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Galaxy redshift surveys 

• Upcoming projects

• Useful to pin down late-time universe (z<1-2)

✓Scrutinize the Planck cosmology results

• Traditional large-scale structure probe 	

with 3D galaxy map 

SuMIRe PFS (2015+)
EUCLID (2020+)WFIRST (2023+)

BigBOSS (2015+)

✓Late-time cosmic acceleration

BOSS gives first result of stage-III class survey

SDSS-II main
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(dark energy task force)



BOSS DR10/11

• Latest data release of BOSS (a part of SDSS-III)

• CMASS & LOWZ spectroscopic samples :

(Baryon Oscillation Spectroscopic Survey)

✓3D galaxy map with effective volume ~ 8.4 Gpc^3 !! 

✓1,000,000 galaxies at 0.2<z<0.7 over 8,400deg^2

BAO in SDSS-III BOSS galaxies 3

This paper concentrates on the DR11 data set, comprised of
SDSS-III observations through May 2013, which is scheduled for
public release in December 2014 together with the final SDSS-
III data release (DR12). The DR10 data set, comprised of obser-
vations through June 2012, is already public (Ahn et al. 2013).
We provide the DR10 large scale structure samples, including the
masks, weights, and random catalogs needed for clustering anal-
yses, through the SDSS-III Science Archive Server. To facilitate
community comparisons to our results, in this paper we also present
several of our key analyses for the DR10 subset of our data sample.

Five companion papers present extensions to the methodol-
ogy, testing, and data sets beyond those applied previously to the
DR9 data:

(i) Ross et al. (2013) split the DR10 CMASS sample into red
and blue galaxies, showing that consistent cosmological measure-
ments result from both data sets.

(ii) Vargas-Magana et al. (2013) investigates the different pos-
sible systematics in the anisotropic fitting methodologies, showing
that we achieve unbiased results with fiducial fitting methodology.

(iii) Manera et al. (2013b) describes the production of mock cat-
alogues, used here to determine errors and test our analysis meth-
ods.

(iv) Percival et al. (2013) presents a method to propagate errors
in the covariance matrices determined from the mocks through to
errors on the final measurements.

(v) Tojeiro et al. (2014) presents measurements made at z =

0.32 from the low-redshift “LOWZ” BOSS sample of galaxies
which we now include in our constraints.

We also have produced a series of companion papers present-
ing complementary cosmological measurements from the DR10
and DR11 data:

(i) Beutler et al. (2013) presents a fit to the CMASS power spec-
trum monopole and quadrupole, measuring Redshift-Space Distor-
tions (RSD).

(ii) Samushia et al. (2013) fits the CMASS correlation function
monopole and quadrupole, measuring Redshift-Space Distortions
(RSD) using a streaming model.

(iii) Chuang et al. (2013b) fits CMASS correlation function
monopole and quadrupole using quasi-linear scales (e.g. above
50h�1Mpc) to extract single-probe measurements. For the LOWZ
sample, they include smaller scales with Finger-of-God modeling.

(iv) Sánchez et al. (2013b) fits LOWZ and CMASS correlation
function monopole and wedges (Kazin et al. 2012) with a model
inspired by renormalised perturbation theory.

The layout of this paper is as follows. We introduce the data
and the catalogue in the next section. The catalogue construction
is similar to that described in Anderson et al. (2012) for DR9,
and so we focus primarily on the differences and improvements in
Section 3. We present the analysis methods for our isotropic and
anisotropic measurements in Sections 4 and 5, respectively. We
then present the isotropic results in Section 6 and the anisotropic
results in Section 7. Our systematic error assessment and final dis-
tance measurements are presented in Section 8 and these measure-
ments are placed in a cosmological context in Section 9. We con-
clude in Section 10.

Throughout the paper we assume a fiducial ⇤CDM+GR, flat
cosmological model with ⌦m = 0.274, h = 0.7, ⌦bh

2

= 0.0224,
ns = 0.95 and �

8

= 0.8, matching that used in Anderson et al.
(2012, 2013). Note that this model is different from the current
best-fit cosmology; however these parameters allow us to translate

angles and redshifts into distances and provide a reference against
which we measure distances. The BAO measurement allows us to
constrain changes in the distance scale relative to that predicted by
this fiducial model.

2 THE DATA

2.1 SDSS-III BOSS

We use data included in data releases 10 (DR10;Ahn et al. 2013)
and 11 (DR11; to be publicly released with the final BOSS data
set) of the Sloan Digital Sky Survey (SDSS; York et al. 2000). To-
gether, SDSS I, II (Abazajian et al. 2009), and III (Eisenstein et
al. 2011) used a drift-scanning mosaic CCD camera (Gunn et al.
1998) to image over one third of the sky (14 555 square degrees)
in five photometric bandpasses (Fukugita et al. 1996; Smith et al.
2002; Doi et al. 2010) to a limiting magnitude of r ' 22.5 us-
ing the dedicated 2.5-m Sloan Telescope (Gunn et al. 2006) located
at Apache Point Observatory in New Mexico. The imaging data
were processed through a series of pipelines that perform astromet-
ric calibration (Pier et al. 2003), photometric reduction (Lupton et
al. 2001), and photometric calibration (Padmanabhan et al. 2008).
All of the imaging was re-processed as part of SDSS Data Release
8 (DR8; Aihara et al. 2011).

BOSS is designed to obtain spectra and redshifts for 1.35
million galaxies over a footprint covering 10 000 square degrees.
These galaxies are selected from the SDSS DR8 imaging and are
being observed together with 160 000 quasars and approximately
100 000 ancillary targets. The targets are assigned to tiles of diam-
eter 3

� using a tiling algorithm that is adaptive to the density of
targets on the sky (Blanton et al. 2003). Spectra are obtained using
the double-armed BOSS spectrographs (Smee et al. 2013). Each
observation is performed in a series of 900-second exposures, in-
tegrating until a minimum signal-to-noise ratio is achieved for the
faint galaxy targets. This ensures a homogeneous data set with a
high redshift completeness of more than 97 per cent over the full
survey footprint. Redshifts are extracted from the spectra using the
methods described in Bolton et al. (2012). A summary of the sur-
vey design appears in Eisenstein et al. (2011), and a full description
is provided in Dawson et al. (2012).
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Figure 2. Histograms of the galaxy number density as a function of redshift
for LOWZ (red) and CMASS (green) samples we analyse. We also display
the number density of the SDSS-II DR7 LRG sample in order to illustrate
the increase in sample size provided by BOSS LOWZ galaxies.
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BOSS sky coverage

4 L. Anderson et al.

Figure 1. Evolution of the BOSS sky coverage from DR9 to DR11. Top panels show our observations in the North Galactic Cap (NGC) while lower panels
show observations in the South Galactic Cap (SGC). Colors indicate the spectroscopic completeness within each sector as indicated in the key in the lower
right panel. Gray areas indicate our expected footprint upon completion of the survey. The total sky coverage in DR9, DR10, and DR11 is 3,275 deg2, 6,161
deg2, and 8,377 deg2, respectively.

2.2 Galaxy Catalogues

BOSS selects two classes of galaxies to be targeted for spec-
troscopy using SDSS DR8 imaging. The ‘LOWZ’ algorithm is de-
signed to select red galaxies at z < 0.45 from the SDSS DR8
imaging data via

r
cmod

< 13.5 + ck/0.3 (1)
|c?| < 0.2 (2)

16 < r
cmod

< 19.6 (3)
r
psf

� r
mod

> 0.3 (4)

where here i and r indicate magnitudes and all magnitudes are cor-
rected for Galactic extinction (via the Schlegel, Finkbeiner & Davis
1998 dust maps), i

fib2

is the i-band magnitude within a 2

00 aper-
ture, the subscript psf denotes PSF magnitudes, the subscript mod

denotes ‘model’ magnitudes (Stoughton et al. 2002), the subscript
cmod denotes ‘cmodel’ magnitudes (Abazajian et al. 2004), and

ck = 0.7 (g
mod

� r
mod

) + 1.2 (r
mod

� i
mod

� 0.18) (5)

and

c? = r
mod

� i
mod

� (g
mod

� r
mod

)/4.0� 0.18. (6)

The resulting LOWZ galaxy sample has three times the spatial den-
sity of the SDSS-II LRGs, as is shown in Fig. 2, with a similar
clustering amplitude to the CMASS sample (Parejko et al. 2013).

We define the effective redshift, z
e↵

, as the mean redshift of a
sample weighted by the number of galaxy pairs with separations
80 < s < 120h�1Mpc. For the LOWZ sample z

e↵

= 0.32,
slightly lower than that of the SDSS-II LRGs as we place a red-
shift cut z < 0.43 to ensure no overlap with the CMASS sample,
and hence independent measurements. Further details can be found
in Parejko et al. (2013) and Tojeiro et al. (2014). Due to difficulties
during the early phases of the project, the sky area of the LOWZ
sample lags that of the full survey by approximately 1 000 deg

2, as
can be seen in comparison of Tables 1 and 2.

The CMASS sample is designed to be approximately stellar-
mass-limited above z = 0.45. These galaxies are selected from the

SDSS DR8 imaging via

17.5 < i
cmod

< 19.9 (7)
r
mod

� i
mod

< 2 (8)
d? > 0.55 (9)

i
fib2

< 21.5 (10)
i
cmod

< 19.86 + 1.6(d? � 0.8) (11)

where

d? = r
mod

� i
mod

� (g
mod

� r
mod

)/8.0, (12)

and ifib2 is the i-band magnitude within a 2

00 aperture radius.
For CMASS targets, stars are further separated from galaxies by
only keeping objects with

i
psf

� i
mod

> 0.2 + 0.2(20.0� i
mod

) (13)
z
psf

� z
mod

> 9.125� 0.46 z
mod

, (14)

unless the target also passes the LOWZ cuts (Eqs. 1-4) listed above.
The CMASS selection yields a sample with a median redshift

z = 0.57 and a stellar mass that peaks at log
10

(M/M�) = 11.3
(Maraston et al. 2012). Most CMASS targets are central galax-
ies residing in dark matter halos of ⇠ 10

13 h�1M�, but a non-
negligible fraction are satellites that live primarily in halos about
10 times more massive (White et al. 2011; Nuza et al. 2013). Fur-
ther discussion can be found in Tojeiro et al. (2012).

Target lists are produced using these algorithms and are then
“tiled” to produce lists of galaxies to be observed with a single
pointing of the Sloan telescope. Not all targets can be assigned
fibers, and not all that are result in a good redshift measurement.
In fact, there are three reasons why a targeted galaxy may not ob-
tain a BOSS spectrum:

(i) SDSS-II already obtained a good redshift for the object; these
are denoted known.

(ii) A target of different type (e.g., a quasar) is within 6200; these
are denoted missed.

c� 2014 RAS, MNRAS 000, 2–38
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Cosmology with 3D galaxy map
Precision measurement of

Power spectrum P(k),  or correlation function ξ(r)7

FIG. 4: Measured power spectra for the full LRG and main galaxy samples. Errors are uncorrelated and full window functions are shown
in Figure 5. The solid curves correspond to the linear theory ΛCDM fits to WMAP3 alone from Table 5 of [7], normalized to galaxy bias
b = 1.9 (top) and b = 1.1 (bottom) relative to the z = 0 matter power. The dashed curves include the nonlinear correction of [29] for
A = 1.4, with Qnl = 30 for the LRGs and Qnl = 4.6 for the main galaxies; see equation (4). The onset of nonlinear corrections is clearly
visible for k ∼

> 0.09h/Mpc (vertical line).

Our Fourier convention is such that the dimensionless
power ∆2 of [77] is given by ∆2(k) = 4π(k/2π)3P (k).

Before using these measurements to constrain cosmo-
logical models, one faces important issues regarding their
interpretation, related to evolution, nonlinearities and
systematics.

B. Clustering evolution

The standard theoretical expectation is for matter
clustering to grow over time and for bias (the rela-
tive clustering of galaxies and matter) to decrease over
time [78–80] for a given class of galaxies. Bias is also
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A = 1.4, with Qnl = 30 for the LRGs and Qnl = 4.6 for the main galaxies; see equation (4). The onset of nonlinear corrections is clearly
visible for k ∼

> 0.09h/Mpc (vertical line).

Our Fourier convention is such that the dimensionless
power ∆2 of [77] is given by ∆2(k) = 4π(k/2π)3P (k).

Before using these measurements to constrain cosmo-
logical models, one faces important issues regarding their
interpretation, related to evolution, nonlinearities and
systematics.

B. Clustering evolution

The standard theoretical expectation is for matter
clustering to grow over time and for bias (the rela-
tive clustering of galaxies and matter) to decrease over
time [78–80] for a given class of galaxies. Bias is also

14 L. Anderson et al.

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3hMpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate

p

C
ii

for the power spectrum and the rms error calculated
from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04hMpc

�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥B
m

(k/↵), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter ↵ as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, k

n

, equally spaced in 0 < k < 2hMpc

�1,
to the central wavenumbers of the observed bandpowers k

i

:

P (k
i

)fit =

X

n

W (k
i

, k
n

)P (k
n

)m �W (k
i

, 0). (33)

The final term W (k
i

, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

B
m

= (BCAMB � 1)e�k

2⌃2
nl/2

+ 1, (34)

where the damping scale ⌃

nl

is a fitted parameter. We assume
a Gaussian prior on ⌃

nl

with width ±2h�1
Mpc, centred on

8.24h�1
Mpc for pre-reconstruction fits and 4.47h�1

Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.
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the range of scales fitted (0.02 < k < 0.3hMpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate

p

C
ii

for the power spectrum and the rms error calculated
from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04hMpc

�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥B
m

(k/↵), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter ↵ as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, k

n

, equally spaced in 0 < k < 2hMpc

�1,
to the central wavenumbers of the observed bandpowers k

i

:

P (k
i

)fit =

X

n

W (k
i

, k
n

)P (k
n

)m �W (k
i

, 0). (33)

The final term W (k
i

, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

B
m

= (BCAMB � 1)e�k

2⌃2
nl/2

+ 1, (34)

where the damping scale ⌃

nl

is a fitted parameter. We assume
a Gaussian prior on ⌃

nl

with width ±2h�1
Mpc, centred on

8.24h�1
Mpc for pre-reconstruction fits and 4.47h�1

Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.
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Figure 15. As Figure 15, but for the DR11 LOWZ correlation function
transformed as defined by Eq. 46 with a = 0.39 and b = 0.04. As before,
these error bars are nearly independent, with a worst case of 12 per cent
and an r.m.s. of 3.4 per cent in the off-diagonal elements of the reduced
covariance matrix.

Figure 16. The CMASS BAO feature in the measured reconstructed power
spectrum of each of the BOSS data releases, DR9, DR10, and DR11. The
data are displayed with points and error-bars and the best-fit model is dis-
played with the curves. Both are divided by the best-fit smooth model. We
note that a finer binning was used in the DR9 analysis.

noted that transformations based on the symmetric square root of
the Fisher matrix had surprisingly compact support for their power
spectrum analysis. When we formed this matrix for the DR11
CMASS correlation function, we found that the first and second
off-diagonal terms are nearly constant and that subsequent off-
diagonals are small. This suggests that a basis transform of the pen-
tadiagonal form

X(si) =
xi � a (xi�1

+ xi+1

)� b (xi�2

+ xi+2

)

1� 2a� 2b
(46)

will approach a diagonal form. Here, xi = s2i ⇠0(si) and si is the

Figure 17. The BAO feature in the measured power spectrum of the DR11
reconstructed CMASS (top) and LOWZ (bottom) data. The data are dis-
played with black circles and the best-fit model is displayed with the curve.
Both are divided by the best-fit smooth model.

bin center of measurement bin i. We introduce the 1 � 2a � 2b
factor so as to normalize X such that it returns X = x for constant
x. For the first two and last two bins, the terms beyond the end of
the range are omitted and the normalization adjusted accordingly.

We find that for DR11 CMASS after reconstruction, values
of a = 0.3 and b = 0.1 sharply reduce the covariances between
the bins. The reduced covariance matrices for ⇠(r) and X(r) are
shown in Figure 13. The bins near the edge of the range retain some
covariances, but the off-diagonal terms of the central 10⇥ 10 sub-
matrix of the reduced covariance matrix have a mean and r.m.s. of
0.008 ± 0.044, with a worst value of 0.11. For display purposes,
this is a good approximation to a diagonal covariance matrix, yet
the definition of X(s) is well localized and easy to state. For com-
parison, the reduced covariance matrix of s2⇠

0

has typical first off-
diagonals values of 0.8 and second off-diagonals values of 0.6.

We display this function in Figure 14. One must also trans-
form the theory to the new estimator: we show the best-fit BAO
models with and without broadband marginalization, as well as the
best-fit non-BAO model without broadband marginalization. The
presence of the BAO is clear, but now the error bars are representa-
tive. For example, the significance of the detection as measured by
the ��2 of the best-fit BAO model to the best-fit non-BAO model
is 69.5 using only the diagonal of the covariance matrix of X , as
opposed to 74 with the full covariance matrix. We do not use this
transformation when fitting models, but we offer it as a pedagogical
view.

The same result is shown for DR11 LOWZ post-
reconstruction in Figure 15. Here we use a = 0.39 and b = 0.04.
The level of the off-diagonal terms is similarly reduced, with an
r.m.s. of 3.4 per cent and a worst value of 12 per cent.

It is expected that the best values of a and b will depend on
the data set, since data with more shot noise will have covariance
matrices of the correlation function that are more diagonally dom-
inant. Similarly, the choice of a pentadiagonal form may depend
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on the binning of the correlation function, as it likely reflects a
physical scale of the covariances between bins. However, some
of the simplicity likely results from the fact that the covariances
between nearby bins are dominated by small-scale correlations in
the density field that become independent of separation at large
separation. This property gives the matrix a regularity: bins at 90
and 100Mpc will be correlated to each other similarly to bins at
110 and 120Mpc. Tridiagonal matrices have inverses with expo-
nentially decreasing off-diagonal terms (Rybicki & Press 1995).
Apparently, treating the off-diagonal covariances as exponentially
decreasing with only weak dependences on separation provides a
good approximation.

For P (k), the measurements in k-bins are already fairly inde-
pendent, as one would expect for a near-Gaussian random field.
Correlations between bins can occur because of the finite sur-
vey volume and because of non-Gaussianity in the density field.
For CMASS, we find the mean first off-diagonal term of the re-
duced covariance matrix is 0.28 (with a standard deviation of 0.06).
When the P (k) measurements are divided by the best-fit smooth
model, P sm

(k), they are, generally, even less correlated. We de-
termine P (k)/P sm

(k) for each mock sample and construct a re-
vised “BAO” covariance matrix from this. We do not use this co-
variance matrix to perform any fits—our fits are to the full P (k)
and use the original covariance matrix. For the revised covariance
matrix, the mean first off-diagonal term of the correlation matrix is
reduced to 0.03 (with a standard deviation of 0.15). The diagonal
elements within this covariance matrix are also reduced in ampli-
tude, reflecting the smaller variance available once a smooth fit has
been removed. The errors derived from this matrix thus better rep-
resent the errors on the measured BAO; the data when presented as
P (k)/P

sm

(k) are more independent and provide a more accurate
visualisation of the measurements.

Fig. 16 displays the measured post-reconstruction values of
P (k)/P sm

(k), for the BOSS CMASS sample in DR9, DR10, and
DR11 (from top to bottom), showing the evolution in the signal-to-
noise ratio of the BAO as BOSS has increased its observed foot-
print. In the DR11 sample, the third peak is clearly visible. In Fig.
17, we display the DR11 post-reconstruction P (k)/P sm

(k) for the
two BOSS samples; the CMASS sample at z

e↵

= 0.57 is presented
in the top panel and the LOWZ sample at z

e↵

= 0.32 is shown in
the bottom panel. The LOWZ sample possesses a clear BAO fea-
ture, but the signal-to-noise ratio is considerably lower than that of
the CMASS sample.

7 BAO MEASUREMENTS FROM ANISOTROPIC
CLUSTERING ESTIMATES

7.1 Anisotropic Clustering Estimates

In Section 5, we detailed our analysis techniques (multipoles and
wedges statistics), and demonstrated they recover un-biased esti-
mates of the BAO scales both along and perpendicular to line-of-
sight with similar uncertainties. We now apply these two techniques
to BOSS CMASS sample (at z = 0.57). Fig. 18 displays the multi-
poles, ⇠

0,2, of the DR11 CMASS sample correlation function pre-
and post-reconstruction, using our fiducial binning choice, for the
range of scales fitted (45 < s < 200h�1

Mpc). For the quadrupole
(⇠

2

), we see a dramatic change from the pre- to post-reconstruction
results, as the reconstruction algorithm has removed almost all of
the redshift space distortion contribution. Further, an apparent dip
is now seen in the data on scales slightly larger than the peak in the

Figure 18. The DR11 multipole measurements along with their fits using
the method described in Sec 5. The top panel is pre-reconstruction while
the bottom one is post-reconstruction.

monopole. The strength of this feature is related to the deviation in
✏ from 0 (or the deviation in ↵? from 1).

Fig. 19 displays the correlation function divided into two
wedges (⇠||,?), once again with the pre-reconstruction measure-
ments displayed in the top panel and the post-reconstruction mea-
surements in the bottom panel. Reconstruction has made the BAO
peak sharper for both ⇠|| and ⇠?. Further, reconstruction has de-
creased the difference in their amplitudes as the redshift space dis-
tortion signal has been reduced.

7.2 DR11 Acoustic Scale Measurement from Anisotropic
Clustering

As for our isotropic analysis, the results of our anisotropic BAO fits
to the DR10 and DR11 mocks show significant improvement on
average with reconstruction (see Table 5), and therefore we adopt
post-reconstruction results as our default. Our consensus value for
the CMASS anisotropic BAO measurement, ↵|| = 0.968± 0.032,
↵? = 1.044 ± 0.013, is determined from a combination of the
measurements using the multipoles and the wedges methodologies,
and we describe the individual measurements and the process of
arriving at our consensus measurement in what follows.
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et al. (2012), who measured the RSD and AP simultaneously in
the BOSS CMASS DR9 sample, achieving a 15 per cent mea-
surement of growth, 2.8 per cent measurement of angular diame-
ter distance, and 4.6 per cent measurement of the expansion rate
at z = 0.57. Using these estimates Samushia et al. (2013) derived
strong constraints on modified theories of gravity (MG) and DE
model parameters. In this paper we perform a similar analysis on
the CMASS DR11 sample, which covers roughly three times the
volume of DR9.

This paper is organised as follows. In section 2 we describe
the data used in the analysis. Section 3 explains how the two-
dimensional correlation function is estimated from the data. Sec-
tion 4 shows how we derive the estimates of the covariance ma-
trix for our measurements. In section 5 we describe the theoretical
model used to fit the data. Section 6 presents and discusses our
main results – the estimates of growth rate, distance-redshift rela-
tionship and the expansion rate from the measurements. Section 7
uses these estimates to constrain parameters in the ⇤CDM model
assuming General Relativity (⇤CDM-GR) and possible deviations
from this standard model. We conclude and discuss our results in
section 8.

Our measurements require the adoption of a cosmological
model in order to convert angles and redshifts into comoving dis-
tances. As in Anderson et al. (2013) we adopt a spatially-flat
⇤CDM cosmology with ⌦m = 0.274 and h = 0.7 for this purpose.
For ease of comparison across analyses, we follow Anderson et al.
(2013) and also report our distance constraints relative to a model
with ⌦m = 0.274, h = 0.7, and ⌦bh2 = 0.0224, for which the BAO
scale rd = 149.31 Mpc.

2 THE DATA

The SDSS-III project (Eisenstein et al. 2011) uses a dedicated 2.5-
m Sloan telescope (Gunn et al. 2013) to perform spectroscopic
follow-up of targets selected from images made using a now-retired
drift-scanning mosaic CCD camera (Gunn et al. 2006) that imaged
the sky in five photometric bands (Fukugita et al. 1996) to a limit-
ing magnitude of r ' 22.5. The BOSS (Dawson et al. 2013) is the
part of SDSS-III that will measure spectra for 1.5 million galaxies
and 160.000 quasars over a quarter of the sky.

We use the DR11 CMASS sample of galaxies (Anderson et al.
2013; Smee et al. 2013; Bolton et al. 2012). This lies in the redshift
range of 0.43 < z < 0.70 and consists of 690826 galaxies covering
8498 square degrees (effective volume of 6.0 Gpc3).

Figure 1 shows the redshift distribution of galaxies in our
sample. The number density is of order of 10�4 peaking at n̄ '
4 ⇥ 10�4h3 Mpc�3.

3 THE MEASUREMENTS

We measure the correlation function of galaxies in the CMASS
sample defined as the ensemble average of the product of over-
densities in the galaxy field separated by a certain distance r

⇠(r) ⌘ h�g(r0)�g(r0 + r)i. (4)

The overdensity as a function of r is given by

�g(r) =
ng(r) � n̄g(r)

n̄g(r)
, (5)

where n̄g(r) is expected average density of galaxies at a position r
and ng(r) is an observed number density.

Figure 1. The number density of CMASS DR11 galaxies in redshift bins
of �z = 0.01 in northern and southern Galactic hemispheres, computed
assuming our fiducial cosmology.

Figure 2. The two-dimensional correlation function of DR11 sample mea-
sured in bins of 1h�1 ⇥ 1h�1 Mpc2. We use first two Legendre multipoles of
the correlation function in our study rather than the two-dimensional corre-
lation function displayed here.

We estimate the correlation function using the Landy-Szalay
minimum-variance estimator (Landy & Szalay 1993)

⇠̂(�ri) =
DD(�ri) � 2DR(�ri) + RR(�ri)

RR(�ri)
, (6)

where DD(�ri) is the weighted number of galaxy pairs whose sep-
aration falls within the �ri bin, RR(�ri) is number of similar pairs
in the random catalogue and DR(�ri) is the number of cross-pairs
between the galaxies and the objects in the random catalogue.

Figure 2 shows the two-dimensional correlation function of
DR11 sample measured in bins of 1h�1⇥1h�1 Mpc2. Both the “BAO
ridge” (a ring of local maxima at approximately 100h�1 Mpc) and
the RSD signal (LOS “squashing” of the correlation function) are
detectable by eye.

The random catalogue is constructed by populating the vol-
ume covered by galaxies with random points with zero correlation.
We use a random catalogue that has 50 times the density of galaxies

c� 0000 RAS, MNRAS 000, 1–15
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Figure 5. The correlation matrix for the NGC (left) and SGC (right) of CMASS-DR11. The colour indicates the level of correlation,
where red represents high correlation, blue represents high anti-correlation and green represents no-correlation. The correlation between
the bins in the monopole is shown in the lower left hand corner, while the correlation between the k-bins in the quadrupole is shown in
the upper right hand corner. The upper left hand corner and the lower right hand corner show the cross-correlations.
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Figure 6. Relative error using the diagonal elements of the co-
variance matrix of the power spectrum multipoles in CMASS-
DR11. The upper three dashed lines show the quadrupole error
and the lower three solid lines show the error in the monopole.
Because of the larger volume, the error in the NGC of CMASS-
DR11 (black lines) is about a factor of 1.6 smaller than the error
in the SGC (red lines). The power spectrum error for the entire
CMASS-DR11 sample (blue lines) shows an error of ∼ 1.5% in
the monopole and ∼ 10% in the quadrupole at k = 0.10h/Mpc.

ance matrix as

C−1
ij,Hartlap =

Ns − nb − 2
Ns − 1

C−1
ij , (28)

where nb is the number of power spectrum bins. With these
covariance matrices we can then perform a standard χ2 min-
imisation to find the best fitting parameters.

In Figure 6 we show the diagonal elements of the co-

variance matrix for the monopole and quadrupole power
spectrum. We find an error of ∼ 1.5% in the monopole and
∼ 10% in the quadrupole at k = 0.10h/Mpc. This represents
the most precise measurement of the galaxy power spectrum
multipoles ever obtained.

5 THE SURVEY WINDOW FUNCTION

The power spectrum estimator we discussed in section 3 is
not actually estimating the true galaxy power spectrum, but
rather the galaxy power spectrum convolved with the survey
window function:

P conv(k⃗) =

∫

dk⃗′P true(k⃗′)|W (k⃗ − k⃗′)|2

− |W (k⃗)|2

|W (0)|2

∫

dk⃗′P true(k⃗′)|W (k⃗′)|2.
(29)

The window function, W (k⃗) has the following two effects:
(1) It mixes the modes with different wave-numbers and
introduces correlations and (2) it changes the amplitude of
the power spectrum at small k. First we discuss the first
term of eq. 29, the convolution of the true power spectrum
with the window function. The second term of eq. 29, the
so-called integral constraint, will be discussed in the next
subsection. We present the full derivation of the equations
of this section in Appendix B and restrict the discussion here
to the main results.

5.1 The convolution of the power spectrum with
the window function

Window function effects in the measured power spec-
trum do not necessarily represent a problem, since the
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Figure 3. The measured CMASS-DR11 monopole (top) and quadrupole (bottom) power spectra. The black data points are the measure-
ment of the North Galactic Cap (NGC) and the red data points are the measurement of the South Galactic Cap (SGC) of CMASS-DR11.
The black data points have been shifted by ∆k = 0.001h/Mpc to the right for clarity. The error bars are the diagonal of the covariance
matrix. Because of the smaller volume in the SGC the error bars are larger by a factor of ∼ 1.6. The solid black and red lines represent
the best fitting power spectra for the NGC (black) and SGC (red) respectively (fitting range k = 0.01 - 0.20h/Mpc, see section 8.1). The
red and black lines are based on the same cosmology and only differ in the effect of the window function (see section 5). The lower two
panels show the difference between the measured monopole and the best fitting monopole (middle panel) and the measured quadrupole
and the best fitting quadrupole (bottom panel), both relative to the diagonal elements of the covariance matrix. We fit the monopole and
quadrupole simultaneously. The best fitting χ2 is 66.6 + 73.9 = 140.5 (NGC + SGC) for 152 bins and 7 free parameters (see Table 2).
The contribution to χ2 from the monopole and quadrupole alone is given in the middle and lower panel, for comparison.

and its error, we generate a very large (i.e., dense) random
catalogue with α′ = 0.036.

The final power spectrum is then calculated as the av-

erage over spherical k-space shells

Pℓ(k) = ⟨Pℓ(k⃗)⟩ =
1
Vk

∫

k-shells

dk⃗ Pℓ(k⃗) (16)

=
1

Nmodes

∑

k−∆k
2

<|⃗k|<k+∆k
2

Pℓ(k⃗), (17)
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from excess residuals at the µK2 level in the high-` spectra rela-
tive to the best-fit AL = 1 ⇤CDM+foregrounds model on scales
where extragalactic foreground modelling is critical.

5.2. Baryon acoustic oscillations

Baryon acoustic oscillations (BAO) in the matter power spec-
trum were first detected in analyses of the 2dF Galaxy
Redshift Survey (Cole et al. 2005) and the SDSS redshift sur-
vey (Eisenstein et al. 2005). Since then, accurate BAO measure-
ments have been made using a number of di↵erent galaxy red-
shift surveys, providing constraints on the distance luminosity
relation spanning the redshift range 0.1 <⇠ z <⇠ 0.718. Here we use
the results from four redshift surveys: the SDSS DR7 BAO mea-
surements at e↵ective redshifts ze↵ = 0.2 and ze↵ = 0.35, anal-
ysed by Percival et al. (2010); the z = 0.35 SDSS DR7 measure-
ment at ze↵ = 0.35 reanalyzed by Padmanabhan et al. (2012); the
WiggleZ measurements at ze↵ = 0.44, 0.60 and 0.73 analysed by
Blake et al. (2011); the BOSS DR9 measurement at ze↵ = 0.57
analyzed by Anderson et al. (2013); and the 6dF Galaxy Survey
measurement at z = 0.1 discussed by Beutler et al. (2011).

BAO surveys measure the distance ratio

dz =
rs(zdrag)
DV(z)

, (45)

where rs(zdrag) is the comoving sound horizon at the baryon drag
epoch (when baryons became dynamically decoupled from the
photons) and DV(z) is a combination of the angular-diameter dis-
tance, DA(z), and the Hubble parameter, H(z), appropriate for the
analysis of spherically-averaged two-point statistics:

DV(z) =
"
(1 + z)2D2

A(z)
cz

H(z)

#1/3
. (46)

In the ⇤CDM cosmology, the angular diameter distance to red-
shift z is
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where

x(z,⌦m,⌦⇤) =
Z z

0

dz0

[⌦m(1 + z0)3 +⌦K(1 + z0)2 +⌦⇤]1/2 , (48)

and sinK = sinh for ⌦K > 0 and sinK = sin for ⌦K < 0. Note
that the luminosity distance, DL, relevant for the analysis of Type
Ia supernovae (see Sect. 5.4) is related to the angular diameter
distance via DL = (c/H0)D̂L = DA(1 + z)2.

Di↵erent groups fit and characterize BAO features in di↵er-
ent ways. For example, the WiggleZ team encode some shape
information on the power spectrum to measure the acoustic pa-
rameter A(z), introduced by Eisenstein et al. (2005),

A(z) =
DV(z)

q
⌦mH2

0

cz
, (49)

18Detections of a BAO feature have recently been reported in the
three-dimensional correlation function of the Ly↵ forest in large sam-
ples of quasars at a mean redshift of z ⇡ 2.3 (Busca et al. 2012;
Slosar et al. 2013). These remarkable results, probing cosmology well
into the matter-dominated regime, are based on new techniques that are
less mature than galaxy BAO measurements. For this reason, we do not
include Ly↵ BAO measurements as supplementary data to Planck. For
the models considered here and in Sect. 6, the galaxy BAO results give
significantly tighter constraints than the Ly↵ results.

Fig. 15. Acoustic-scale distance ratio rs/DV(z) divided by the
distance ratio of the Planck base ⇤CDM model. The points are
colour-coded as follows: green star (6dF); purple squares (SDSS
DR7 as analyzed by Percival et al. 2010); black star (SDSS DR7
as analyzed by Padmanabhan et al. 2012); blue cross (BOSS
DR9); and blue circles (WiggleZ). The grey band shows the ap-
proximate ±1� range allowed by Planck (computed from the
CosmoMC chains).

which is almost independent of !m. To simplify the presenta-
tion, Fig. 15 shows estimates of rs/DV(z) and 1� errors, as
quoted by each of the experimental groups, divided by the ex-
pected relation for the Planck base ⇤CDM parameters. Note
that the experimental groups use the approximate formulae of
Eisenstein & Hu (1998) to compute zdrag and rs(zdrag), though
they fit power spectra computed with Boltzmann codes, such
as camb, generated for a set of fiducial-model parameters. The
measurements have now become so precise that the small di↵er-
ence between the Eisenstein & Hu (1998) approximations and
the accurate values of zdrag and rdrag = rs(zdrag) returned by camb
need to be taken into account. In CosmoMC we multiply the ac-
curate numerical value of rs(zdrag) by a constant factor of 1.0275
to match the Eisenstein-Hu approximation in the fiducial model.
This correction is su�ciently accurate over the range of !m and
!b allowed by the CMB in the base ⇤CDM cosmology (see e.g.
Mehta et al. 2012) and also for the extended ⇤CDM models dis-
cussed in Sect. 6.

The Padmanabhan et al. (2012) result plotted in Fig. 15 is
a reanalysis of the ze↵ = 0.35 SDSS DR7 sample discussed
by Percival et al. (2010). Padmanabhan et al. (2012) achieve a
higher precision than Percival et al. (2010) by employing a re-
construction technique (Eisenstein et al. 2007) to correct (par-
tially) the baryon oscillations for the smearing caused by galaxy
peculiar velocities. The Padmanabhan et al. (2012) results are
therefore strongly correlated with those of Percival et al. (2010).
We refer to the Padmanabhan et al. (2012) “reconstruction-
corrected” results as SDSS(R). A similar reconstruction tech-
nique was applied to the BOSS survey by Anderson et al. (2013)
to achieve 1.6% precision in DV(z = 0.57)/rs, the most precise
determination of the acoustic oscillation scale to date.

All of the BAO measurements are compatible with the base
⇤CDM parameters from Planck. The grey band in Fig. 15
shows the ±1� range in the acoustic-scale distance ratio com-
puted from the Planck+WP+highL CosmoMC chains for the base
⇤CDM model. To get a qualitative feel for how the BAO mea-
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from excess residuals at the µK2 level in the high-` spectra rela-
tive to the best-fit AL = 1 ⇤CDM+foregrounds model on scales
where extragalactic foreground modelling is critical.

5.2. Baryon acoustic oscillations

Baryon acoustic oscillations (BAO) in the matter power spec-
trum were first detected in analyses of the 2dF Galaxy
Redshift Survey (Cole et al. 2005) and the SDSS redshift sur-
vey (Eisenstein et al. 2005). Since then, accurate BAO measure-
ments have been made using a number of di↵erent galaxy red-
shift surveys, providing constraints on the distance luminosity
relation spanning the redshift range 0.1 <⇠ z <⇠ 0.718. Here we use
the results from four redshift surveys: the SDSS DR7 BAO mea-
surements at e↵ective redshifts ze↵ = 0.2 and ze↵ = 0.35, anal-
ysed by Percival et al. (2010); the z = 0.35 SDSS DR7 measure-
ment at ze↵ = 0.35 reanalyzed by Padmanabhan et al. (2012); the
WiggleZ measurements at ze↵ = 0.44, 0.60 and 0.73 analysed by
Blake et al. (2011); the BOSS DR9 measurement at ze↵ = 0.57
analyzed by Anderson et al. (2013); and the 6dF Galaxy Survey
measurement at z = 0.1 discussed by Beutler et al. (2011).

BAO surveys measure the distance ratio

dz =
rs(zdrag)
DV(z)

, (45)

where rs(zdrag) is the comoving sound horizon at the baryon drag
epoch (when baryons became dynamically decoupled from the
photons) and DV(z) is a combination of the angular-diameter dis-
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and sinK = sinh for ⌦K > 0 and sinK = sin for ⌦K < 0. Note
that the luminosity distance, DL, relevant for the analysis of Type
Ia supernovae (see Sect. 5.4) is related to the angular diameter
distance via DL = (c/H0)D̂L = DA(1 + z)2.

Di↵erent groups fit and characterize BAO features in di↵er-
ent ways. For example, the WiggleZ team encode some shape
information on the power spectrum to measure the acoustic pa-
rameter A(z), introduced by Eisenstein et al. (2005),

A(z) =
DV(z)
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, (49)

18Detections of a BAO feature have recently been reported in the
three-dimensional correlation function of the Ly↵ forest in large sam-
ples of quasars at a mean redshift of z ⇡ 2.3 (Busca et al. 2012;
Slosar et al. 2013). These remarkable results, probing cosmology well
into the matter-dominated regime, are based on new techniques that are
less mature than galaxy BAO measurements. For this reason, we do not
include Ly↵ BAO measurements as supplementary data to Planck. For
the models considered here and in Sect. 6, the galaxy BAO results give
significantly tighter constraints than the Ly↵ results.

Fig. 15. Acoustic-scale distance ratio rs/DV(z) divided by the
distance ratio of the Planck base ⇤CDM model. The points are
colour-coded as follows: green star (6dF); purple squares (SDSS
DR7 as analyzed by Percival et al. 2010); black star (SDSS DR7
as analyzed by Padmanabhan et al. 2012); blue cross (BOSS
DR9); and blue circles (WiggleZ). The grey band shows the ap-
proximate ±1� range allowed by Planck (computed from the
CosmoMC chains).

which is almost independent of !m. To simplify the presenta-
tion, Fig. 15 shows estimates of rs/DV(z) and 1� errors, as
quoted by each of the experimental groups, divided by the ex-
pected relation for the Planck base ⇤CDM parameters. Note
that the experimental groups use the approximate formulae of
Eisenstein & Hu (1998) to compute zdrag and rs(zdrag), though
they fit power spectra computed with Boltzmann codes, such
as camb, generated for a set of fiducial-model parameters. The
measurements have now become so precise that the small di↵er-
ence between the Eisenstein & Hu (1998) approximations and
the accurate values of zdrag and rdrag = rs(zdrag) returned by camb
need to be taken into account. In CosmoMC we multiply the ac-
curate numerical value of rs(zdrag) by a constant factor of 1.0275
to match the Eisenstein-Hu approximation in the fiducial model.
This correction is su�ciently accurate over the range of !m and
!b allowed by the CMB in the base ⇤CDM cosmology (see e.g.
Mehta et al. 2012) and also for the extended ⇤CDM models dis-
cussed in Sect. 6.

The Padmanabhan et al. (2012) result plotted in Fig. 15 is
a reanalysis of the ze↵ = 0.35 SDSS DR7 sample discussed
by Percival et al. (2010). Padmanabhan et al. (2012) achieve a
higher precision than Percival et al. (2010) by employing a re-
construction technique (Eisenstein et al. 2007) to correct (par-
tially) the baryon oscillations for the smearing caused by galaxy
peculiar velocities. The Padmanabhan et al. (2012) results are
therefore strongly correlated with those of Percival et al. (2010).
We refer to the Padmanabhan et al. (2012) “reconstruction-
corrected” results as SDSS(R). A similar reconstruction tech-
nique was applied to the BOSS survey by Anderson et al. (2013)
to achieve 1.6% precision in DV(z = 0.57)/rs, the most precise
determination of the acoustic oscillation scale to date.

All of the BAO measurements are compatible with the base
⇤CDM parameters from Planck. The grey band in Fig. 15
shows the ±1� range in the acoustic-scale distance ratio com-
puted from the Planck+WP+highL CosmoMC chains for the base
⇤CDM model. To get a qualitative feel for how the BAO mea-
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from excess residuals at the µK2 level in the high-` spectra rela-
tive to the best-fit AL = 1 ⇤CDM+foregrounds model on scales
where extragalactic foreground modelling is critical.

5.2. Baryon acoustic oscillations

Baryon acoustic oscillations (BAO) in the matter power spec-
trum were first detected in analyses of the 2dF Galaxy
Redshift Survey (Cole et al. 2005) and the SDSS redshift sur-
vey (Eisenstein et al. 2005). Since then, accurate BAO measure-
ments have been made using a number of di↵erent galaxy red-
shift surveys, providing constraints on the distance luminosity
relation spanning the redshift range 0.1 <⇠ z <⇠ 0.718. Here we use
the results from four redshift surveys: the SDSS DR7 BAO mea-
surements at e↵ective redshifts ze↵ = 0.2 and ze↵ = 0.35, anal-
ysed by Percival et al. (2010); the z = 0.35 SDSS DR7 measure-
ment at ze↵ = 0.35 reanalyzed by Padmanabhan et al. (2012); the
WiggleZ measurements at ze↵ = 0.44, 0.60 and 0.73 analysed by
Blake et al. (2011); the BOSS DR9 measurement at ze↵ = 0.57
analyzed by Anderson et al. (2013); and the 6dF Galaxy Survey
measurement at z = 0.1 discussed by Beutler et al. (2011).

BAO surveys measure the distance ratio

dz =
rs(zdrag)
DV(z)

, (45)

where rs(zdrag) is the comoving sound horizon at the baryon drag
epoch (when baryons became dynamically decoupled from the
photons) and DV(z) is a combination of the angular-diameter dis-
tance, DA(z), and the Hubble parameter, H(z), appropriate for the
analysis of spherically-averaged two-point statistics:
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shift z is

DA(z) =
c

H0
D̂A.

=
c

H0

1
|⌦K |1/2(1 + z)

sinK
h
|⌦K |1/2x(z,⌦m,⌦⇤)

i
, (47)

where

x(z,⌦m,⌦⇤) =
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and sinK = sinh for ⌦K > 0 and sinK = sin for ⌦K < 0. Note
that the luminosity distance, DL, relevant for the analysis of Type
Ia supernovae (see Sect. 5.4) is related to the angular diameter
distance via DL = (c/H0)D̂L = DA(1 + z)2.

Di↵erent groups fit and characterize BAO features in di↵er-
ent ways. For example, the WiggleZ team encode some shape
information on the power spectrum to measure the acoustic pa-
rameter A(z), introduced by Eisenstein et al. (2005),

A(z) =
DV(z)
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⌦mH2
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, (49)

18Detections of a BAO feature have recently been reported in the
three-dimensional correlation function of the Ly↵ forest in large sam-
ples of quasars at a mean redshift of z ⇡ 2.3 (Busca et al. 2012;
Slosar et al. 2013). These remarkable results, probing cosmology well
into the matter-dominated regime, are based on new techniques that are
less mature than galaxy BAO measurements. For this reason, we do not
include Ly↵ BAO measurements as supplementary data to Planck. For
the models considered here and in Sect. 6, the galaxy BAO results give
significantly tighter constraints than the Ly↵ results.

Fig. 15. Acoustic-scale distance ratio rs/DV(z) divided by the
distance ratio of the Planck base ⇤CDM model. The points are
colour-coded as follows: green star (6dF); purple squares (SDSS
DR7 as analyzed by Percival et al. 2010); black star (SDSS DR7
as analyzed by Padmanabhan et al. 2012); blue cross (BOSS
DR9); and blue circles (WiggleZ). The grey band shows the ap-
proximate ±1� range allowed by Planck (computed from the
CosmoMC chains).

which is almost independent of !m. To simplify the presenta-
tion, Fig. 15 shows estimates of rs/DV(z) and 1� errors, as
quoted by each of the experimental groups, divided by the ex-
pected relation for the Planck base ⇤CDM parameters. Note
that the experimental groups use the approximate formulae of
Eisenstein & Hu (1998) to compute zdrag and rs(zdrag), though
they fit power spectra computed with Boltzmann codes, such
as camb, generated for a set of fiducial-model parameters. The
measurements have now become so precise that the small di↵er-
ence between the Eisenstein & Hu (1998) approximations and
the accurate values of zdrag and rdrag = rs(zdrag) returned by camb
need to be taken into account. In CosmoMC we multiply the ac-
curate numerical value of rs(zdrag) by a constant factor of 1.0275
to match the Eisenstein-Hu approximation in the fiducial model.
This correction is su�ciently accurate over the range of !m and
!b allowed by the CMB in the base ⇤CDM cosmology (see e.g.
Mehta et al. 2012) and also for the extended ⇤CDM models dis-
cussed in Sect. 6.

The Padmanabhan et al. (2012) result plotted in Fig. 15 is
a reanalysis of the ze↵ = 0.35 SDSS DR7 sample discussed
by Percival et al. (2010). Padmanabhan et al. (2012) achieve a
higher precision than Percival et al. (2010) by employing a re-
construction technique (Eisenstein et al. 2007) to correct (par-
tially) the baryon oscillations for the smearing caused by galaxy
peculiar velocities. The Padmanabhan et al. (2012) results are
therefore strongly correlated with those of Percival et al. (2010).
We refer to the Padmanabhan et al. (2012) “reconstruction-
corrected” results as SDSS(R). A similar reconstruction tech-
nique was applied to the BOSS survey by Anderson et al. (2013)
to achieve 1.6% precision in DV(z = 0.57)/rs, the most precise
determination of the acoustic oscillation scale to date.

All of the BAO measurements are compatible with the base
⇤CDM parameters from Planck. The grey band in Fig. 15
shows the ±1� range in the acoustic-scale distance ratio com-
puted from the Planck+WP+highL CosmoMC chains for the base
⇤CDM model. To get a qualitative feel for how the BAO mea-
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from excess residuals at the µK2 level in the high-` spectra rela-
tive to the best-fit AL = 1 ⇤CDM+foregrounds model on scales
where extragalactic foreground modelling is critical.

5.2. Baryon acoustic oscillations

Baryon acoustic oscillations (BAO) in the matter power spec-
trum were first detected in analyses of the 2dF Galaxy
Redshift Survey (Cole et al. 2005) and the SDSS redshift sur-
vey (Eisenstein et al. 2005). Since then, accurate BAO measure-
ments have been made using a number of di↵erent galaxy red-
shift surveys, providing constraints on the distance luminosity
relation spanning the redshift range 0.1 <⇠ z <⇠ 0.718. Here we use
the results from four redshift surveys: the SDSS DR7 BAO mea-
surements at e↵ective redshifts ze↵ = 0.2 and ze↵ = 0.35, anal-
ysed by Percival et al. (2010); the z = 0.35 SDSS DR7 measure-
ment at ze↵ = 0.35 reanalyzed by Padmanabhan et al. (2012); the
WiggleZ measurements at ze↵ = 0.44, 0.60 and 0.73 analysed by
Blake et al. (2011); the BOSS DR9 measurement at ze↵ = 0.57
analyzed by Anderson et al. (2013); and the 6dF Galaxy Survey
measurement at z = 0.1 discussed by Beutler et al. (2011).

BAO surveys measure the distance ratio

dz =
rs(zdrag)
DV(z)

, (45)

where rs(zdrag) is the comoving sound horizon at the baryon drag
epoch (when baryons became dynamically decoupled from the
photons) and DV(z) is a combination of the angular-diameter dis-
tance, DA(z), and the Hubble parameter, H(z), appropriate for the
analysis of spherically-averaged two-point statistics:
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and sinK = sinh for ⌦K > 0 and sinK = sin for ⌦K < 0. Note
that the luminosity distance, DL, relevant for the analysis of Type
Ia supernovae (see Sect. 5.4) is related to the angular diameter
distance via DL = (c/H0)D̂L = DA(1 + z)2.

Di↵erent groups fit and characterize BAO features in di↵er-
ent ways. For example, the WiggleZ team encode some shape
information on the power spectrum to measure the acoustic pa-
rameter A(z), introduced by Eisenstein et al. (2005),
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18Detections of a BAO feature have recently been reported in the
three-dimensional correlation function of the Ly↵ forest in large sam-
ples of quasars at a mean redshift of z ⇡ 2.3 (Busca et al. 2012;
Slosar et al. 2013). These remarkable results, probing cosmology well
into the matter-dominated regime, are based on new techniques that are
less mature than galaxy BAO measurements. For this reason, we do not
include Ly↵ BAO measurements as supplementary data to Planck. For
the models considered here and in Sect. 6, the galaxy BAO results give
significantly tighter constraints than the Ly↵ results.

Fig. 15. Acoustic-scale distance ratio rs/DV(z) divided by the
distance ratio of the Planck base ⇤CDM model. The points are
colour-coded as follows: green star (6dF); purple squares (SDSS
DR7 as analyzed by Percival et al. 2010); black star (SDSS DR7
as analyzed by Padmanabhan et al. 2012); blue cross (BOSS
DR9); and blue circles (WiggleZ). The grey band shows the ap-
proximate ±1� range allowed by Planck (computed from the
CosmoMC chains).

which is almost independent of !m. To simplify the presenta-
tion, Fig. 15 shows estimates of rs/DV(z) and 1� errors, as
quoted by each of the experimental groups, divided by the ex-
pected relation for the Planck base ⇤CDM parameters. Note
that the experimental groups use the approximate formulae of
Eisenstein & Hu (1998) to compute zdrag and rs(zdrag), though
they fit power spectra computed with Boltzmann codes, such
as camb, generated for a set of fiducial-model parameters. The
measurements have now become so precise that the small di↵er-
ence between the Eisenstein & Hu (1998) approximations and
the accurate values of zdrag and rdrag = rs(zdrag) returned by camb
need to be taken into account. In CosmoMC we multiply the ac-
curate numerical value of rs(zdrag) by a constant factor of 1.0275
to match the Eisenstein-Hu approximation in the fiducial model.
This correction is su�ciently accurate over the range of !m and
!b allowed by the CMB in the base ⇤CDM cosmology (see e.g.
Mehta et al. 2012) and also for the extended ⇤CDM models dis-
cussed in Sect. 6.

The Padmanabhan et al. (2012) result plotted in Fig. 15 is
a reanalysis of the ze↵ = 0.35 SDSS DR7 sample discussed
by Percival et al. (2010). Padmanabhan et al. (2012) achieve a
higher precision than Percival et al. (2010) by employing a re-
construction technique (Eisenstein et al. 2007) to correct (par-
tially) the baryon oscillations for the smearing caused by galaxy
peculiar velocities. The Padmanabhan et al. (2012) results are
therefore strongly correlated with those of Percival et al. (2010).
We refer to the Padmanabhan et al. (2012) “reconstruction-
corrected” results as SDSS(R). A similar reconstruction tech-
nique was applied to the BOSS survey by Anderson et al. (2013)
to achieve 1.6% precision in DV(z = 0.57)/rs, the most precise
determination of the acoustic oscillation scale to date.

All of the BAO measurements are compatible with the base
⇤CDM parameters from Planck. The grey band in Fig. 15
shows the ±1� range in the acoustic-scale distance ratio com-
puted from the Planck+WP+highL CosmoMC chains for the base
⇤CDM model. To get a qualitative feel for how the BAO mea-
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Figure 23. Comparison of the 68 and 95 per cent constraints in the
DA(0.57)(rfidd /rd) � H(0.57)(rfidd /rd) plane from CMASS consensus
anisotropic (orange) and isotropic (grey) BAO constraints. The Planck con-
tours correspond to Planck+WMAP polarization (WP) and no lensing. The
green contours show the constraints from WMAP9.

To make the flat ⇤CDM comparison between the CMB
and our BAO measurements more quantitative, we report in Ta-
ble 13 the Planck, WMAP, and eWMAP ⇤CDM predictions for
our isotropic and anistropic BAO observables at z = 0.32 and
z = 0.57. All three predictions are in good agreement with
our isotropic measurements. The largest discrepancy between the
Planck ⇤CDM predictions and BOSS measurements is about 1.5�
for the anisotropic parameter ✏ (or the closely related ↵k) at z =

0.57. eWMAP and BOSS disagree at about 1.8� in ✏, which leads
to an approximately 2.2� offset in ↵?.

Our measurements therefore provide no indication that addi-
tional parameters are needed to describe the expansion history be-
yond those in flat ⇤CDM. However, it is also clear from Fig. 22 and
Table 13 that the disagreement between the WMAP+SPT/ACT and
Planck ⇤CDM BAO predictions is comparable to the error on the
BOSS acoustic scale measurement. Under the assumption of a flat
⇤CDM model, our anisotropic measurements show a mild prefer-
ence for the Planck parameter space over WMAP+SPT/ACT. We
are optimistic that the further analysis of the CMB data sets will
resolve the apparent difference.

Since the uncertainties in the ⇤CDM prediction of the BAO
observables from the CMB are dominated by the uncertainty in
⌦ch

2, another way to summarize and compare the BAO measure-
ments across redshift is as a constraint on ⌦mh2 from the flat
⇤CDM model holding the CMB acoustic scale, `A (Eq. 10 of
Planck Collaboration 2013b), and physical baryon density, ⌦bh

2

fixed. These values are given in the ⌦mh2 column of Table 13.
We stress that these inferences depend critically on the assump-
tion of a flat ⇤CDM expansion history. Using this method, the
BOSS inferences are more precise than the CMB and fall between
the WMAP and Planck constraints. The isotropic CMASS analy-
sis yields ⌦mh2

= 0.1389 ± 0.0022, in close agreement with the
LOWZ result of 0.1387 ± 0.0036. Our anisotropic analysis shifts

Figure 24. The DV (z)/rd measured from galaxy surveys, divided by the
best-fit flat ⇤CDM prediction from the Planck data. All error bars are 1 �.
We now vary the cosmological model for the Planck prediction. Red shows
the prediction assuming a flat Universe with w = �0.7; blue shows the pre-
diction assuming a closed Universe with ⌦K = �0.01 and a cosmological
constant.

to a notably larger value, ⌦mh2

= 0.1416± 0.0018, closer to the
Planck measurement. This shift in ⌦mh2 between the isotropic and
anisotropic CMASS fits is simply a restatement of the half sigma
shift in ↵ between our isotropic and anistropic fits, discussed in
Sec. 7.5.

For our cosmological parameter estimation, we present
Planck in most cases but show the results for WMAP and
WMAP+SPT/ACT in some cases so that the reader can assess the
differences. For most combinations, the agreement is good. This is
because the BAO data fall between the two CMB results and hence
tend to pull towards reconciliation, and because the low-redshift
data sets dominate the measurements of dark energy in cosmolo-
gies more complicated than the vanilla flat ⇤CDM model.

Fig. 23 and Table 13 illustrate many of the features of the
⇤CDM model fits we present in Table 14. For instance, the ad-
dition of a CMASS BAO measurement to the CMB improves the
constraint on ⌦mh2 by 40 per cent for Planck (with similar im-
provements for the other CMB choices). The central values for
all three reported ⇤CDM parameters shift by one sigma between
isotropic and anisotropic CMASS fits. There are also one sigma
shifts between Planck and WMAP/eWMAP central parameter val-
ues at fixed BAO measurements; taken together, WMAP+CMASS-
iso or eWMAP+CMASS-iso and Planck+CMASS differ in their
central values of ⌦m and H

0

by about 2�. Additionally combin-
ing with other BAO and SN measurements relaxes this tension to
about 1�. Within the context of the ⇤CDM model, the combina-
tion of CMB and BAO provides 1 per cent (3 per cent) constraints
on H

0

and ⌦m, respectively. These constraints relax by a factor of
3 (2) in the most general expansion history model, ow

0

waCDM.
In Anderson et al. (2012) we showed that the BAO distance-

redshift relation is consistent with that measured by Type Ia super-
novae. This remains true with these DR11 results.

9.3 Cosmological parameter estimates in extended models

While the flat ⇤CDM expansion history is sufficient to explain cur-
rent CMB and BAO measurements, the addition of precise low-
redshift BAO distances greatly improves constraints on parameters
that generalize the flat ⇤CDM expansion history. In this section we
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Figure 29. Constraints in the wa–w
0

plane for Planck+BAO (red contours), and Planck+BAO+SN (blue contours), for both w
0

waCDM (left panel) and
ow

0

waCDM (right panel). Note that the area of the 95 per cent contour in the right panel is related to the dark energy Figure of Merit, as recommended by the
Dark Energy Task Force. The degeneracy direction in clear in both panels, but the addition of SN data helps rule out very negative values of wa. Furthermore,
the best fit values for these two parameters in this case are closer to those of a ⇤CDM cosmology (w

0

= �1, wa = 0) than without SN data, in which case
⇤CDM falls outside of the 68 per cent ellipse.

10 CONCLUSION

We have presented constraints on cosmology and the distance-
redshift relation from the Data Release 10 and 11 galaxy samples of
the Baryon Oscillation Spectroscopic sample. These results, based
on the largest volume of the Universe ever surveyed at this high
density (8.4Gpc

3, including both LOWZ and CMASS samples),
provide the strongest constraints on the distance-redshift relation
achieved with the BAO method and the most accurate determina-
tion of the distance scale in the crucial redshift range where the
expansion of the Universe begins to accelerate.

The combination of large survey volume, high sampling den-
sity and high bias of the LOWZ and CMASS galaxies allows de-
tection of the acoustic oscillation signal at unprecedented signif-
icance. The acoustic signature is seen in both the power spectrum
and the correlation function, before density field reconstruction and
after reconstruction. The measures are all highly consistent and the
values and errors are in accord with our models and mock cata-
logs (Manera et al. 2013a,b). Unlike our earlier results based upon
DR9, we find density-field reconstruction significantly improves
our measurement of the acoustic scale (see Fig. 4), with the amount
of improvement consistent with expectations if the underlying cos-
mology were of the ⇤CDM family.

With the larger volume of data, we now have statistically sig-
nificant evidence for variations in the target catalog density that are
correlated with seeing and stellar density. We correct for these sys-
tematics, along with a correction for redshift failures and galaxies
for which a redshift was not obtained due to fiber collisions, using
weights. A similar procedure was used in Anderson et al. (2012),
except the weights have been revised to correct for the effects of
seeing.

We fit the acoustic signature to an appropriately scaled
template in both the correlation function and power spectrum,
marginalizing over broad-band shape. Our results are insensitive
to the model of broad-band power and highly consistent between
configuration- and Fourier-space. As an extension of the work re-

ported in Anderson et al. (2012), we now explicitly consider the
effects of binning in the correlation function and power spec-
trum and combine the two methods using several different bin-
ning choices. We measure a spherically averaged distance, DV ⌘

[cz(1 + z)2DA/H]

1/3, in units of the sound-horizon, rd, at two
“effective” redshifts: z = 0.32 and z = 0.57. Our consensus
results for the distance, including a budget for systematic errors,
are DV (0.32) = (1264 ± 25 Mpc) (rd/rd,fid) and DV (0.57) =

(2056 ± 20 Mpc) (rd/rd,fid). The measurement at z = 0.57 is
the first ever 1 per cent measurement of a distance using the BAO
method.

As in Anderson et al. (2013), we have used the anisotropy in
the measured configuration-space clustering, induced by redshift-
space distortions, to separately constrain the distance along and
across the line-of-sight. We compress the dependence on the an-
gle to the line-of-sight into two statistics, either the multipole mo-
ments or “wedges”. We obtain consistent fits from both meth-
ods. A detailed study of possible systematics in inferences from
anisotropic clustering is presented in Vargas-Magana et al. (2013).
Our consensus results for the CMASS sample at z = 0.57
are DA(0.57) = (1421± 20 Mpc) (rd/rd,fid) and H(0.57) =

(96.8± 3.4 km/s/Mpc) (rd,fid/rd) with a correlation coefficient
between the two of 0.539.

Samushia et al. (2013), Beutler et al. (2013) and Sánchez et
al. (2013b) have used the correlation function and power spectrum
over a wide range of scales, along with a model for the broad-
band power, to constrain cosmological parameters including the
distance-redshift relation and H(z). We find excellent agreement
between their results and the pure-BAO measurement described
here, despite differences in the procedure. This is not unexpected,
in that the bulk of the information is contained in the acoustic signal
rather than the broad-band power.

The BOSS results provide the tightest constraints in an re-
verse distance ladder that tightly constrains the expansion rate
from z ⇠ 0 to 0.6. The measurements reported here are in ex-
cellent agreement with earlier BAO results by BOSS Anderson et
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Figure 28. Constraints in the ⌦K–w plane for Planck+CMASS+LOWZ,
Planck+BAO, Planck+BAO+SN, and Planck+SN. The combination of
CMB and SNe (green contours) has a substantial statistical degeneracy in
this parameter space; however, combining CMB and BAO strongly con-
strains the curvature (grey contours for the LOWZ+CMASS results pre-
sented in this paper, and red contours when adding low and high redshift
BAO measurements). This makes the combination of CMB, BAO, and SNe
(blue contours) a powerful one in this parameter space, yielding a fit cen-
tered around the ⇤CDM values of ⌦K = 0 and w = �1.

The Riess et al. (2011) value would be decreased by a small re-
calibration of the water maser distance to NGC 4258 (Humphreys
et al. 2013). Efstathiou (2013) warns about possible biases in the
period-luminosity relation fits due to low-metallicity Cepheids and
finds a lower value of H

0

= 70.6± 3.3 km s�1 Mpc�1 using only
NGC 4258 as the primary distance standard, including the maser
recalibration, or H

0

= 72.5± 2.5 km s�1 Mpc�1 using three sets
of primary standards. While we believe that the comparison of these
direct measurements to our BAO results is important, the results are
also affected by the ongoing photometric recalibration of the SDSS
and SNLS SNe data (Betoule et al. 2013). We have therefore not
pursued a more quantitative assessment at this time.

We next discuss how BAO can help constrain additional de-
grees of freedom. In Table 15 we present our results in more general
cosmological models: ⇤CDM, oCDM (adding curvature), wCDM
(adding a equation of state parameter for dark energy), owCDM
(adding both), w

0

waCDM (allowing for time-dependence in the
e.o.s. of dark energy), and ow

0

waCDM (our most general model,
for DETF comparisons). In each case, we begin with the results of
combining our CMASS and LOWZ data with Planck, showing both
isotropic and anisotropic CMASS cases. We then extend the data
combination with anisotropic CMASS to include additional BAO
information from the 6dFGS and Ly↵ forest, as well as SNe results
from the Union 2 compilation. Finally, for the full combination of
BAO and SNe, we vary the CMB measurements between Planck,
WMAP, and eWMAP to explore any dependency on the tensions
between those data sets.

We find that these datasets can constrain the equation of state
of dark energy to 6 per cent and curvature to 0.2 per cent, al-
though the time evolution of dark energy is still unconstrained.
In the DETF cosmology, we find a Figure of Merit value (inverse
square root of the minor of the covariance matrix containing the co-
variances of w

0

and wa) of 13.5. We find that the anisotropic BAO

measurement from CMASS-DR11 is much more powerful when
constraining the equation of state of dark energy (even when con-
sidering time-evolving dark energy) than its isotropic counterpart.

Fig. 27 shows the constraints in the H
0

–w plane for differ-
ent BAO datasets combined with Planck results. The degeneracy
between both parameters is quite evident, showing that a more neg-
ative value for w can result in a higher estimation for the Hubble
constant. This effect can also be seen in Fig. 24; for the wCDM
model, variations in the distance to intermediate redshift produce
larger variations in the local distance scale. The extent of the error
contours as we vary the choice BAO data set is somewhat compli-
cated, as was illustrated in Fig. 25. The efficacy of a given BAO
distance precision to constrain w degrades as the fit shifts to more
negative values of w; this is because models with w ⌧ �1 have
their dark energy disappear by intermediate redshift, leaving the
BAO and CMB constraints degenerate. The improvement when we
change from the isotropic CMASS results to the anisotropic ones
is partially due to a shift in w toward 0 and partially because of the
rotation of the contours to favor a DA constraint. Overall, this fig-
ure also shows the consistency between the various BOSS results
and the tight constraints on w that the BAO now provides.

We turn next to the owCDM case, attempting to measure a
constant dark energy equation of state in the presence of non-zero
spatial curvature. These constraints are shown in Fig. 28 for sev-
eral combinations of datasets. The allowed region in this parameter
space by the combination CMB+SN is large, due to a substantial
degeneracy between w and curvature. This degeneracy is lifted by
the BAO, which in combination with the CMB sharply constrains
the curvature. Even without the SNe data, the BAO distance con-
straints are now strong enough to measure w while simultaneously
measuring ⌦K . With Planck, CMASS, and LOWZ measurements
alone, we find w = �1.08± 0.15. Further combine with the BAO
measurement from 6dF and the Lyman-alpha forest BAO measure-
ment from BOSS, we find w = �0.98 ± 0.11. In both cases, the
fitted cosmologies are consistent with a flat Universe. Hence, the
BAO distance scale now provides enough precision, without addi-
tional data beyond the CMB, to measure w to 11 per cent even
while marginalizing over spatial curvature. It is remarkable that
the BAO data prefers a flat Universe with w = �1 despite si-
multaneously opening two additional degrees of freedom relative
to the flat cosmological constant model. We note the BAO and SNe
constraints remain highly complementary in their degeneracy di-
rections; adding the SN data shrinks the allowed region further, to
w = �1.04±0.07 while remaining consistent with a flat Universe.

Finally, in Fig. 29 we show our constraints on a time-
dependent dark energy equation of state. The contours show the
allowed parameter space using the combination of CMB and BAO
data, with and without SNe data, in a flat w

0

waCDM model (left
panel) and an ow

0

waCDM model with curvature (right panel). This
parameter space is poorly constrained, with a clear degeneracy be-
tween the w

0

and wa parameters, such that less negative values of
w

0

are related to more negative values of wa. The addition of SN
data suppress the likelihood of less negative w

0

values, greatly re-
ducing the allowed parameter space. We note that allowing non-
zero spatial curvature degrades the dark energy constraints, but
not catastrophically. The area covered by the 2–� contour in the
ow

0

waCDM case is the DETF Figure of Merit.
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Table 3. This table summarises cosmological parameter constraints obtained in section 9 using CMASS-DR11. The first four rows
contain constraints on the growth index γ and Ωm when combining CMASS with Planck+WP and WMAP9 (see Figure 16). The fifth
and sixth row contains constraints on σ8 and Ωm using only the growth rate and the AP effect (fσ8 and FAP) of the CMASS dataset.
The last four rows contain constraints on σ8 and Ωm using all CMASS-DR11 constraints (DV /rs, FAP and fσ8) and assuming the
sound horizon of Planck+WP or WMAP9 (see Figure 17) in co-moving units. In this case the constraint on Ωm is dependent on the
CMB experiment used to calibrate the standard ruler, while the constraint on σ8 is fairly independent of this choice.

parameter constraint based on assumptions

section 9.1
γ 0.772+0.124

−0.097 CMASS-(DV /rs, FAP, fσ8) + Planck+WP ΛCDM, Ωγ
m(z)

Ωm 0.308 ± 0.011 CMASS-(DV /rs, FAP, fσ8) + Planck+WP ΛCDM, Ωγ
m(z)

γ 0.76± 0.11 CMASS-(DV /rs, FAP, fσ8) + WMAP9 ΛCDM, Ωγ
m(z)

Ωm 0.298 ± 0.013 CMASS-(DV /rs, FAP, fσ8) + WMAP9 ΛCDM, Ωγ
m(z)

section 9.2
σ8 0.731 ± 0.052 CMASS-(FAP, fσ8) ΛCDM, Ω0.55

m (z)
Ωm 0.33+0.15

−0.12 CMASS-(FAP, fσ8) ΛCDM, Ω0.55
m (z)

σ8 0.719 ± 0.047 CMASS-(DV /rs, FAP, fσ8) ΛCDM, Ω0.55
m (z), rPlanck

s (zd) = 98.79Mpc/h
Ωm 0.341 ± 0.028 CMASS-(DV /rs, FAP, fσ8) ΛCDM, Ω0.55

m (z), rPlanck
s (zd) = 98.79Mpc/h

σ8 0.713 ± 0.047 CMASS-(DV /rs, FAP, fσ8) ΛCDM, Ω0.55
m (z), rWMAP9

s (zd) = 102.06Mpc/h
Ωm 0.274 ± 0.023 CMASS-(DV /rs, FAP, fσ8) ΛCDM, Ω0.55

m (z), rWMAP9
s (zd) = 102.06Mpc/h
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Figure 16. The 2D likelihood distribution for γ and Ωm from Planck+CMASS (left) and WMAP9+CMASS (right). We show the 68%
and 95% confidence regions. The different contours are for the CMB constraints alone (blue lines), CMB + fσ8 from CMASS-DR11
(brown contours) and CMB + (DV /rs, FAP, fσ8) from eq. 70 and 72 (cyan contours). Since we do not exploit the ISW effect for this
test, the CMB datasets cannot set constraints on γ. The CMB data are needed for tight constraints on Ωm and for the normalisation of
the power spectrum, σ8(z).

level. We can now ask, whether this situation changes if we
use WMAP9 instead of Planck. WMAP9 measured a smaller
value of Ωm and therefore predicts a smaller value of fσ8. If
we use only the measured fσ8, ignoring the geometric infor-
mation (brown contours in Figure 16, right) we find better
agreement with γ = 0.55 compared to the same situation for
Planck. When we include the geometric information (cyan
contours) the errors become smaller and the preferred value
of gamma changes from γ = 0.65+0.22

−0.14 (WMAP9+fσ8) to
γ = 0.76 ± 0.11 (WMAP9+DV /rs, FAP, fσ8), very similar
to the value we find in Planck+CMASS. The shift of γ to-
wards larger values when including geometric information is

caused by the slight tension between WMAP9 and our geo-
metric parameters. In both cases we see that the constraints
improve considerably, when including the geometric infor-
mation. Since the geometric parameters are not sensitive to
γ, this improvement comes through the improvement on Ωm

and σ8. We regard our measurement of γ using the Planck
chain as the final result of this consistency check and include
it in Figure 1 at the scale of ∼ 30Mpc (see section 6.4).

From the theoretical side it is difficult to find mod-
els of modified gravity which suppress the growth of
structure. Most models actually predict a stronger struc-
ture growth (see e.g. Mortonson, Hu & Huterer 2009;
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Figure 14. Two dimensional likelihood distribution of DV (zeff )/rs(zd) and FAP(zeff ) (top left), b1σ8(zeff ) and f(zeff )σ8(zeff ) (top right),
FAP(zeff ) and f(zeff )σ8(zeff ) (bottom left), DV (zeff )/rs(zd) and f(zeff )σ8(zeff ) (bottom right). We show the 68% and 95% confidence
regions. The plot on the top right also includes the result of Samushia et al. (2013). All contours are directly derived from the MCMC
chains and do not include the systematic uncertainties. The crosses mark the maximum likelihood values with colours corresponding
to the contours. In all plots we also compare to Planck+WP within ΛCDM (green contours) and WMAP9 within ΛCDM (magenta
contours).

a multivariate Gaussian likelihood with

V data
kmax=0.20 =

⎛

⎝

DV (zeff)/rs(zd)
F (zeff)

f(zeff)σ8(zeff)

⎞

⎠ =

⎛

⎝

13.88
0.683
0.422

⎞

⎠ (70)

and the symmetric covariance matrix is given by

103Ckmax=0.20 =

⎛

⎝

36.400 −2.0636 −1.8398
1.0773 1.1755

1.8478 + 0.196

⎞

⎠

(71)
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Figure 8. Comparisons of our results with those of previous
works and model predictions. The linear growth rate (top), an-
gular diameter distance (middle), and Hubble parameter (bot-
tom) as a function of redshift are shown. We plot our results
with kmax = 0.175[h/Mpc] in filled (red; colors are available for
the online version) circles as well as our aggressive results with
kmax = 0.205[h/Mpc] in open (magenta) circles to caveat the
systematic due to non-linear RSDs. For comparison, we also dis-
play an open (purple) inverted triangle from (Samushia et al.
2012), open (blue) boxes from (Blake et al. 2011b), open (green)
diamonds from (Reid et al. 2012a), and open (orange) triangles
from (Xu et al. 2013). The solid curve is the prediction of the
flat ΛCDM assumption with the Planck cosmological parame-
ters (Ωm = 0.32, h = 0.67) (Planck Collaboration 2013) and
the dotted curve is those of the WMAP cosmological parame-
ters (Ωm = 0.279, h = 0.701) (Komatsu et al. 2009). On the
other hand, the dashed curve is the prediction of the DGP model
(Dvali et al. 2000).

6.1% for H), even though we utilize the broadband shape in-
formation in the anisotropic power spectrum. These results
suggest that the impact of the AP effect on the isotropic
part (P0) is mostly constrained through the shift of the lo-
cation of the BAO signature, while the change of the over-
all amplitude and shape is somewhat absorbed in the bias
function. On the other hand, the signature of BAOs on the
anisotropic part (P2 and P4) is not clear given the current
level of the statistical error. Instead, the broadband shape of
these moments that can significantly be altered by the AP
effect might give most of the information (Padmanabhan &
White 2008), leading to the difference from the result in Xu
et al. (2013).

Let us emphasize again that our study is the first
attempt to constrain simultaneously on the gravitational
growth and the cosmic distance scale especially with the
multipole power spectra up to the hexadecapole (ℓ = 4).
Reid et al. (2012a) made a similar effort for the BOSS
DR9 CMASS sample but they restrict the analysis to the
monopole and quadrupole moments of the two-point corre-
lation function. The two-point correlation function in princi-
ple carries the same cosmological information with the power
spectrum but may suffer from somewhat different system-
atics issues (Reid & White 2011), and hence a consistency
check between the two analyses would be important to val-
idate the results.

5.3 What happens if aggressively fitted with

higher kmax?

Even though we have already presented the main results of
this study, it might still be interesting to see what happens
if we aggressively adopted a higher kmax. One may wish
to obtain tighter constraints with adopting a higher kmax.
As we address in this paper, however, a smaller error does
not necessarily assure a better constraint unless systematics
both in the modeling and the measurements are well under
control. In this subsection, we revisit a similar study to what
we have done with the mock catalogues, and show how the
results change as kmax is varied.

Fig.9 plots the one-dimensional constraints on f ,DA,
H , and the goodness of fitting, as a function of kmax. In-
terestingly, there is a notable tension (∼ 20%) between the
derived values of the linear growth rate f with kmax = 0.175
and 0.205 [h/Mpc], while DA and H are in good agreement
(Fig.7). We have not observed such a behavior in the mock
analyses (see Fig. 4). In order to understand the cause of the
discrepancy, we compare the best-fiting curves for each kmax

in Fig. 10. We argue that the discrepancy is driven by the
fact that the measured quadrupole spectrum has data points
somewhat larger than the line with kmax = 0.175 [h/Mpc].
This kind of feature in the quadrupole spectrum is not con-
firmed in the mocks, and it is hard to tell what really causes
the behavior. One reason could be the sample variance which
is suppressed by a large number of realizations of the mock
catalogues. The limitation of our model is likely to be an-
other reason. We have some signs from an analysis of the
velocity statistics in the simulations that our treatment of
the FoG suppression with a constant σv does not fully cap-
ture the pairwise velocity statistics in the simulations (see
e.g. Lam et al. (2011) for a recent study on the pairwise ve-
locity). Also, the effect of the 1-halo term could start to be
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Dodelson & Park 2013). One example of a model which
does predict smaller structure growth is the DGP
model (Dvali, Gabadadze & Porrati 2000), which however
has theoretical issues (Gorbunov, Koyama & Sibiryakov
2006) and also seems to predict the wrong expansion his-
tory (e.g. Davis et al. 2007; Fang et al. 2008).

There are many ways in which one could reduce the
predicted structure growth of Planck, e.g. massive neutri-
nos, w < −1 or Ωk > 0. We should also mention that there
are several other datasets in tension with the Planck in-
ferred structure growth. Figure 17 shows our result in the
σ8-Ωm plane compared to Planck+WP (Ade et al. 2013a),
Planck SZ clusters (Ade et al. 2013b) and CHFTLS lens-
ing (Kilbinger et al. 2013). Using the CMASS fσ8 measure-
ment alone, there is a degeneracy between σ8 and Ωm similar
to the lensing and cluster constraints. This degeneracy can
be broken when including the geometric information (FAP

and DV /rs). We can see that Planck+WP predicts a large
σ8 in tension with the other datasets included in this com-
parison (see also Mandelbaum et al. 2013). The large nor-
malisation σ8 of Planck+WP directly leads to the large γ we
found in our consistency check above. Therefore Figure 17
shows that we can relax the tension between our measure-
ment and GR by using the normalisation from one of the
other datasets shown in this Figure.

9.2 Constraining σ8 with CMASS-DR11

Assuming ΛCDM and GR in the form Ω0.55
m (z) we can use

our constraint on the growth of structure (fσ8) and the
AP effect (FAP) to set the constraint σ8 = 0.731 ± 0.052
(cyan contours in Figure 17). Our dataset is therefore one
of the few low redshift datasets, which is powerful enough
to constrain σ8 independently. We can also get a fairly weak
constraint on the matter density of Ωm = 0.33+0.15

−0.12 .
Additionally we can include the BAO information

(DV /rs), where we however have to fix the sound hori-
zon size rs. In Figure 17 we show the constraint using
the sound horizon of Planck+WP (blue contours) and
WMAP9 (green contours). We use the sound horizon in co-
moving units rPlanck

s (zd) = 98.79Mpc/h and rWMAP9
s (zd) =

102.06Mpc/h, which includes information about the Hubble
constant. Our constraint on DV /rs together with the sound
horizon from the CMB allows tight constraints on Ωm, while
the constraint on σ8 does not improve significantly (see Ta-
ble 3 for details).

10 CONCLUSION

This paper analyses the BOSS CMASS-DR11 dataset
employing a power spectrum estimator suggested
by Yamamoto et al. (2006), which allows us to mea-
sure the power spectrum monopole and quadrupole in a
wide-angle survey like BOSS. We use Quick-Particle-Mesh
(QPM) simulations to produce 999 mock catalogues to
derive a covariance matrix. The covariance matrix shows
little correlation between the different bins in the power
spectrum, which is very different to similar studies using
the correlation function.

Our model of the multipole power spectrum accounts
for nonlinear evolution on the basis of perturbation theory.
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Figure 17. Comparison between Planck+WP (Ade et al.
2013a), Planck SZ clusters (Ade et al. 2013b), CFHTLS lens-
ing (Kilbinger et al. 2013) and our results in the σ8-Ωm plane.
When using only the fσ8 constraint from our analysis (orange
contours), there is a degeneracy, similar to the cluster and lens-
ing datasets. The geometric information can break this degener-
acy. While the AP effect is only depending on Ωm, our DV /rs
constraint does require calibration of the sound horizon. We
show the results, where we fix the sound horizon to the value of
Planck+WP (blue contours) and the value reported by WMAP9
(green contours). The results are summarised in Table 3. To
turn our fσ8 constraint into a constraint on σ8 we assume GR
(γ = 0.55) and ΛCDM similar to the Planck contours (brown
contours). The tension in σ8 between our measurement and
Planck+WP is directly related to the large γ we find in our ΛCDM
consistency check in section 9.1.

We adopt the modelling of non-linear redshift-space distor-
tion by Taruya, Nishimichi & Saito (2010) and extend this
approach to include the local and non-local galaxy bias with
its stochasticity.

The parameter fits using the fitting range k = 0.01 -
0.20h/Mpc are considered the main results of this paper.
We provide a multivariate Gaussian likelihood to use our
results for cosmological constraints.

Our analysis has been performed blind, meaning that
all systematics checks and the set-up of the fitting procedure
has been done on mock catalogues and only at the last stage
did we analyse the actual CMASS-DR11 power spectrum
measurement. The results of our analysis can be summarised
in the following five points:

(i) We provide a set of equations (eq. 32, 33, 36, 37),
which allows us to incorporate the window function and the
integral constraint into our analysis in a self-consistent man-
ner, without using any simplifying assumptions and without
the need to split the survey into sub-regions.

(ii) Our study of systematic uncertainties lead to a max-
imum wavenumber of kmax = 0.20h/Mpc for our analysis,
where the total error of f(zeff)σ8(zeff) is minimised. Our fi-
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parameter min. value max. value

b�8 1.0 1.6
f�8 0.0 1.0
↵|| 0.8 1.2
↵? 0.8 1.2
�FOG 0.0 50.0
⌦mh2 0.08 0.14
⌦bh2 0.018 0.026

ns 0.8 1.2

Table 1. The priors on the model parameters.

parameter central value 1� error

b�8 1.29 0.03
f�8 0.441 0.043
↵|| 1.006 0.033
↵? 1.015 0.017

Table 2. Constraints on the model parameters.

where rd(⌦mh2,⌦bh2) is the sound horizon scale at the drag epoch.
This marginalized likelikood can be approximated as a Gaussian
with mean

DV/rd = 13.85,
F = 0.6725, (30)

f�8 = 0.4412 .

and covariance matrix

0
BBBBBBBB@

DV/rd F f�8

DV/rd 2.88 ⇥ 10�2 �9.67 ⇥ 10�4 �4.46 ⇥ 10�4

F �9.67 ⇥ 10�4 7.98 ⇥ 10�4 9.70 ⇥ 10�4

f�8 �4.46 ⇥ 10�4 9.70 ⇥ 10�4 1.89 ⇥ 10�3

1
CCCCCCCCA. (31)

Equations (30) and (31) use values of rd = rs(zd) derived by nu-
merically integrating the recombination equations and integrating
the sound speed up to the drag epoch. These values are related to
the results derived from commonly used fitting formula of Eisen-
stein & Hu (1998) adjusted by a factor of rEH

d /rd = 1.026. This
ratio is independent of cosmology for a wide range of conventional
cosmological models (see, e.g., Mehta et al. 2012).

Figure 8 shows the constraints on main cosmological parame-
ters compared to the expectations from the Planck data within stan-
dard ⇤CDM-GR models along with DR9 results from Reid et al.
(2012). The DR11 results are in a good agreement with the Planck
predictions; the �2 difference between them is 1.6 for 3 degrees of
freedom.

Equations (30) and (31) represent the main results of our work
and will be used later to constrain models of DE and MG (see sec-
tion 7).

6.1 Comparison to other similar measurements

The companion papers, Anderson et al. (2013), Beutler et al.
(2013), Sanchez et al. (2013b) and Chuang et al. (2013) use the
same CMASS DR11 data to constrain the distance-redshift relation
at z = 0.57.

Figure 9 shows our measurement of distance along with the

Figure 9. Various estimates of DV/rd from CMASS DR9 and DR11
datasets. The blue band corresponds to 1� uncertainty in Planck predic-
tion assuming ⇤CDM. All measurements are mutually consistent.

result from BAO only fits and previous similar measurements and
Planck predictions for spatially-flat ⇤CDM model.

In figure 9, the label 1D refers to the result derived by fitting
the monopole of the correlation function only, while the label 2D
refers to the result derived from the fit to the monopole and the
quadrupole of the correlation function (see Anderson et al. 2013,
for details). Anderson et al. (2013) differ from our analysis in two
important aspects. They apply “reconstruction” to the measured
galaxy distribution to partially remove the nonlinear smearing of
the BAO feature, and marginalize over the broadband shape of the
correlation function, so that the estimate of the distance comes from
the BAO peak feature alone. Beutler et al. (2013) is more similar to
our analyses as they utilize unreconstructed galaxy distribution and
obtain the information from the full shape of the power-spectrum.
Unlike our work they perform the analysis in the Fourier space and
use an alternative theoretical model. Despite differences in the ap-
plied methodology, the estimates are consistent within 1� error-
bars. Chuang et al. (2013) analysis is in configuration space, but
they use a different theoretical model and range of scales.

The growth rate, f�8, has also been measured in the same red-
shift bin by Beutler et al. (2013) (DR11), Reid et al. (2012) (DR9),
Chuang et al. (2013) (DR11) and Sanchez et al. (2013b). The com-
parison of results is presented on figure 10. Beutler et al. (2013)
perform their analysis in Fourier space. The Chuang et al. (2013)
analysis is in configuration space but uses a different range of scales
and theoretical model than our work. They get a lower estimate of
the growth rate, which is still compatible with our result at 1.5�. In
the Sanchez et al. (2013b) analysis f�8 is a derived parameter com-
puted by combining CMASS data with Planck assuming ⇤CDM
model; their estimate is perfectly consistent with ours. The Reid
et al. (2012) analysis is similar in the range of scales and theoreti-
cal modelling to the current paper, but performed on DR9 dataset.
All measurements are consistent with each other and are somewhat
lower than the Planck ⇤CDM-GR expectations.

6.1.1 Comparison with our DR9 measurements

The fitting methodology adopted in this paper is identical to that
used in our DR9 analysis (Reid et al. 2012), but some of the pri-
ors have been updated. We adopt a prior on the linear matter power
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Figure 8. Posterior likelihood of parameters DV/rd, F and f�8 from BOSS DR11 (red contours) and BOSS DR9 (green contours) data, along with expectations
from Planck data within standard ⇤CDM-GR models (blue contours). All estimates are mutually consistent.

Figure 10. Various estimates of f�8 from CMASS DR9 and DR11. The
blue band corresponds to 1� uncertainty in Planck prediction assum-
ing ⇤CDM-GR. Clustering measurements are mutually consistent and are
lower than the CMB prediction.

spectrum shape from Planck rather than WMAP7; Planck has sub-
stantially smaller errors, and so we expect the marginalization over
the P(k) to contribute negligibly to our error budget in DR11. We
also adopted a slightly more conservative top-hat prior on �2

FOG, by
increasing the allowed range from 0 � 40 Mpc2 to 0 � 50 Mpc2, as
the large-scale clustering data alone can not well constrain this dis-
persion term; we have checked that this change of prior range does
not affect our best-fit parameter values significantly.

The effective area of DR11 is a factor of 2.5 larger than DR9;
in the limit of negligible boundary effects, we would expect the co-
variance matrix on DV/rd, F, f�8 to be reduced by the same factor.
A direct comparison indicates agreement at the ⇠ 15% level on the
diagonals, with DR11 errors slightly larger than expected and with
different off-diagonal structure. When projected onto f�8 (at fixed
DV/rd and F), which is the relevant case for the modified gravity
constraints we present, our error in DR9 was 0.033 and is 0.028
in DR11, while we would have expected 0.021 from the effective
volumes. This situation arises because, as we showed in Table 2 of
Reid et al. (2012), the prior on�2

FOG reduces the uncertainty on f�8

in the fixed geometry case substantially. The statistical errors have
shrunk significantly in DR11 but we did not assume better prior
knowledge on �2

FOG.
A measurement of �2

FOG from small-scale clustering is in

Figure 11. Constraints on b�8 and f�8 from monopole and quadrupole
separately. Solid lines show expected directions of the principal components
based on predictions of linear theory.

progress (Reid et al. 2013); if this parameter were perfectly known,
the f�8 error would be reduced to 0.017 when the geometric and
power spectrum parameters are held fixed.

In DR11 we obtain higher values for DV/rs and f�8, which
brings us slightly closer to the values predicted by Planck. The �2

offset between DR11 and DR9 results is just 0.3 per three degrees
of freedom.

6.2 Constraints from Monopole and Quadrupole Separately

To determine the separate contribution of monopole and
quadrupole we perform the same fit to each individually. The
monopole and quadrupole measurements on their own are unable
to break the degeneracy between b�8 and f�8 and can only con-
strain combinations of the two. Figure 11 shows the constrains in
b�8 - f�8 derived from the two multipoles. The solid lines show the
expected degeneracy directions based on linear theory predictions.

The quadrupole best constrains A2 = (4/3b f + 4/7 f 2)�2
8,

as expected from linear theory. The amplitude constraints from
monopole are collinear to the combination A0 = (b2 + 2/3b f +
1/5 f 2)�2

8, also as expected from linear theory.
The AP parameters ↵|| and ↵? show a qualitatively similar pic-

ture. Individual multipoles can only constrain certain combinations
of parameters. Figure 12 presents constraints in the ↵|| - ↵? plane
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• Perturbation theory (PT) template at quasilinear scales

• Scale-independent structure growth
Unlike GR, (linear) growth rate is generally scale-dependent 
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Beyond consistency test of GR

To address the nature of gravity at quasi-linear scales,

• develop new template in modified gravity (MG) model

• characterize scale-dependent structure growth

Based on perturbation theory (PT), 
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Redshift-space power spectrum
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(at 1-loop order)
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the deviation from linear theory is around 10% in both
GR and F4. The result suggests that even in the pres-
ence of a substantial difference in the linear growth, the
nonlinear gravitational growth itself does not change so
much between GR and modified gravity models. This
would be probably true as long as the mechanism to re-
cover GR is still inefficient at quasi-linear scales.

Keeping in mind the applicability of PT calculation,
we now focus on the redshift-space power spectrum, and
compare the PT calculations with N -body simulations.
In Fig. 3, top panels show the monopole (ℓ = 0) and
quadrupole (ℓ = 2) moments of power spectrum multi-
plied by k3/2, while bottom panels present the ratio of
monopole and quadrupole spectra to the linear theory
prediction taking only account of the Kaiser effect. The
multipole power spectrum P (S)

ℓ is defined by

P (S)
ℓ (k) =

2ℓ+ 1
2

∫ 1

−1
dµP (S)(k, µ)Pℓ(µ), (20)

with Pℓ being the Legendre polynomials. The PT results
based on the RSD model (2) are depicted as solid lines,
while the results without correction terms are also shown
in dashed lines. In both cases, we adopt the Gaussian
damping function in computing PT predictions:

DFoG(kµσv) = exp
[
−(kµσv)2

]
. (21)

Here, the velocity dispersion σv is a free parameter and
is determined by fitting the model predictions to the N -
body results of monopole and quadrupole spectra up to
kmax = 0.15h Mpc−1 (indicated by vertical arrows), cor-
responding to the valid range of PT. Note that we also ex-
amined the Lorentzian form, but the choice of the damp-
ing function did not change the results as long as we
consider the applicable range of standard PT one-loop.

Fig. 3 shows that the model (2) successfully describes
the N -body results of RSD in both GR and f(R) model.
Although the applicable range of standard PT one-loop
is limited, the A and B terms still play an important role.
In the presence of these terms, the acoustic signature of
redshift-space power spectrum tends to be smeared com-
pared to the real-space power spectrum, and this indeed
improves the agreement with N -body simulations. In the
panels of Fig. 3, we show the reduced chi-squared statistic
defined by13

χ2
red =

1
ν

∑

ℓ=0,2

∑

i

[
P (S)

ℓ,N-body(ki) − P (S)
ℓ,PT(ki)

]2

[∆P (S)
ℓ (ki)]2

, (22)

13 Strictly speaking, the non-vanishing monopole and quadrupole
moments of redshift-space power spectra yield a non-zero covari-
ance between them. This is true even in the Gaussian statistics.
However, the magnitude of covariance is shown to be fairly small
at large scales [22, 60], and the impact of covariance is ignorable
in our analysis.

with the quantity ν being the number of degrees of free-
dom. Here, the statistical error ∆P (S)

ℓ is estimated from
the cosmic variance error assuming the survey volume
10 h−3 Gpc3. The number of Fourier bins in the above
summation can be inferred from the maximum wavenum-
ber shown in Fig. 3, depicted as vertical arrows. The
resultant χ2

red taking account of the A and B terms are
clearly lower than those ignoring the corrections.

To show the quantitative difference of RSD be-
tween GR and f(R) gravity, Fig. 4 shows the ratio of
quadrupole-to-monopole ratio in F4 to that in GR, i.e.,
(P (S)

2 /P (S)
0 )f(R)/(P (S)

2 /P (S)
0 )GR. Note that the errorbars

of the N -body simulation shown in the panel are not
the cosmic variance error, but are estimated from the
N -body data of the 6 realizations for a particular line-
of-sight direction. The linear theory predicts a slight
enhancement of the ratio, while the actual N -body re-
sult rather shows a noticeable reduction at small scales.
This basically comes from a stronger suppression of the
power spectra in f(R) gravity, as shown in Fig. 3 (see
bottom panel). Fig. 5 summarizes the fitting results of
the parameter σv together with the resultant reduced chi-
squared. At z = 1, the fitted value of the velocity disper-
sion is relatively large in F4 by ∼ 20%. Neglecting the
correction terms, the relative difference of σv between
f(R) model and GR is more prominent (∼ 50%), al-
though the values themselves are even smaller than those

FIG. 3: Monopole and quadrupole moments of redshift-
space power spectra at z = 1 for GR (left) and f(R) with
|fR,0| = 10−4 (right). Top panels show the monopole and
quadrupole power spectra multiplied by k3/2, while bottom
panels present the ratio of power spectra to linear theory pre-
dictions, P (S)

ℓ (k)/P (S)
ℓ,lin(k). In each panel, vertical arrow indi-

cates the maximum wavenumber used to estimate σv.
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FIG. 7: Two-dimensional error contours derived from MCMC analysis, fixing the maximum wavenumber to kmax =
0.15 h Mpc−1. Left panel shows the results derived from the PT template calculated in f(R) gravity. The three different
contours represent the cases with the PT template with and without A and B terms (magenta, green), and with A and B
calculated in GR (blue), which are also shown in Fig. 6. On the other hand, in right panel, the results are shown for the
PT template calculated in GR. In GR, the power spectrum template can be written as functions of k, µ, and the linear
growth rate f , i.e., P (S)(k, µ; f). Here, incorporating the linear growth rate of the f(R) gravity into the GR-based template,
we derive the constraints on |fR,0| and σv, depicted as contour with orange color. The contour with magenta color is the
result taking account of the scale-dependent relative growth by introducing gravity bias, δn-body,F4(k) = b(k) δPT,GR(k) with
b(k) = (1 + A2 k2)/(1 + A1 k) and marginalizing over the nuisance parameters A1 and A2 [see Eq. (23) ].

for an unbiased estimation of |fR,0|, we need to addition-
ally incorporate the effect of gravity bias, that accounts
for the relative difference of the clustering amplitude be-
tween GR and f(R) gravity, into the PT template. The
contour with magenta color is the results taking account
of this gravity bias, simply assuming the following rela-
tion:

δn-body,F4(k) = b(k) δPT,GR(k); b(k) =
1 + A2 k2

1 + A1 k
,

(23)

where δn-body,F4 is the density field in N -body simula-
tion, whilst δGR is the density field for the PT calcula-
tion. The function b(k) characterizes the scale-dependent
growth relative to the GR prediction, and we adopt here
the functional form similar to those frequently used to
model the galaxy bias (e.g., [65, 66]). Allowing the pa-
rameters A1 and A2 to float, the result marginally repro-
duces the fiducial value of |fR,0|, and the goodness-of-fit
quantified by χ2

red is improved. With the increased num-
ber of free parameters, however, constraining power is
significantly reduced, and the size of error contour indeed
becomes large (c.f. left panel of Fig. 7). This proves that
the heterogeneous PT template is insufficient to tightly
constrain the model parameter of modified gravity, and
a full PT modeling taking proper account of the mod-
ified gravity is required for unlocking the full power of
precision RSD measurement.

B. Model-independent detection of a small
deviation from GR

Consider next the model-independent test of GR, and
discuss how well we can characterize or detect the scale
dependence of the linear growth rate, f . Here, for illus-
trative purpose, we examine the two simple cases. One is
to divide the power spectrum data into several wavenum-
ber bins, and in each bin, we try to estimate f to see a
possible deviation from spatially homogeneous f . The
other case is to assume a specific functional form of f ,
and to constrain its parameters. In both cases, similar to
the analysis shown in right panel of Fig. 7, we adopt the
GR-based PT template with the improved model of RSD,
and take account of the gravity bias in Eq. (23). We then
fit the template to the monopole and quadrupole power
spectra at z = 1 measured from N -body simulations of
f(R) gravity with |fR,0| = 10−4.

Fig. 8 shows the result of MCMC analysis for the
binned linear growth rate, where we set kmax =
0.15 h Mpc−1, and divide the power spectrum data into
three equal bins. Solid line represents the linear growth
rate of the f(R) gravity, while the vertical errorbars
of the binned results indicate the 1-σ statistical uncer-
tainty derived from the MCMC analysis, marginalized
over other nuisance parameters. Note that number of
free parameters is 6. The best-fit value of f in each bin
is close to the fiducial value, but slightly away from lin-
ear theory prediction except for the central bin. As a

Parameter estimation

With GR-based template, constraining power is	

 substantially reduced

GR-based template
constant growth rate, f,  is 
replaced with the scale-

dependent one in f(R) gravity

1-σ error:  cosmic variance 
limited survey of 10(Gpc/h)^3

fiducial
k_max=0.15h/Mpc

full PT template in f(R) gravity

|     |

Estimation of model parameter, |fR,0|, in N-body simulations with 
PT model of f(R) gravity

in which

P (GR)
� (k; f)

Free parameters : |fR,0|, �v
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fitting Result

χ2 /d.o.f = 0.56 
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Summary
Measurements of BAO and RSD from BOSS DR10/11 

give many interesting cosmological implications

• mild tension with ΛCDM

• weaker gravity than GR at z<1?

Need to consider the analysis beyond consistency check of GR

While results are generally consistent with ΛCDM and GR, 

Testbed study in f(R) gravity

✓robust & unbiased test of gravity is shown to be possible 

✓ model-independent characterization is found to be difficult
but

✓ robust constraint on f(R) gravity : |fR,0| � 1.5� 10�4 (1-�)


