, X)\left(\square \phi^{2}-\phi^{; \mu \nu} \phi_{; \mu \nu}\right), \\
L_{5} & =G_{5}(\phi, X) G_{\mu \nu} \phi^{; \mu \nu}+\frac{1}{3} G_{5 X}(\phi, X)\left(\square \phi^{3}-3 \square \phi \phi_{; \mu \nu} \phi^{; \mu \nu}+2 \phi_{; \mu \nu} \phi^{; \mu \sigma} \phi_{; \sigma}^{; \nu}\right)
\end{array}
$$

- ADM formulation ?
- Which operators appear in the quadratic Lagrangian ?

Generalized Galileons: ADM form

Uniform scalar field slicing

- Unit normal vector $\quad n_{\mu}=-\gamma \phi_{; \mu} \quad$ with $\quad \gamma=\frac{1}{\sqrt{-X}}$
- Induced metric $\quad h_{\mu \nu}=n_{\mu} n_{\nu}+g_{\mu \nu}$
- Using $\quad K_{\mu \nu}=h_{\mu}^{\sigma} n_{\nu ; \sigma} \quad \dot{n}_{\mu}=n^{\nu} n_{\mu ; \nu}$ one can write $\quad n_{\nu ; \mu}=K_{\mu \nu}-n_{\mu} \dot{n}_{\nu}$

$$
\phi_{; \mu \nu}=-\gamma^{-1}\left(K_{\mu \nu}-n_{\mu} \dot{n}_{\nu}-n_{\nu} \dot{n}_{\mu}\right)+\frac{\gamma^{2}}{2} \phi^{; \lambda} X_{; \lambda} n_{\mu} n_{\nu}
$$

- The Gauss-Codazzi relations are also useful.

Generalized Galileons: ADM form

- Lagrangian $L_{3}=G_{3}(\phi, X) \square \phi$

Introducing the auxiliary function $F_{3}(\phi, X)$ such that

$$
G_{3} \equiv F_{3}+2 X F_{3 X}
$$

one finds

$$
L_{3}=2(-X)^{3 / 2} F_{3 X} K-X F_{3 \phi}
$$

- EFT coefficients:

$$
\begin{aligned}
L= & \frac{M_{*}^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}+\frac{M_{2}^{4}(t)}{2}\left(\delta g^{00}\right)^{2}-\frac{m_{3}^{3}(t)}{2} \delta K \delta g^{00} \\
& -m_{4}^{2}(t)\left(\delta K^{2} \delta K^{\mu}{ }_{\nu} \delta K^{\nu}{ }_{\mu}\right)+\frac{\tilde{m}_{4}^{2}(t)}{2} R \delta g^{00}
\end{aligned}
$$

Generalized Galileons: ADM form

- Lagrangian $L_{4}=G_{4}(\phi, X) R-2 G_{4 X}(\phi, X)\left(\square \phi^{2}-\phi^{; \mu \nu} \phi_{; \mu \nu}\right)$

Using the Gauss-Codazzi equations, one finally gets

$$
L_{4}=G_{4}{ }^{(3)} R+\left(2 X G_{4 X}-G_{4}\right)\left(K^{2}-K_{\mu \nu} K^{\mu \nu}\right)-2 \sqrt{-X} G_{4 \phi} K
$$

- In the quadratic Lagrangian, all terms are present, but with $m_{4}^{2}=\tilde{m}_{4}^{2}$

$$
\begin{aligned}
L= & \frac{M_{*}^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}+\frac{M_{2}^{4}(t)}{2}\left(\delta g^{00}\right)^{2}-\frac{m_{3}^{3}(t)}{2} \delta K \delta g^{00} \\
& -m_{4}^{2}(t)\left(\delta K^{2}-\delta K_{\nu}^{\mu} \delta K_{\mu}^{\nu}\right)+{\frac{\tilde{m}_{4}^{2}(t)}{2}}_{2}^{(3)} R \delta g^{00}
\end{aligned}
$$

Generalized Galileons: ADM form

$$
\begin{aligned}
L_{5}= & \frac{1}{3} G_{5 X}(\phi, X)\left(\square \phi^{3}-3 \square \phi \phi_{; \mu \nu} \phi^{; \mu \nu}+2 \phi_{; \mu \nu} \phi^{; \mu \sigma} \phi_{; \sigma}^{; \nu}\right) \\
& +G_{5}(\phi, X) G_{\mu \nu} \phi^{; \mu \nu}
\end{aligned}
$$

Using the auxiliary function $F_{5}(\phi, X) \quad$ such that $\quad G_{5 X}=F_{5 X}+\frac{F_{5}}{2 X}$ one finally gets

$$
\begin{aligned}
L_{5}= & \frac{1}{2} X\left(G_{5 \phi}-F_{5 \phi}\right)^{(3)} R+\frac{1}{2} X G_{5 \phi}\left(K^{2}-K_{\mu \nu} K^{\mu \nu}\right) \\
& -\sqrt{-X} F_{5}\left(K^{\mu \nu}{ }^{(3)} R_{\mu \nu}-\frac{1}{2} K^{(3)} R\right)-\frac{1}{3}(-X)^{3 / 2} G_{5 X} \mathcal{K}
\end{aligned}
$$

with

$$
\begin{aligned}
\mathcal{K} & \equiv K^{3}-3 K K_{\mu \nu} K^{\mu \nu}+2 K_{\mu \nu} K^{\mu \sigma} K_{\sigma}^{\nu} \\
& =6 H^{3}-6 H^{2} K+3 H K^{2}-3 H \mathcal{S}+\mathcal{O}(3)
\end{aligned}
$$

- All operators are present, again with the restriction $m_{4}^{2}=\tilde{m}_{4}^{2}$

Perturbations in an arbitrary gauge

- Description in an arbitrary slicing?

- Transformation $t \rightarrow t+\pi(t, \vec{x})$

Perturbations in an arbitrary gauge

- Stueckelberg trick: $t \rightarrow t+\pi(t, \vec{x})$
- The new quadratic action can be derived via the substitutions:

$$
\begin{aligned}
f & \rightarrow f+\dot{f} \pi+\frac{1}{2} \ddot{f} \pi^{2} \\
g^{00} & \rightarrow g^{00}+2 g^{0 \mu} \partial_{\mu} \pi+g^{\mu \nu} \partial_{\mu} \pi \partial_{\nu} \pi \\
\delta K_{i j} & \rightarrow \delta K_{i j}-\dot{H} \pi h_{i j}-\partial_{i} \partial_{j} \pi \\
\delta K & \rightarrow \delta K-3 \dot{H} \pi-\frac{1}{a^{2}} \partial^{2} \pi \\
{ }^{(3)} R_{i j} & \rightarrow{ }^{(3)} R_{i j}+H\left(\partial_{i} \partial_{j} \pi+\delta_{i j} \partial^{2} \pi\right) \\
{ }^{(3)} R & \rightarrow{ }^{(3)} R+\frac{4}{a^{2}} H \partial^{2} \pi
\end{aligned}
$$

Note: the 3-dim quantities on the right are defined with respect to the new time hypersurfaces.

Perturbations in the Newtonian gauge

- Perturbed metric

$$
d s^{2}=-(1+2 \Phi) d t^{2}+a^{2}(t)(1-2 \Psi) \delta_{i j} d x^{i} d x^{j}
$$

- Einstein's equations
- Generalized Poisson equation

$$
\begin{array}{r}
-\frac{k^{2}}{a^{2}}\left[\left(2 f M_{*}^{2}+4 \tilde{m}_{4}^{2}\right) \Psi-\left(\dot{f} M_{*}^{2}-m_{3}^{3}+4 H m_{4}^{2}-4 H \tilde{m}_{4}^{2}\right) \pi\right]+\left(6 M_{*}^{2} H^{2} \dot{f}-6 H c-\dot{c}-\dot{\Lambda}+3 m_{3}^{3} \dot{H}\right) \pi \\
-\left(2 c+4 M_{2}^{4}\right) \dot{\pi}+\left(3 M_{*}^{2} H \dot{f}+2 c+4 M_{2}^{4}\right) \Phi-3 M_{*}^{2} \dot{f} \dot{\Psi}+3 m_{3}^{3}(\dot{\Psi}+H \Phi)=\rho_{m} \Delta_{m}
\end{array}
$$

- Anisotropic equation

$$
M_{*}^{2}[f(\Phi-\Psi)+\dot{f} \pi]+2\left[m_{4}^{2} \dot{\pi}+m_{4}^{2} H \pi+\left(m_{4}^{2}\right)^{\cdot} \pi\right]+2 \tilde{m}_{4}^{2}(\Phi-\dot{\pi})=0
$$

- Equation for π

Deviations from GR

- Quasi-static approximation for sub-horizon scales (time derivatives are neglected)

$$
\mathcal{M}(t, k)\left(\begin{array}{c}
\Phi \\
\Psi \\
\pi
\end{array}\right) \equiv\left(\begin{array}{ccc}
D_{\Phi} & D_{\Psi} & D_{\pi} \\
E_{\Phi} & E_{\Psi} & E_{\pi} \\
F_{\Phi} & F_{\Psi} & F_{\pi}
\end{array}\right)\left(\begin{array}{c}
\Phi \\
\Psi \\
\pi
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\rho_{m} \Delta_{m}
\end{array}\right)
$$

- Effective Newton's constant

$$
-\frac{k^{2}}{a^{2}} \Phi \equiv 4 \pi G_{\mathrm{eff}}(t, k) \rho_{m} \Delta_{m} \quad 4 \pi G_{\mathrm{eff}}(t, k)=-\frac{k^{2}}{a^{2}}\left[\mathcal{M}^{-1}\right]_{13}
$$

- Ratio between the two gravitational potentials

$$
\Psi \equiv \gamma(t, k) \Phi \quad \gamma=[\operatorname{com}(\mathcal{M})]_{32} /[\operatorname{com}(\mathcal{M})]_{31}
$$

Conclusions

- Unified treatment of single-field models of dark energy/modified gravity
- Models leading to second-order equations of motion for linear perturbations can be parametrized by 7 time-dependent functions (3 needed for the background)

$$
\begin{aligned}
L= & \frac{M_{*}^{2}}{2} f(t) R-\Lambda(t)-c(t) g^{00}+\frac{M_{2}^{4}(t)}{2}\left(\delta g^{00}\right)^{2}-\frac{m_{3}^{3}(t)}{2} \delta K \delta g^{00} \\
& -m_{4}^{2}(t)\left(\delta K^{2}-\delta K_{\nu}^{\mu} \delta K_{\mu}^{\nu}\right)+\frac{\tilde{m}_{4}^{2}(t)}{2}{ }^{(3)} R \delta g^{00}
\end{aligned}
$$

- Horndeski's theories: $m_{4}^{2}(t)=\tilde{m}_{4}^{2}(t)$
- Link with observations (effective Newton constant, ratio of the two gravitational potentials)

