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Various IR issues

IR divergence coming from k-integral: 

Secular growth in time ∝(Ht)n

Adiabatic perturbation,

which can be locally absorbed by the choice of time slicing. 

Isocurvature perturbation

≈ field theory on a fixed curved background

Tensor perturbation
Background trajectory

in field space
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 : a minimally coupled scalar field with a small mass (m2≪H2) in dS.

potential

summing up only long wavelength modes beyond the Horizon scale

distribution
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Large vacuum fluctuation

IR problem for isocurvature perturbation

If the field fluctuation is too large, it is 

easy to imagine that a naïve 

perturbative analysis will break down 

once interaction is introduced. 

De Sitter inv. vac. state does not exist in the massless limit.

Allen & Folacci(1987)

Kirsten & Garriga(1993)
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Let’s consider local average of  :

Equation of motion for  :
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

More and more short wavelength modes 

participate in  as time goes on.

in slow roll approximation

Newly participating modes 

act as random fluctuation
32 kHkk 

     NNHNfNf  4

In the case of massless l4 :  2 → 
l

2H

Namely, in the end, thermal 

equilibrium is realized : V ≈ T 4

(Starobinsky & Yokoyama (1994))



 Distant universe is quite different from ours.

 Each small region in the above picture 

gives one representation of many parallel universes. 

 However: wave function of the universe

= “a superposition of all the possible parallel universes”

 Question is “simple expectation values are really observables for us?” 

Our observable 

universe

must be so to keep translational invariance of the wave fn. of the universe



Answer will be No!

“Are simple expectation values  

really observables for us?”

But the situation is quite 

different in single field inflation

So, we need a new formulation
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Factor coming from this loop: 

scale invariant spectrum 

31 k

curvature perturbation in 

co-moving gauge. - no typical mass scale 

0 Transverse 

traceless

 ijij he exp22  

Setup: 4D Einstein gravity + minimally coupled scalar field

Broadening of averaged field can be absorbed by the 

proper choice of time coordinate.



 In conventional cosmological perturbation theory, 

gauge is not completely fixed.

Yuko Urakawa and T.T., PTP122: 779 arXiv:0902.3209

Time slicing can be uniquely specified:  =0    OK!

but spatial coordinates are not.
j
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j hh ,0 

ijjiijgh ,,  
Residual gauge:

Elliptic-type differential     

equation for  i.

Not unique locally!

 To solve the equation for  i, by 
imposing boundary condition at 
infinity, we need information about 
un-observable region.

 i

observable 

region time

direction



 Local gauge conditions. 

 i
Imposing boundary 

conditions on the boundary 

of the observable region

But unsatisfactory?

The results depend 

on the choice of 

boundary conditions.

Translation 

invariance is lost.

 Genuine coordinate-independent quantities. 

No influence from outside

Complete gauge fixing☺

Correlation functions for 3-d scalar curvature on  =constant slice. 

R(x1)R(x2) Coordinates do not have gauge invariant meaning.

x origin

x(XA, l=1) =XA +  xA

x

Specify the position by solving geodesic eq. 022 ldxD i

ii XdDx 
0l

lwith initial condition 

XA

gR(XA) := R(x(XA, l=1)) = R(XA) + xA R(XA) + …

gR(X1)
gR(X2) should be truly coordinate independent.

(Giddings & Sloth 1005.1056)
(Byrnes et al. 1005.33307)

Use of geodesic coordinates:



In  =0 gauge, EOM is very simple

IR regularity is not guaranteed for a generic quantum state!

Non-linearity is concentrated on this term. 
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However, the Euclidean vacuum state (that requires the 

regularity of n-point fns at t0 →±i ∞) satisfies this condition.

It looks quite non-trivial to find consistent IR regular states.

I will show just the outline of the proof. 

Although the proof can be extended to graviton loops, we are 

restricted to the adiabatic scalar perturbation, for simplicity.  



We consider time-dependent scale transformation:

Then, the curvature perturbation transforms as
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The Hamiltonian after transformation is not identical 

to the original one but very similar. 

Define the unitary operator of the time evolution
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The Euclidean vacuum state is defined in the same way 

irrespective of the choice of s(t).

Discretizing the closed time path, we insert decomposition of 

unity by eigenstates of the average value of  at each time step.

Picking up a representative value of s from each time step, 

we have a path of s. 

Using this function s(t), we move to the tilder system. 
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Euclidean vacuum and its excited states satisfy 
the IR regular condition. 

Quantum state should satisfy some conditions for 
the absence of IR divergences due to adiabatic 
scalar perturbation and tensor perturbation.. 

“Wave function must be homogeneous in the 
direction of background scale transformation”

It requires further investigation whether there are 

other (non-trivial and natural) quantum states 

compatible with the IR regularity. 


