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Eddington-inspired Born-Infeld Gravity

Formalism
L 4

IEIRSSIIGRVIGN | Field: S

1 4 David Hilbert
Sgn = 5 d*ry/|g| (R — 2A)
3mG = 1
SR = R,,0¢" + g™ iR, Palatini

1

Los = 59" (Yoo s + oo + Gopo)

GR
Ry = 1%, — 8,10, + 10T —T0,T .
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ve Varying S, Integrating by parts, Eliminating a vanishing trace,
we get

Arthur Eddington

V. 2k|RIR*") = 0,

where V is the covariant derivative defined in terms of Ffé y

v’ define a new rank-2 tensor quv» such that Va(,”qlq#") =

v theory then become

2wk TRIRE = \flglg”

v" which can be rewritten as the Einstein field equations

if we equate ¢,z with g, 3 and k with A~
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Therefore, Eddington’s action

:- viable and alternative starting point to GR

- SEH x A and SEdd X

:- dual to GR

1
A

However, incomplete : NOT including MATTER

Later attempts to couple matter with [’

.- start with Palatini gravitational action
coupled to matter [[g, I \]f] -- no derivatives in g

- EOM for g > |7, = G, (I, V)| > back into|l[ g, I, V]

= can eliminate g

- (', W]

: complicated,
but Dynamics is fully equivalent
to the original metric theory



Eddingtonsinspired Bor-infeldiGravityl | (MERIT 1) One parameter (x) theory
o
SkiBl = - d -”13[ \/_‘gy.u + kR ()] — A/ — 9] ] + Su(g, D)

(Vollick 2004, Banados-Ferreira 2010)

8wy and Fﬁﬁ : independent

:- Matter is in usual way (Not in sqrt)

:- For large g -limit &> Eddington limit

\/|g,u,v + ﬁR,LH/l = |g| I+ §R + ghz(Rz o QR;WR'LW) + O(h,g)

:- For small g -limit = Einstein limit



Field Equations
\ 4

1 ,
Skipl = - /ddlfff[ \/_‘g;u.u + HZRMU(F)‘ — A _‘g,u.u‘ ] + Su (.‘-?a (I))

V' Variation of S w.r.t. guw and I' = 2 EOM’s

EOM1: “ql g’ = \gM"" — kTHY : Relation b/t g and qvia T
19
EOM?2: ,=2,,+ KR, :- Auxiliary Metric
e ila - :- Dynamical Equation

I = 54" (Goap + Qopa — dap.s) : Connection is defined by q

T 2 oly g rppy
» VMT = (0| :EOM for matter

= 10

: Energy-Momentum Conservation
= Matter plays in the background metric



According to the Palatini formalism, one should consider the equations of motion by varving
the action (1.1) with respect to (w.r.t) the fields g, and [, mdividually. Variation of the action

w.r.t. g, leads to the equation of motion,

v —lg + KR
V—lgl

where [(g + xR)~* denotes the matrix inverse. The energy-momentum tensor T is given by

(g4 KR)YY™ — Mg = —kTH. (1.2)

the usual sense,

2 0Ly
T = —, (1.3)
v =gl 09
For the variation of the action w.r.t. I', one mtroduces an auxiliary metric g,, defined by
Qv = Guv + KB, (1.4)
Then the variation of the action (1.1) w.r.t. the connection I'}  gives
U po _
V. =0, (1.5)

where ¢?° = (¢~1)?? is the matrix inverse of Jpo- and V! denotes the covariant derivative defined
by the connection I'. This equation is the metric compatibility which yields

1
1—‘25 — ._}qpa(q\ftcr,,ﬁ + 4B3o,a + q;::,ﬁ,cr)- (16)

Therefore, Eq. (1.4) can be regarded as the equation of motion since the Ricci tensor is evaluated
in terms of g,, through the relation (1.6). Using Eq. (1.4), the first equation of motion (1.2) can

also be simplified,

.



Some Immediacies (Banados-Ferreira 2010)

ve V—qlqg H* = \/=gg"" — r?ﬂ{” : EOM1
=  V—qlgH" = \/—g¢"" (vacuum)

\/Putting Juv = aquu then gh” = éq*“'”.
v Substituting this we obtaln
1 L L
SVgagT = AV —g9
1 A —
- .o = —. o
A

v’ Then,

A—1
EOM2: | Quv = Guv + KBy » R, = Y = NG

(MERIT 2) EiBI in vacuum or with only CC is the same with EH




Schwartzchild-de Sitter BH

SAME with Einstein Solution

Charged BH : non-vacuum

ds> = — (2 F(de + 2 4+ 2402,

2

f(r)

rt— Kq
2
r
— y(r) = :
V2t + 2kq?
q

electric field



Nonrelativistic Limit w/ the lowest-order correction

Metric : ds> = —(1 + 2®)d2 + (1 — 2W)d7 - d¥.

with & = and 1" = putu”

| )
V2P = —%p — if(@pj : Poisson Equation

Implies repulsive nature of EiBI gravity



Nonsingular Universe driven by Perfect Fluid

Banados & Ferreira for w=1/3 (2010)

. s . IC, Kim and Moon for all w (2012)
Metric & Auxiliary Metric

_ .0
gﬂyd;ifﬂd;{fy — —df‘g — @ (]X Let 1 = €

quudatdz” = —@}r dt? + t) dx>.

Matter-Stress Tensor : same with GR

ey = (p + p)uru” + pgh”
VITH =0 e p+ 3§ Up+p)=0.



EOM1 | /"]/

—lg|
we get
(A — H-P)SH . . N11/4,9
* = (A + Kp) /A7 and Y =[(A—kp)(A+Kp)| /e
: relation b/w g and g via matter field
EOM 2 > Friedmann Equations Quv — Guv = KR,

Volume Part :
i i

. — wrp)?
e op (A= wnp)
Ok
(AN + kp)? + 20N —wrp)? 2 (N + kp)*? = 3\ — wrp) (N + Kp)
[(3/4)kw (1 + w)(X + kp)p — (3/D)k(1 +w) (A — wrp)p + (A — wrp) (N + £p)]°
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Banados & Ferreira for w=1/3 (2010)

IC, Kim and Moon for all w (2012)
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a*+V(a) =0

X =

AL and Y =|(

l

ap : Maximal Pressure/Density Limit

3/4
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Early Times

At a=dp , H=0: A—wrp=0, p=pp=Awk,

Expand neara=dp : pP=pPB— 5, a=apg+E,

Then we have

5 Skw?(1 + w)?\° B

H 5
27(1 + w)*\d

a : 8
Hg(_l) H{Q__,,

(B

-

a(t) ~ ag + Ae',

:- t = -infty : origin of Universe
:- finite size
:- Non-Singular Universe



Chaotic Inflation in GR
N

Action & Metric

4./ L v 1ol o m2
Su = | dxy\/—|guv| _§deﬁ@d o—V(o)|, Vig) = 70 ;
gudatde” = —dt* 4+ a*(t)dx?.

Field Equations & Slow-Roll Conditions
1 1/1: .
H? = (Z) =3P=3 (/+ V) : 15t slow-roll condition
/ﬂr 3SHO+ V() =0 : 2" slow-roll condition

Chaotic \Y
:- large fluctuation — \e oo

Inflation
:- slow roll

\

Inflaton decay :- reheating

877G =1




Attractor Solution for Slow-Roll Inflation

— 11,2 2
O(t) = ¢; ++/2/3mt, a(t) = a; exldi—o7 ()]

o;| = 10 is required
N ~ 70 e-foldings { il 2 .

m ~ 107° from observational data

Quantum Gravity Regime

p=K+V>Mp K = ¢2/2 and V = m2¢?/2.




The curvature scale is determined mainly by H

) . ' '
LA - g : : l l
(E) +(”)] :12H2—}—6H sz‘—ﬁ):‘_
a 9] 3 3

R=6

When H > M,, Gravity Part requires quantum treatment
:- In GR, large curvature is inevitable
:- In EiBI gravity,
- curvature scale is NOT directly related with energy scale p

- maybe Quantum Gravity is avoidable
in describing the high-energy state of the scalar field



Scalar Field in EiBI Gravity

1

Skipl = - /(flfff[ \/_‘g;u.u + HZRMU(F)‘ — A _‘g,u.u‘ ] + Su (.‘-?a (I))

v Variation of S wr.t. g, and I' =

V —‘E{‘ 7%
. gV = \g"¥ — kTH"
EOM1: \/m { 49
EOM2: Guv = 8uv T KR, -~

FZLB — %q#()_(qg'af,ﬁ + Q()'B,af o QQ{B,()')

w2 0L

V19l 9

"

2 EOM's

: Relation b/t gand qvia T

Auxiliary Metric
Dynamical Equation

: Connection is defined by q

VITH =0

: EOM for matter

: Energy-Momentum Conservation
= Matter plays in the background metric



Field Equations
.

\/ 1 a1 2 r s
SR’I — /d‘ii; _‘gl [_ﬁggua#@d @_I/(O)

gupdatde” = —dt* + a®(t) dx”,
it da” = =X3(6) de* +Y?(8) i’

X =Q—m A Y = [+ )= )] Y

Puts an upper limit on pressure p = ;{52/2 +V and p = 02/2 -V

H

Il
S ESE

1 1 2 . 1 &2
) 5 (A V T | Vet —= | 3+V -5
(HV)%&/?{ 2( T 2) e \/E( ’ Q)X

- 02 . 02 1 . @2 ] -
e N e e T EER R N CEA TS
' IaY

b+3HS+V'(9) =0,

X=M/K




H in Phase Space (¢, ¢) for m = 1/4, k = 1/4, and A\ = 1.

Contour gradient :

Quantum
Gravity Regime







\iSlowsRoll Conditiont| * < V(1)

H~\/[V(¢) +A]/3 = (m/V6)|9| : same as in GR

b+ 3Hq§+m2¢5 =0

- integrated
Fo +/2/3mlog (£ & +/2/3m) = \/3/8m(s? — ¢2),

//+ 3H) +m3p =0
/

S <
I@@/qt V' 2/3mlog (= b+ V2/3m) = /3/8m(¢* — &5).
/
Jv

\gb\ \/ 3m| : usual chaotic inflation
- attractor

o ~ O




I Backward in Time

Only 1st Slow-Roll Cond’s 1st & 2"d Slow-Roll Cond’s
Satisfied Satisfied

9jumps rapidly - Chaotic Inflation

b o &2 9] ~ v/2/3m
¥ :

Arrives Planck Scale
soon in GR

6



| Forward in Time

Only 1st Slow-Roll Cond.Satisfied

- [B)] drops rapidly

| .

1st & 2nd Slow-Roll Cond.'s Satisfied
= Chaotic Inflation

J attractor




In EiBI gravity, there exists an upper limit in 652

- Maximal Pressure Condition (MPC)

%QBQ—V@—)\:O,

pressure

usppiqJo

| .

J attractor




Maximal Pressure Solution (MPS)

Maximal Pressure Condition

S V(e) - a=0,

b = V2[V(e)+ Al = \/2 (N;OQ + )\)

VA

sinh[m(t — to)]

n|

cosh™2/3[m(t — to)]

-1 | universe

Re-contracting




At early stage (t <<)

[ X
P(t) = — 5,3 em(t—to) a(t) = ag

(

2

A

y

1

E_%m(t—tg)

o
>

H = Hyps & ﬁ-'n'z..

Finite Curvature !!!

:- even when the energy density is high
.- determined solely by the mass scale







Stability of MPS: global perturbation

Linear Perturbations

. ) D .

G=U@L+ef(t)l.  H=-ZU"(0)[1+dh(t)].
o 2 2 1y

b —2U'h =0, h= ( — 2+ / %F)L

Results

Exponentially increase

Udp = o (23) Y8 cosh™/3[m(t — to)]e'/te o\ (as t — —o0) .

2 2m im | [E
U'h = 1o (2X) /3 {\/ ey % tanh[m(t — to)]} cosh™/3[m(t — to)]e!/te 6(43 * Si)t (as t = —o0)
3k



EiBI Inflation
A

Both perturbations grow in time - MPS is unstable !!!l,

Universe starts from MPS
- departs from MPS due to instability
9\({)\ decreases
- Universe enters 15t Slow-Roll Regime
9\({)\ rapidly drops
- Universe enters 2" Slow-Roll Regime

-> Settles down to Inflationary Attractor



Numerical Evolution

MPS
(hyperbola)

s
2

arctan ¢

Forbidden

Usual Chaotic
Inflation Regime

2nd
Slow-Roll

. T
arctan @ 5



Quantum Gravity

In GR, the pre-inflationary period is in Quantum Gravity Regime
:- due to high energy density

In EiBI gravity, Quantum Gravity Regime is considerably suppressed
:- kinetic energy is bounded by MPS
:- curvature around MPS ~ mass scale

On the Attractor, curvature is H? ~ m?¢?

:- can be small if |po] < m™!
Therefore, MPS provides a natural NON-singular initial state for inflation

- Non-Quantum Precursor of Inflation

Only for Vv > M2 and V > K, curvature scale becomes large
:- can be avoided by varieties of evolution paths



Conclusions
A 4

oy 2
A scalar field with potential V(o) = —¢”
- Non-Singular }
- Non-Quantum Gravitational
- so, Natural

- pre-Inflationary Stage

in EiBI gravity provides

Followed by
- Ordinary Inflation

Scalar Perturbation Theory needs be investigated
- Some work done by Ke Yang et. al. (2013) for BF solution
- Need be investigated for EiBI Inflation

Tensor perturbation has been investigated for BF solution
by Escamilla-Rivera, Banados, Ferreira (2012)
- Need be investigated for EiBI Inflation



Discussions on Tensor Perturbation

Formulation of Tensor Perturbation in EiBI

Gupdrtdr

v — —a?dn® + a° (035 ) do'di?

quodatde” = —XZ%dn? +Y? (04 + datdad,
= }/rg [—d’T2 + (533 + "}"g'j) d;{:idiﬁj} ]
O;h = 0;v"Y = 0 and||h = ~ = 0.

From EOM 1, one gets h;; = ;.

dg'{‘ o\ ikeT
hii(n, T) = Z mETE ha(n. k) € (k) e® 7,

From EOM 2

kY 2
2X?2

hy +

kY2 3}” B X’ hﬁz
2X2 \"Y X




hy ~ 0 = hy = An+ B.

Grows in Radiation-Dominated Universe [Escamilla-Rivera, Banados, Ferreira]

h-?jj X A(SU — A/a(te) X Ot

Tensor Perturbation of MPS grows in the same way
:- may cause a trouble

: . ) L 1
Time scale for growth of tensor perturbation ot ~ — ~ —
€ m

Time scale for growth of MPS perturbation : ¢\ pg ~

1
m/3 + +\/8/3k

However, SAFE if | 0tT > Otnips » m << 1/\/2

Universe leaves MPS before T.P. grows sufficiently

During Inflationary period, tensor perturbation is oscillatory



