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1. A HAIRY BLACK HOLE

found by Andrès Anabalon

JHEP 1206 (2012) 127 , arXiv:1204.2720 [hep-th]
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THE MODEL

Gµν = ∂µφ∂νφ− gµν
(

1
2g
ρσ∂ρφ∂σφ+ V (φ)

)
, ψ ≡

√
2

ν2−1
φ ,

V (ψ) = α
ν2

{
ν−1
ν+2 sinh[(1 + ν)ψ] + ν+1

2−ν sinh[(ν − 1)ψ]− 4ν
2−1

4−ν2 sinhψ
}

α has dimensions L−2 ; ν > 1 ; V (ψ) ' α(ν2− 1)ψ5/30 near ψ = 0

ν = 1 : Gµν = 0 , ψ 6= 0, “decoupling limit”, see below
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A BLACK HOLE SOLUTION

ψ = lnx , ds2 = Ω(x)
[
−F (x)dt2 + η2 dx2

F (x) + dθ2 + sin2 θdφ2
]

with Ω(x) = ν2xν−1

η2(1−xν)2 η characterizes the solution

F (x) = η2 x
2−ν(1−xν)2

ν2 − α
[

1
4−ν2 + x2

ν2

(
1− x−ν

2−ν −
xν

2+ν

)]
,

A 4D, static, spherically symmetric solution

Radial coordinate : r = ν
η
x
ν−1

2

|1−xν|.

There are two branches : 0 ≤ x ≤ 1 and x ≥ 1.

Spatial infinity is at x = 1 ; The solution is asymptotically flat

There is a curvature singularity at x = 0 or x =∞.
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The gravitational mass (read off gtt = 1 − 2m/r + · · ·) and the inertial
mass (Komar integral etc) are equal and given by

m = ±α+3η2

6η3 upper sign for x > 1 branch

The PPN parameters γ and β are both equal to 1

The function F has one and only one zero (that is, one Killing horizon)
between infinity and the curvature singularity.

Therefore the solution is a black hole.

One can trade η for x+. For α > 0, x+ ∈ [0, 1] ; for α < 0, x+ > 1.

Large BH are Schwarzschild-like : limx+→1
2m
r+

= 1

limx+→0 mr
ν−2
+ = Cst for α > 0 and ν ∈ [1, 2] ,

limx+→0 m = Cst for α > 0 and ν > 2 ,
limx+→∞ m = Cst for α < 0 .
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THE “DECOUPLING LIMIT” ν = 1

Consider the Klein-Gordon equation :

D2ψ − dV
dψ = 0 with V = 2α[sinhψ(coshψ − 4) + 3ψ]

ψ = ln[1 + 1/(ηr)], with η such that 2η3m+ η2 + α = 0

solves the KG equation when metric is Schwarzschild’s.
ψ is regular everywhere if α < −η2
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2. STABILITY ANALYSIS

The decoupling limit case

D2δψ − d2V
dψ2

∣∣∣
b
δψ = 0 , where d2V

dψ2

∣∣∣
b

= −2(1+2ηm)(1+2ηr)
r2(1+ηr)2

δψ = e−iEt Y lm(θ, φ)u(r)
r , ρ = r + 2m ln(r/2m− 1)

d2u
dρ2 = (Veff − E2)u with Veff =

(
1− 2m

r

) (
d2V
dψ2

∣∣∣
b

+ l(l+1)
r2 + 2m

r3

)
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l = 0 case.

Bound states with negative E2 exist; hence modes blow up in time.
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The general case

ψ = lnx , ds2 = Ω(x)
[
−F (x)dt2 + η2 dx2

F (x) + dθ2 + sin2 θdφ2
]

with Ω(x) = ν2xν−1

η2(1−xν)2 η characterizes the solution

F (x) = η2 x
2−ν(1−xν)2

ν2 − α
[

1
4−ν2 + x2

ν2

(
1− x−ν

2−ν −
xν

2+ν

)]
,

The Bronnikov et al. equations for linear radial perturbations
arXiv:1109.6576 [gr-qc] , arXiv:1205.2224 [gr-qc]

ds2 = −e2[γ0(x)+δγ(t,x)]dt2 + e2[α0(x)+δα(t,x)]dx2 + e2λ0(x)(dθ2 + sin2 θ dφ2)

Linearize Einstein’s equations coupled to a scalar field φ = φ0 + δφ

Get two constraints :

δα =
φ′0
2λ′0

δφ , δγ′ = 1
2λ′20

[
(φ′0e

−2λ0 − φ′0V − λ′0Vφ)e2α0δφ+ λ′0φ
′
0 δφ

′]
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and an equation of propagation for δφ. Set δφ ≡ eiEte−λ0u(x) , so that

d2u
dρ2 + (E2 − Veff)u = 0 where ρ is the “tortoise coordinate” ρ′ = eα0−γ0

and where

Veff =
e2γ0

λ′20

[
2λ′0φ

′
0Vφ − e

−2α0
0 λ′40 + φ′20 (V − e−2λ0) + λ′20 (e−2λ0 − V + Vφφ)

]

In the case of Andrès’ solution:

γ0 = ln
√

ΩF , α0 = ln η
√

Ω
F , λ0 = ln

√
Ω, , φ0 =

√
ν2−1

2 ψ

Veff is “horribile visu”

However has simple shapes: it is either negative everywhere, OUT!
or negative and edged with one, or two, barriers : hope is permitted
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α < 0, ν = 8, x+ = 8.

Question : does d2u
dρ2 + (E2 − Veff)u = 0 have bound state solutions ?
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Simon’s criterion (1976)

When Veff is bounded and fall off faster than |ρ|−2, a necessary (but not
sufficient) condition for the absence of bound states of negative E2 is

S ≡
∫ +∞
−∞ Veff dρ > 0
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α > 0 : S > 0 ∀ν if x+ small enough ;

α < 0 : S > 0 for ν > 7 if x+ big enough ; hope is still permitted
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Lasciate ogni speranza...
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d2u
dρ2 + (E2 − Veff)u = 0
α = 1 , ν = 1.7 , x+ = 0.001

Positive Simon integral : S = 5

... but ∃ a (SINGLE) bound state
−2.2 < E2 < −2.1...
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... We did not find ANY values for α, ν and x+ with NO bound state...
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Now, Veff is proportional to α (which sets the scale of the potential V (φ)).

Therefore write E2 = |α|Ē2 . Ē2 is a number, of order unity if the
dimensionless parameters ν, x+ and η2α−1 are all taken of order unity.

The unstable mode δφ ∝ eiEt = e+
√
−Ē2

√
α t grows on a time scale t of

the order of 1/
√
α.

Now, the characteristic time scale of gravitational effects is set by the mass
m of the black hole .

Hence the growth of the (single) unstable mode is tamed if
√
αm� 1.

This condition is met if α > 0 and ν ∈ [1, 2] in which case the mass and
size of the black hole are related by

2ν
√
αm ≈ (4− ν2)(ν−1)/2(

√
α r+)2−ν � 1 .

Such black holes are therefore quasi-stable, that is, “long-lived”.
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Summary and conclusion

• 4D BH solutions of Einstein’s equations with minimally coupled scalar
hair, which are asymptotically flat and Schwarzschild’s up to PN order, are
rare objects, which are worth studying.

• The no-hair theorem (Sudarsky 1995) states that the potential cannot be
positive everywhere.

• Andrès Anabalon’s BH is an elegant, analytical and fairly simple solution.

• The potential is unbounded from below, so that one is tempted to
predict gross instabilities.

• we found that indeed instabilities exist but are surprisingly mild.

• Techniques learned : Bronnikov’s equations for radial modes ; Simon’s
integral criterion.
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