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1. A HAIRY BLACK HOLE

found by Andres Anabalon

JHEP 1206 (2012) 127 , arXiv:1204.2720 [hep-th]



THE MODEL

Gy = 0uo Oy p — Juv (%gpaap(b 0o + V(gb)) , Y= % b,

V() =5 {g—;; sinh[(1 + )¢ + XL sinh[(v — 1)) — 42=1 sinhw}
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a has dimensions L™2 ; v > 1; V(¢) ~ a(v? —1)4°/30 near ) = 0
v=1:G, =0 , ¥#0, “decoupling limit", see below



A BLACK HOLE SOLUTION

b=Inz , ds?=Q() [—F(x)dt2 + T2 1 462 + sin edgbﬂ
with  Q(x) = 772”(21“5;,,1)2 n characterizes the solution

$2_V 2V 2 :132 2V Y
F(x) - 772 (1/12 L a [4—11/2 + 2 (1 22— 2+V>] ?

A 4D, static, spherically symmetric solution
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v _x 2
n |1—z¥|"

Radial coordinate : r =
There are two branches : 0 <z <1 and z>1.
Spatial infinity is at £ = 1 ; The solution is asymptotically flat

There is a curvature singularity at x = 0 or £ = oc.



The gravitational mass (read off g;s = 1 — 2m/r 4 - --) and the inertial
mass (Komar integral etc) are equal and given by

2
m = :I:% upper sign for x > 1 branch
The PPN parameters v and 8 are both equal to 1
The function F' has one and only one zero (that is, one Killing horizon)
between infinity and the curvature singularity.
Therefore the solution is a black hole.

One can trade n for 4. For a >0, z; € [0,1] ; for a < 0, x4 > 1.

Large BH are Schwarzschild-like : lim,, _; i—T =1
lim,, 0 mr > = Cst for a>0 and ve|l,2],
lim,, ,o m = Cst for a>0 and v > 2,

limg, oo m = C'st for a<O0.



THE “DECOUPLING LIMIT” v =1
Consider the Klein-Gordon equation :
D*p — %7 =0 with V = 2a[sinhtp(coshtp — 4) + 3¢/]
Y =1In[l 4+ 1/(nr)], with n such that 23m +n? +a =0

solves the KG equation when metric is Schwarzschild’s.
1 is regular everywhere if a < —n?




2. STABILITY ANALYSIS

The decoupling limit case

2 d*v _ d*v| _ _2(+42nm)(1+2nr)
D26 — G5 bdw—(), where @, = r2’g1+nr)2"
o = e 1ELYL (9, gb)@ : p=r+2mln(r/2m —1)
2 _ 2
L= (Ver —Eu  with Ve = (1—22) (2% o )
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Bound states with negative E? exist; hence modes blow up in time.



The general case

b=Inz ., ds*=Q(z) [—F(:c)dt2 + 12 | 462 4 sin? edcpﬂ
with  Q(x) = 772”(21%_'/;,/1)2 n characterizes the solution

JJ2_V _ 2V 2 2V 2V
F(z) =7’ (u12 ) —a[4 2T (1_2—y_2+y)] )

The Bronnikov et al. equations for linear radial perturbations
arXiv:1109.6576 [gr-qc] , arXiv:1205.2224 [gr-qc]

ds? = —e20(@)+51(tD) g2 | 2oo(@)+5a(to) gy? 4 2000 (462 1 sin? 0 dg?)
Linearize Einstein’s equations coupled to a scalar field ¢ = ¢g + ¢

Get two constraints :

2)\, 5gb , 0y = /\,2 [(gb ~2%0 — LV — AyVy)e29080 + Ny 5q§]




and an equation of propagation for ¢. Set d¢ = e'Fle™*ou(x), so that
22715 + (E2 — Vegg)u = 0 where p is the “tortoise coordinate” p/ = e*0~70

and where

62'70

‘/eff:)\—ég

[2>‘6¢6V¢ — €5 "N + dF(V — e 220) + AF (e -V 4+ quqb)]

In the case of Andres’ solution:

Yo = In vQUF y Qg = lnn\/g ) )‘0 = In \/ﬁa ) §b0 — V22_1?7b

Vg i1s “horribile visu”

However has simple shapes: it is either negative everywhere, OUT!
or negative and edged with one, or two, barriers : hope is permitted
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Question : does 2% + (E? — Vog)u = 0 have bound state solutions ?

dp
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Simon'’s criterion (1976)

When Veg is bounded and fall off faster than |p| ™, a necessary (but not
sufficient) condition for the absence of bound states of negative E? is

SEijZO‘/effdp>O

S S

a>0:8>0Vvif z; small enough ;

a<0:8>0forv>T7if xy big enough ; hope is still permitted



Lasciate ogni speranza...

200; Zipg + (E2 — ‘/Yeﬂ')u — O
: a=1,v=17, 2z =0.001
10 Positive Simon integral : S =5

0 ... but 3 a (SINGLE) bound state
| -22< E? < -2.1...

-0.2

.

... We did not find ANY values for a;, v and x; with NO bound state...
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Now, Vg is proportional to a (which sets the scale of the potential V(¢)).

Therefore write E2 = |a|E? . E? is a number, of order unity if the
dimensionless parameters v, . and n?a ! are all taken of order unity.

The unstable mode d¢ o elft = etV —E*Vat grows on a time scale t of
the order of 1/4/a.

Now, the characteristic time scale of gravitational effects is set by the mass
m of the black hole .

Hence the growth of the (single) unstable mode is tamed if \/am < 1.

This condition is met if & > 0 and v € [1,2] in which case the mass and
size of the black hole are related by

wyJam = (4 —v2)PD2(/ar )27 « 1.

Such black holes are therefore quasi-stable, that is, “long-lived”.



Summary and conclusion

e 4D BH solutions of Einstein’s equations with minimally coupled scalar
hair, which are asymptotically flat and Schwarzschild’'s up to PN order, are
rare objects, which are worth studying.

e The no-hair theorem (Sudarsky 1995) states that the potential cannot be
positive everywhere.

e Andres Anabalon’s BH is an elegant, analytical and fairly simple solution.

e The potential is unbounded from below, so that one is tempted to
predict gross instabilities.

e we found that indeed instabilities exist but are surprisingly mild.

e Techniques learned : Bronnikov's equations for radial modes ; Simon's
integral criterion.
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