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Scalar perturbations during inflation ☛ rich phenomenology:

- Features	

- Isocurvature 	

- Non vacuum states	

- Nongaussianities	

- Oscillations	

- ...

Tensors typically assumed to be boring....
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H ➘ during inflation ☛ slightly red spectrum



This talk:

Non-boring !
tensors 



A rolling pseudoscalar φ (not the inflaton)	

interacting with a U(1) gauge field via
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The mode functions Aλk(τ) are sourced by the rolling φ	

(assume dφ/dt constant):

for λ=-, the “mass term” is negative and large for ~1 Hubble time:

parity violation!

Exponential amplification of left handed modes only!
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Generation of parity violating, 
large amplitude gravitational waves 

Projector on helicity-λ	

components

(note: this is an operator equation)

The energy of the electromagnetic field sources 
gravitational waves of helicity-λ hλ:

Spatial components 	

of gauge field 	


stress-energy tensor
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Parity violating gravitational waves 

AL and AR have different amplitudes

<hLhL>≠<hRhR>

Physics: in the limit of small 
transverse momentum two LH 

photons cannot create a RH graviton



The parity-violating  
power spectrum 
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“standard” 	

parity-invariant part parity-violation



While T and E modes are parity-even,	

B is parity-odd

<TB> and <EB> power spectra should vanish in 
parity-invariant CMB

How do we see the effect of parity violating GWs?



Detection prospects related to observability of 
nonzero <EB> and/or <TB>

Depend on two parameters

�� = 2
PR � PL

PR + PL

tensor-to-scalar ratio

chirality of primordial	

perturbations

Saito Ichicki Taruya 07, 	

Contaldi Maguejio Smolin 08,	

Gluscevic Kamionkowski 10

r =
PR + PL

PT
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(v) a CV-limited experiment. The corresponding in-
strumental parameters are given in Table I. Note that
the noise-equivalent temperature NET is related to the
temperature/polarization pixel-noise variances, σT/P , as

σ2
T /Npix = (NET)2/tobs, where σP =

√
2σT . We take

f0
sky = 1.0 (the fraction of the sky surveyed), and fsky =
0.7 (the fraction of the sky used in the analysis), for all ex-
periments, except for SPIDER, where f0

sky = fsky = 0.5.

FIG. 2: 1σ error on the gravitational chirality parameter ∆χ,
for five different CMB experiments, for the fiducial value of
∆χ = 0. The horizontal dotted line is at σ∆χ = 1 and repre-
sents maximal P violation. In the region above this line, the
chirality is non-detectable. The WMAP-5 curve lies entirely
above the non-detection line.

Fig. 2 shows the 1σ error of the estimate of ∆χ as
a function of tensor-to-scalar ratio r. The error in-
creases with decreasing r, which implies the existence
of a critical value of r below which a 1σ-level detection
becomes impossible even for maximal P violation (when
σ∆χ ≥ 1). This value is far above the current upper limit
for WMAP-5 (compare to Ref. [13]), and so WMAP-5
can give no constraints on chiral gravity. Prospects are
more optimistic for the next-generation CMB data re-
leases. The critical r is about 0.064 for SPIDER, 0.082
for Planck, 0.0079 for CMBPol, and 0.0023 for the CV-
limited experiment. If r is just below the current de-
tection limit of 0.22 [12], ∆χ will be detectable at the
1σ level if it is greater than 0.46, 0.51, 0.18, and 0.11
for these four instruments, respectively. If we consider
the 3σ confidence level, the corresponding minimum de-
tectable values are larger by a factor of ∼ 3.

To conclude this Section, we show how different mul-
tipoles l contribute to the sum of Eq. (6), separating the
contribution from TB and EB, in Fig. 3. In this plot, only
the TB/EB summands of Eq. (6) are plotted against l,
for r = 0.22, for SPIDER, Planck, and CMBPol. The off-

diagonal terms that contain the covariance between TB
and EB are negligible. The major contribution to σ−2

∆χ
for all five experiments comes from the TB power spec-
trum, from low multipoles, l ∼ 7. Thus, large angular
scales in TB (at l ≤ 10) contain most of the information
about gravitational chirality.

from TB
from EB

FIG. 3: Diagonal (TB,TB and EB,EB) summands of Eq. (6),
for r = 0.22, are plotted against the multipole l to show that
the constraint to ∆χ comes primarily from the TB power
spectrum at l ∼ 7.

III. CONSTRAINING COSMOLOGICAL
BIREFRINGENCE

Cosmological birefringence rotates the linear polariza-
tion at each point on the sky by an angle ∆α, and this
rotation induces TB/EB power spectra

CTB,rot
l = 2∆αCTE

l , CEB,rot
l = 2∆αCEE

l . (8)

The error σ∆α to which ∆α can be measured is given by

σ−2
∆α =

∑

l

∑

A,A′

∂CA
l

∂∆α

∂CA′

l

∂∆α
[Ξl

−1]AA′ . (9)

Using the same instrumental parameters as in §II B,
and for r = 0.22, we obtain the following 1σ errors for the
CB rotation angle: from WMAP-5, 3.2◦; from SPIDER,

From 	

Gluscevic Kamionkowski 10



For our system

where the first line depends on the propagators while the second line depends on the amplitude of
the gauge field and on the helicity of the graviton. The second line can be written more explicitly
after using the property of the helicity projectors

��⇥i⌅(p1) ⇥
i
+(p2)

��2 = 1

4

⇥
1� ⇧

p1 · p2

p1 p2

⇤2

. (3.7)

In the large scale limit �k ⌃ ⌅ 0 the integral (??) can be computed numerically. Rather than
plotting the result of the numerical integration, we give the following analytical approximation that
for ⇤ & 3 (that, as we will see, is the regime we are interested in) is good at the 15%, and rapidly
improves as ⇤ increases
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We thus see that the spectra of both the left- and the right-handed tensor modes are scale
invariant. As a consequence of the violation of parity, however, their amplitude di⇥ers by a factor
⇤ 103.

Of course, one should also take into account the parity-symmetric component of gravitons
that are generated by the usual amplification of vacuum fluctuations in de Sitter space and that
correspond to the solutions of the homogeneous part of eq. (??). These are uncorrelated from those
discussed above, so that the overall left- and right-handed power spectra read
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from which we extract the chirality parameter
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4 Discussion

Let us now discuss the constraints on the model along with the prospects of observing such a chi-
ral background of gravitational waves. Our main result (??) depends only on the two parameter
H and ⇤. An extra parameter, the slow roll parameter ⇥, appears when we study the observa-
tional constraints on our scenario. Therefore, the entire system is in principle described by a
three-dimensional parameter space. It is possible to eliminate one parameter by imposing COBE
normalization of the spectrum of scalar perturbations. The amplitude of the scalar perturbations is
also a⇥ected by the presence of the excited electromagnetic modes, and has been computed for this
system in [? ], that have obtained the following expression (accurate at the 25% level for ⇤ & 3)

P⇧
� =

H2

8⌅2 ⇥M2
P

⌅
1 + 9.5⇥ 10�7 H2

⇥M2
P

e4⇤ ⇥

⇤6

⇧
, (4.1)
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two scenarios, consistent with the current constraints, where parity violating correlation functions
would be detectable in future CMB surveys. We conclude in section 5.

2 Production of helical gauge fields by a pseudoscalar inflaton

In order to make this paper self-contained, this section reviews the equations describing the pro-
duction of helical modes of a U(1) gauge field coupled to a pseudoscalar inflaton ⇧. A more detailed
presentation of the results presented in this section can be found in [? ]. The Lagrangian density
of our system is given by

L = �1

2
(⌥⇧)2 � V (⇧)� 1

4
Fµ⇥F

µ⇥ � ⇧

4 f
Fµ⇥F̃

µ⇥ , (2.1)

where V (⇧) is an arbitrary potential able to support slow-roll inflation. The dimensionful parameter
f is a measure of the coupling of ⇧ to the gauge field.

In terms of the vector potentialA (⌅, x), defined by a2B = ⌦⇥A, a2E = �A⇤, and neglecting
the spatial gradients of ⇧, the equations for the gauge field read

�
⌥2

⌥⌅2
�⌦2 � ⇧⇤

f
⌦⇥
⇥
A = 0, ⌦ ·A = 0 , (2.2)

where the prime denotes di�erentiation with respect to the conformal time ⌅ and a(⌅) is the scale
factor of the flat Friedmann-Robertson-Walker Universe .

In order to study the generation of the electromagnetic field induced by the rolling pseu-
doscalar, we promote the classical field A(⌅, x) to an operator Â (⌅, x), that we decompose into
annihilation and creation operators âk�, â

k
�
†

Âi(⌅, x) =

⌃
d3k

(2⇤)3/2
eik·xÂi(⌅,k) =

⇧

�=±

⌃
d3k

(2⇤)3/2

⌥
�i�(k)A�(⌅, k) â

k
� e

ik·x + h.c.
�
, (2.3)

where the helicity vectors �i± are defined so that ki �i± = 0, ⌃abc kb �c± = ⇤i k �c±, �i± �i⇥ = 1 and
�i± �i± = 0. Then, the functions A± must satisfy the equation A⇤⇤

± + (k2 ⇤ k ⇧⇤/f)A± = 0.
Since we are working on an inflating background, we assume de Sitter metric a (⌅) ⌥ �1/(H ⌅),

and ⇧⇤/a =
 
2 �HMP ⌥ constant. Hence, the equation for A± reads

d2A±(⌅, k)

d⌅2
+

⇤
k2 ± 2 k

⇥

⌅

⌅
A±(⌅, k) = 0 , (2.4)

where we have defined

⇥ ⌅ ⇧̇

2 f H
=

 
�

2

MP

f
, (2.5)

We will be interested in the case ⇥ >⇧ O (1).
Depending on the sign of ⇥, one of the two modes A+ or A� in (??) develops an instability

(we assume without loss of generality that ⇥ > 0). The other mode stays essentially in vacuum.
The di�erence between the amplitude of the left- and that of the right-handed photons shows that
the gauge modes have inherited the parity violating nature of the rolling inflaton.

The solution of equation (??) that reduces to positive frequency in the limit k ⌅ ⌃ �� is
A±(⌅, k) = 1⌅

2 k
[i F0(±⇥, �k ⌅) + G0(±⇥, �k ⌅)], where F0 and G0 are the regular and irregular
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Exponential dependence on the coupling 1/f

In principle sizable parity violation in large 	

portion of parameter space. 	


Anything more?



nongaussianities
(equilateral)

Photons source metric perturbations 	

in a 2→1 process 



Photons source metric perturbations 	

in a 2→1 process 

We assume that �0/a = �̇ ' constant. Hence, the equation for A± reads


d2

d⌧2
+ k2 ± 2 k

⇠

⌧

�
A±(⌧, k) = 0 , (2.4)

where we have defined

⇠ ⌘ �̇

2 f H
, (2.5)

a dimensionless parameter which will determine the e�ciency of the growth of the mode
functions. We will be interested in the case ⇠ >⇠ O (1).

Depending on the sign of ⇠, one of the two modes A+ or A� in (2.4) develops an
instability (we assume without loss of generality that ⇠ > 0, so that the mode A+ will feel
the instability – remember that ⌧ < 0). The other mode stays essentially in vacuum.

The solution of (2.4) that reduces to positive frequency for k ⌧ ! �1 is A±(⌧, k) =
1p
2 k

[i F0(±⇠, �k ⌧)+G0(±⇠, �k ⌧)], where F0 and G0 are the regular and irregular Coulomb

wave functions. The positive-helicity mode is rapidly amplified, and peaks at momenta k for
which (8 ⇠)�1 <⇠ |k ⌧ | ⌧ 2 ⇠, where it is well approximated by

A+(⌧, k) ' 1p
2 k

✓
�k ⌧

2 ⇠

◆1/4

e⇡ ⇠�2
p
�2⇠ k ⌧ . (2.6)

A+ is thus amplified by a factor e⇡ ⇠. On the other hand, the mode A� is not amplified
by the rolling field �, and from now on we ignore it.

2.2 Vectors generate scalar metric perturbations

Even if the vectors are not directly coupled to the inflaton, they generate scalar perturbations
through gravitational interactions. This e↵ect was studied in [19], that found that the gauge
invariant scalar perturbation ⇣̂ is given by

⇣̂(k) = � H2

4M2
P

Z
d⌧ 0Gk(⌧, ⌧

0) ⌧ 02
Z

d3q
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0) "icd (kc � qc) Âd(k� q, ⌧ 0)

i
, (2.7)

where we have defined the retarded Green function for the operator d2/d⌧2� (2/⌧)d/d⌧ +k2,
which gives the homogeneous equation of motion of the metric perturbations

Gk(⌧, ⌧
0) =

1

k3 ⌧ 02
⇥�
1 + k2 ⌧ ⌧ 0

�
sin k

�
⌧ � ⌧ 0

�
+ k

�
⌧ 0 � ⌧

�
cos k

�
⌧ � ⌧ 0

�⇤
⇥(⌧ � ⌧ 0) . (2.8)

We now compute the operator ⇣̂ using the following approximations:

1. Since left-handed photons are not amplified by the rolling pseudoscalar, we consider
only right-handed photons:

Âi(⌧,k) = ✏i+(k)A+(⌧, k) â
k

+ + (h.c.,k ! �k); (2.9)

2. We consider the regime where the mode functionA+(⌧, k) is large and given by eq. (2.6).
In this regime, the mode function is real;
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and we define h±(k) = ⇧ij
±(k)hij(k), that we promote to operators ĥ±. Since ⇧ij

± ⇧ij
lm =

⇧lm
± , and neglecting for the time being the solution of the homogeneous part of eq. (2.15),

the expression of ĥ± can be found using the techniques of, e.g., [22]
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M2
P

Z
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i
.

We can now compute the operators ĥ± using the same approximations discussed in the
case of scalar perturbations and obtain

ĥ±(k) =

Z
d3qF lm

± (k, q) Ôlq Ômk�q

. (2.18)

with

F lm
± (k, q) = � �(7)

3⇥ 29 (2⇡)3/2
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⇠3
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(
p
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p|k� q|)7 q
1/4 |k� q|1/4. (2.19)

3 Two- and three-point functions

Now that we have found the operator expression for the tensor and the scalar perturbations,
we can compute the correlators we are interested in.

3.1 Scalars

Scalar perturbations for this model have been studied in detail in [19]. The power spectrum
reads

P⇣ =
H2

8⇡2✏M2
P


1 + 3.2⇥ 10�8H

2✏

M2
P

e4⇡⇠

⇠6

�
(3.1)

where ✏ is the slow-roll parameter associated to the inflaton potential V (�). The three-point
function of ⇣ was also computed in [19] and has an essentially equilateral shape. In the
equilateral limit, |k1| = |k2| = |k3| = k, we have

h⇣̂(k1) ⇣̂(k2) ⇣̂(k3)iequil = 2.6⇥ 10�13 �(k1 + k2 + k3)
H6

M6
P

e6⇡⇠

⇠9
. (3.2)

3.2 Tensors

The two-point function of the tensors was first computed in [13]. The results is
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H2

⇡2M2
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where the terms H2/⇡M2
P are associated to the usual amplification of vacuum fluctions of

the gravitational waves in a de Sitter Universe. Note the di↵erent numerical coe�cients,
signaling parity violation, for the left- and the right-handed gravitons, in the ⇠-dependent
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scalar

tensor

scalars and 
tensors 

produced 
(in principle) 
with same 
efficiency...

...but phase space	

⇓ 

LH tensors much more efficiently produced than 
RH tensors and scalars

.Barnaby et al 2012

Sorbo 10



Three point functions...

and we define h±(k) = ⇧ij
±(k)hij(k), that we promote to operators ĥ±. Since ⇧ij

± ⇧ij
lm =

⇧lm
± , and neglecting for the time being the solution of the homogeneous part of eq. (2.15),

the expression of ĥ± can be found using the techniques of, e.g., [22]
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m(k� q, ⌧ 0)� ✏lab qa Âb(q, ⌧
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We can now compute the operators ĥ± using the same approximations discussed in the
case of scalar perturbations and obtain

ĥ±(k) =

Z
d3qF lm

± (k, q) Ôlq Ômk�q

. (2.18)
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3 Two- and three-point functions

Now that we have found the operator expression for the tensor and the scalar perturbations,
we can compute the correlators we are interested in.

3.1 Scalars

Scalar perturbations for this model have been studied in detail in [19]. The power spectrum
reads
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H2
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(3.1)

where ✏ is the slow-roll parameter associated to the inflaton potential V (�). The three-point
function of ⇣ was also computed in [19] and has an essentially equilateral shape. In the
equilateral limit, |k1| = |k2| = |k3| = k, we have

h⇣̂(k1) ⇣̂(k2) ⇣̂(k3)iequil = 2.6⇥ 10�13 �(k1 + k2 + k3)
H6

M6
P

e6⇡⇠
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3.2 Tensors

The two-point function of the tensors was first computed in [13]. The results is

P t,+ =
H2

⇡2M2
P
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H2

⇡2M2
P
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where the terms H2/⇡M2
P are associated to the usual amplification of vacuum fluctions of

the gravitational waves in a de Sitter Universe. Note the di↵erent numerical coe�cients,
signaling parity violation, for the left- and the right-handed gravitons, in the ⇠-dependent
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large tensor nongaussianities 	

with 	


small scalar nongaussianities 

Cook and LS 13

Barnaby et al 12

hĥ�(k1) ĥ�(k2) ĥ�(k3) iequil = 6.1⇥ 10�10 �(k1 + k2 + k3)

k6
H6

M6
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⇠9



Small scalar nongaussianities 
Large tensor nongaussianities

Let us quantify the effect ☞ observables	


Also tensors source temperature fluctuations! 	

(at l≪100)

a(l) =

Z
d2n

2⇡
e�i l n �T

T
(n) Bl1l2l3 �

(2)(l1 + l2 + l3) ⌘ ha(l1) a(l2) a(l3)i

Flat sky approximation (for l≫1)

Cook and LS 13



Small scalar nongaussianities 
Large tensor nongaussianities

Flat sky approximation (for l≫1)

Effect of tensor on <δT3>	

is ~4500 times 	


stronger than scalar!

Let us quantify the effect ☞ observables	


Also tensors source temperature fluctuations! 	

(at l≪100)

Cook and LS 13

l4 (Btensor
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l4 (Bscalar
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negligible



Constraints on parameter space

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4
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Figure 2. Maximum allowed value of H
MP

for various values of ⇠. The blue line uses the limit from

r < 0.11, and the dotted pink line uses the limit from f equil
NL < 150. The parameter space below both

these lines is allowed.

The blue solid line in Figure 2 is obtained by applying the limit r < 0.11 at the 95% confidence
level as published by the Planck Collaboration [24]. Remarkably, in this model r is not in
one-to-one correspondence with H/MP [13, 14], and one can have detectable tensors for
arbitrarily small values of H/MP . In this case the tensor spectrum would be dominated by
the metric perturbations caused by the auxiliary vector fields as opposed to the standard
fluctuations caused by the inflationary expansion.

We see that for ⇠ . 3.4, where the contribution of vectors to the tensor power spectrum
is weaker, the non-observation of tensors provides the strongest limit on H/MP , and the
the expression for the tensor power spectrum approaches the more standard expression of
P t = 2H2

⇡2 M2
P
. For these small values of ⇠, the limit of r < 0.11 translates into a limit

H
MP

< 3.7⇥ 10�5.

To calculate f equil
NL , we first use the contribution to the three-point function of the

temperature fluctuations from scalar perturbations

⇣
f equil
NL

⌘

⇣
= 470

H6

M6
P

e6⇡⇠

⇠9
, (5.2)

that was first computed in [19]. Since the three-point function of the temperature perturba-
tions is dominated by the tensor contribution, we have

f equil
NL '

⇣
f equil
NL

⌘

h
=

(Bh
li
)equil

(B⇣
li
)equil

⇣
f equil
NL

⌘

⇣
= 2.1⇥ 106

H6

M6
P

e6⇡⇠

⇠9
. (5.3)

The pink dashed line in Figure 2 is obtained by imposing the limit f equil
NL < 150, i.e., twice the

68% uncertainty published by the Planck Collaboration [25]. Note that the Planck limits [25]
were derived for a scale invariant three-point function. However, tensors contribute to the
three-point function of the temperature fluctuations only at large scales ` . 100. It would be
interesting to reevaluate the Planck constraints on the model taking into account the strong
scale dependence of h�T 3i. We expect the limits obtained this way would be somehow weaker
than those shown in Figure 2.
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…the standard relation r∝H2 does not hold in this model!
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Figure 4. Comparison of detectability limits of chirality of the primordial tensors for various ex-
periments. The dotted pink line is the maximum allowed H/MP based on current limits on r and

f
equil
NL . The solid lines are for 2� detectability for the following experiments listed in order top to
bottom: Planck, Spider, CMBPol, and a cosmic variance limited experiment. The experimental lines
were derived from Figure 2 of [21].

standard perturbations from expansion, and since it is the contribution from these auxiliary
fields that violate parity, the larger ⇠, the larger ��.

Let us note that the constraints on the system can be studied analytically. To simplify
our notation, let us introduce the quantities P ⌘ H2

8⇡2✏M2
P

[19] and X ⌘ ✏ e2⇡⇠

⇠3
, where ✏ is the

slow roll parameter. Then we can write

P⇣ = P �
1 + 2.5⇥ 10�6 P X2

�
(5.6)

r =
16 ✏+ 5.4⇥ 10�4 P X2

1 + 2.5⇥ 10�6 P X2
(5.7)

f equil
NL = 1.1⇥ 1012 P3X3 , (5.8)

where P⇣ = 2.5⇥10�9 is the observed value of the scalar power spectrum. Now let us assume
that the second term in brackets in eq. (5.6) is negligible with respect to 1. We will check in
a second that this has to be the case. Then we have P = P⇣ , and the 95% Planck constraint

f equil
NL < 150 turns into the constraint

X < 2.1⇥ 105 , (5.9)

from which we see that the second term in brackets in eq. (5.6) has to be smaller than
2.6⇥10�4 that is indeed much smaller than unity. This implies that r = 16 ✏+5.4⇥10�4 P X2,
where the second term is constrained by nongaussianities to be smaller than 0.057. As a
consequence, if X saturates the bound (5.9) and 16 ✏ ⌧ 0.057, then it will still be possible to
detect chiral tensors in the CMB.

6 Conclusions

The coupling (1.1) leads to a rich phenomenology in the tensor sector: not only can it give
an observable spectrum of gravitational waves even for low values of the Hubble parameter,
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More detailed analysis
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Spectra of equilateral fNL 	

for T, E and B modes

l1+l2+l3=even &	

l1+l2+l3=odd 

both nonvanishing
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Figure 1. All possible CMB bispectra, i.e., ⟨III⟩, ⟨IIE⟩, ⟨IEE⟩ and ⟨EEE⟩ (top two panels), and
⟨IIB⟩, ⟨IEB⟩, ⟨IBB⟩, ⟨EEB⟩, ⟨EBB⟩ and ⟨BBB⟩ (bottom two panels), induced by the tensor non-
Gaussianity with X = 2.1 × 105 and P = 2.5 × 10−9 for ℓ1 + 2 = ℓ2 + 1 = ℓ3. Left and right two
panels describe the parity-even (ℓ1+ ℓ2+ ℓ3 = even) and parity-odd (ℓ1 + ℓ2+ ℓ3 = odd) components,
respectively. For comparison, we also plot ⟨III⟩ and ⟨EEE⟩ from the equilateral non-Gaussianity with
fNL = 150. Other cosmological parameters are fixed using the Planck results [29]. The parity-odd
bispectra seem to oscillate rapidly since they hate symmetric signals as ℓ1 ∼ ℓ2 ∼ ℓ3.

figure 1 depicts reduced bispectra given by eq. (4.4) of the temperature, E-mode and
B-mode anisotropies for ℓ1 ≈ ℓ2 ≈ ℓ3, which is defined as

bX1X2X3
ℓ1ℓ2ℓ3

= G−1
ℓ1ℓ2ℓ3

BX1X2X3
ℓ1ℓ2ℓ3

, (4.6)

Gℓ1ℓ2ℓ3 ≡
1

6

⎡

⎣

2
√

ℓ3(ℓ3 + 1)ℓ2(ℓ2 + 1)

ℓ1(ℓ1 + 1)− ℓ2(ℓ2 + 1)− ℓ3(ℓ3 + 1)

√

∏3
n=1(2ℓn + 1)

4π

(

ℓ1 ℓ2 ℓ3
0 −1 1

)

+5 perms.] . (4.7)

Note that Gℓ1ℓ2ℓ3 = I0 0 0
ℓ1ℓ2ℓ3

holds if ℓ1 + ℓ2 + ℓ3 = even. In figure 1, the usual equilateral
bispectra with fNL = 150 are also plotted, and it seems to be comparable in magnitude to
the tensor bispectra with X = 2.1 × 105 for ℓ ! 100. This relation has also been confirmed
in the flat-sky analysis [24]. In the tensor bispectra, we can see the characteristic signatures
associated with the tensor-mode CMB fields as mentioned above, i.e., the ISW enhancement
in temperature for ℓ ! 100 and a peak due to Thomson scattering in the polarization at
ℓ ∼ 100. Generally, in the tensor mode, the temperature fluctuations are larger than the
polarization ones, and E and B modes have almost same amplitudes [30]. Such a magnitude
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Figure 2. Expected 1σ errors of X3 (5.5) obtained by using the parity-even (left panel) and parity-
odd (right panel) signals in all types of the temperature and E-mode bispectra (red lines), the E-mode
auto-bispectrum alone (green lines) and the temperature auto-bispectrum alone (blue lines). Here we
assume the Planck, PRISM, and cosmic-variance-limited ideal experiments.

III EEE all I + E BBB (r = 0.05) BBB (r = 5× 10−4)
Planck 127 (129) 232 (233) 56 (65) 17 (19) 2.1 (2.1)
PRISM 127 (129) 83 (84) 25 (30) 0.87 (1.0) 0.015 (0.017)
ideal 127 (129) 82 (83) 25 (29) 0.12 (0.20) 1.2 (2.0) × 10−4

Table 1. Expected 1σ errors of X3 normalized by 1015 in the III, EEE, all I+E cases (ℓmax = 1000)
and the BBB case (ℓmax = 500) for each experiment. The tensor-to-scalar ratio r determines the
amplitude of the B-mode cosmic variance spectrum. Here we summarize the results estimated from
both the parity-even and parity-odd signals. In addition, for comparison, the errors from the parity-
even signals alone are written in parentheses.

the 1σ error bars are expressed as

(

δ(X3), δfNL
)

=

(

√

(2)F−1
11 ,

√

(2)F−1
22

)

. (5.5)

figure 2 depicts δ(X3) as functions of ℓmax estimated from all combinations of the
temperature and E-mode bispectra, the E-mode auto-bispectrum alone and the temperature
auto-bispectrum alone, respectively. Here, we display results from the parity-even and parity-
odd spaces separately. From this figure, we can notice that δ(X3) saturates for ℓmax ! 100 in
every case. This is due to rapid decays of the tensor temperature and polarization bispectra
for ℓ ! 100 (see figure 1). Concerning features associated with parity, one can find that the
error bars from the parity-odd signals are larger than those from the parity-even signals in
the ⟨III⟩ and ⟨EEE⟩ cases. This is a consequence of the suppression of the auto-bispectra
as mentioned in sec. 4. Regardless of it, owing to contributions of the 6 cross-bispectra, the
errors estimated from all possible 8 bispectra are comparable to or slightly smaller than the
parity-even counterparts.

Practical values of δ(X3) at ℓmax = 1000 are summarized in table 1. Interestingly, if
using full set of the temperature and E-mode bispectra in both the parity-even and parity-
odd spaces, δ(X3) can be 80% reduced in comparison with the ⟨III⟩ analysis under the
cosmic-variance-limited ideal experiment. This seems to be a common feature of the tensor
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More fun with GWs...

…now in the case where the inflaton is directly coupled to the gauge field...
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FIG. 2: Current limits and projected sensitivities to a stochastic gravitational-wave background versus the gravitational-wave
frequency. The solid curves all indicate current upper limits, while the dashed curves indicate projected sensitivities. The LISA
curve is from Ref. [65] and BBO correlated from Ref. [61]. The BBO sensitivity is estimated by increasing the BBO-correlated
curve by 4 orders of magnitude [see Eq. (29)]. The BBN constraint results from the limit to the number of relativistic degrees of
freedom at big-bang nucleosynthesis (e.g., Ref. [66]); the “M/R” constraint is from CMB/LSS constraints to matter-radiation
equality [67]; the “z. var” curve is from Ref. [68]; and the quasar-astrometry limit from Refs. [69, 70]. We note that the BBN
and “M/R” constraints assume a scale invariant gravitational-wave background that extends ∼ 60 e-folds below the current
Hubble horizon. LIGO sensitivities, taken from the LIGO Scientific Collaboration White Paper on Detector Research and
Development [71] are given in terms of a correlated analysis between the Hanford, WA and Livingston, LA sites [see Eq. (29)].
The run 1 LIGO limit (“S1 LIGO”) is from Ref. [72] and the run 3 LIGO limit (“S3 LIGO”) is from Ref. [73]. Also shown
are millisecond-pulsar timing constraints (current [74, 75] and sensitivities projected for the Square-Kilometer Array [76]).
Curves corresponding to scale-invariant (i.e., nt = 0) gravitational-wave backgrounds are shown (dotted curves), labeled by the
associated inflationary energy scales at CMB/LSS scales (but keep in mind that slow-roll inflation generically predicts nt < 0,
less power on small scales). The CMB/LSS currently constrains this value to be below 3.36 × 1016 GeV at CMB/LSS scales.
Future CMB measurements may be able to reach energy scales near 1015 GeV [77, 78, 79, 80].

model has also η = p2/8π, so ns = 1 − p2/8π = 1 − 2ϵ,
and for ns > 0.9 we find a constraint ϵ < 0.05. The con-
straint r = 16ϵ ! 1 is comparable or a bit weaker. Since
ns and r depend in this model only on the parameter

p, these models occupy a curve in the ns–r parameters
space, which is indicated by the heavy solid curve in Fig.
1. The constraint ∆N = 35 to the number of e-folds be-
tween CMB/LSS and BBO/DECIGO scales tells us that
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FIG. 2: Current limits and projected sensitivities to a stochastic gravitational-wave background versus the gravitational-wave
frequency. The solid curves all indicate current upper limits, while the dashed curves indicate projected sensitivities. The LISA
curve is from Ref. [65] and BBO correlated from Ref. [61]. The BBO sensitivity is estimated by increasing the BBO-correlated
curve by 4 orders of magnitude [see Eq. (29)]. The BBN constraint results from the limit to the number of relativistic degrees of
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and “M/R” constraints assume a scale invariant gravitational-wave background that extends ∼ 60 e-folds below the current
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The run 1 LIGO limit (“S1 LIGO”) is from Ref. [72] and the run 3 LIGO limit (“S3 LIGO”) is from Ref. [73]. Also shown
are millisecond-pulsar timing constraints (current [74, 75] and sensitivities projected for the Square-Kilometer Array [76]).
Curves corresponding to scale-invariant (i.e., nt = 0) gravitational-wave backgrounds are shown (dotted curves), labeled by the
associated inflationary energy scales at CMB/LSS scales (but keep in mind that slow-roll inflation generically predicts nt < 0,
less power on small scales). The CMB/LSS currently constrains this value to be below 3.36 × 1016 GeV at CMB/LSS scales.
Future CMB measurements may be able to reach energy scales near 1015 GeV [77, 78, 79, 80].
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straint r = 16ϵ ! 1 is comparable or a bit weaker. Since
ns and r depend in this model only on the parameter
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1. The constraint ∆N = 35 to the number of e-folds be-
tween CMB/LSS and BBO/DECIGO scales tells us that
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A few comments
These tensor modes would be chiral!

Signal might correlate with nongaussianities at CMB/
LSS scales

The GWs produced this way should be strongly 
nongaussian

Large and nongaussian fluctuations at the end of 
inflation might generate primordial BHs

Thrane 12

Crowder et al 12

Linde and Pajer 13
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p, these models occupy a curve in the ns–r parameters
space, which is indicated by the heavy solid curve in Fig.
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Conclusion

Even if tensors usually look boring, 	

they can have a rich phenomenology	


(and all we have seen originates from a single operator)
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0.9◦; from Planck, 15.9′; from CMBPol, 9.4”; and from a
CV-limited experiment, 1.9 µarcsec, in good agreement
with previous forecasts [4, 23–25].
In Fig. 4, we plot, separately, the contributions from

only TB and only EB correlation to the sum in Eq. (9),
as a function of multipole moment l, for the cases of
SPIDER, Planck, and CMBPol, for r = 0.22. The off-
diagonal terms that contain the covariance between TB
and EB are small. The dominant contribution to the con-
straint on∆α comes from the TB correlation for WMAP-
5, and from EB for the higher-precision instruments. Dif-
ferent multipoles give the leading summands in σ−2

∆α for
different instruments, but unlike the case of GW chiral-
ity, small angular scales (l ! 100) always dominate the
sum.

FIG. 4: Diagonal (TB,TB and EB,EB) summands of Eq. (9),
for r = 0.22, are plotted against the multipole l to show that
the constraints to∆α from future CMB experiments will come
primarily from l’s of ∼100, 500, or 700 (depending on the
instrument).

IV. SEPARATING GRAVITATIONAL
CHIRALITY FROM COSMOLOGICAL

BIREFRINGENCE

In this Section, we ask how well the effects of chiral
gravity and CB can be distinguished, assuming that a

TB/EB correlation has been detected.

A. First-Order Effects on the EB and TB
Correlations

To first order in∆α and∆χ, the TB/EB power spectra
are a sum of a part CA,chi

l due to chiral GWs and a

part CA,rot
l due to CB. The combined EB and TB power

spectra can be written,

CTB,obs
l = ∆χCTB,t

l (∆χ = 1) + 2∆αCTE
l ,

CEB,obs
l = ∆χCEB,t

l (∆χ = 1) + 2∆αCEE
l ,

(10)

where the superscript t indicates the tensor-induced part
of the power spectrum, while the absence of it denotes
the full power spectrum, including the scalar part.

FIG. 5: We show TB and EB power spectra from chiral GWs
for ∆χ = 0.2 and r = 0.22 (dashed red curves) and from
cosmological birefringence for ∆α = 5′ (solid blue curves).

Fig. 5, which shows CA,chi
l and CA,rot

l , demonstrates
that the contributions from these two mechanisms are
qualitatively different. Our goal now is to quantify how
well they can be distinguished, given the finite precision
of the temperature/polarization maps.

The Fisher matrix for ∆α and ∆χ has the following

Nonvanishing <EB> and <TB> 
could also be produced by some 

late-Universe effect	

(e.g. pseudoscalar quintessence)

Gluscevic and Kamionkowski 2010 
have however shown that it is 

possible to distinguish a primordial 
<EB> and <TB> 	

from a late one



Also note

A “natural” coupling that might lead to 
nonvanishing <EB> and <TB> is

�L =
⇤

f 0 ⇥�⇥⇤⌅ R
�⇥

µ⇧ R⇤⌅
µ⇧

however...
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Action for tensor modes in theory with �R R̃
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for k too large one of the modes is strongly 
coupled and/or a ghost

if we choose parameters so to stay away from strongly 
coupled regime, then effect on tensor modes is too weak
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Figure 2. Expected 1σ errors of X3 (5.5) obtained by using the parity-even (left panel) and parity-
odd (right panel) signals in all types of the temperature and E-mode bispectra (red lines), the E-mode
auto-bispectrum alone (green lines) and the temperature auto-bispectrum alone (blue lines). Here we
assume the Planck, PRISM, and cosmic-variance-limited ideal experiments.

III EEE all I + E BBB (r = 0.05) BBB (r = 5× 10−4)
Planck 127 (129) 232 (233) 56 (65) 17 (19) 2.1 (2.1)
PRISM 127 (129) 83 (84) 25 (30) 0.87 (1.0) 0.015 (0.017)
ideal 127 (129) 82 (83) 25 (29) 0.12 (0.20) 1.2 (2.0) × 10−4

Table 1. Expected 1σ errors of X3 normalized by 1015 in the III, EEE, all I+E cases (ℓmax = 1000)
and the BBB case (ℓmax = 500) for each experiment. The tensor-to-scalar ratio r determines the
amplitude of the B-mode cosmic variance spectrum. Here we summarize the results estimated from
both the parity-even and parity-odd signals. In addition, for comparison, the errors from the parity-
even signals alone are written in parentheses.

the 1σ error bars are expressed as

(

δ(X3), δfNL
)

=

(

√

(2)F−1
11 ,

√

(2)F−1
22

)

. (5.5)

Figure 2 depicts δ(X3) as functions of ℓmax estimated from all combinations of the
temperature and E-mode bispectra, the E-mode auto-bispectrum alone and the temperature
auto-bispectrum alone, respectively. Here, we display results from the parity-even and parity-
odd spaces separately. From this figure, we can notice that δ(X3) saturates for ℓmax ! 100 in
every case. This is due to rapid decays of the tensor temperature and polarization bispectra
for ℓ ! 100 (see figure 1). Concerning features associated with parity, one can find that the
error bars from the parity-odd signals are larger than those from the parity-even signals in
the ⟨III⟩ and ⟨EEE⟩ cases. This is a consequence of the suppression of the auto-bispectra
as mentioned in section 4. Regardless of it, owing to contributions of the 6 cross-bispectra,
the errors estimated from all possible 8 bispectra are comparable to or slightly smaller than
the parity-even counterparts.

Practical values of δ(X3) at ℓmax = 1000 are summarized in table 1. Interestingly, if
using full set of the temperature and E-mode bispectra in both the parity-even and parity-
odd spaces, δ(X3) can be 80% reduced in comparison with the ⟨III⟩ analysis under the
cosmic-variance-limited ideal experiment. This seems to be a common feature of the tensor
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