The LiteBIRD Satellite Project

Masashi Hazumi (KEK CMB Group)

2013/08/30

Lite (Light) Satellite for the Studies of B-mode Polarization and Inflation from Cosmic Background Radiation Detection

- JAXA-based working group (more than 60 members from JAXA, Kavli IPMU, KEK, NAOJ, Berkeley/LBNL, McGill, Riken, MPA and Japanese universities)
- Scientific objectives
 - Tests of cosmic inflation and quantum gravity theories
 - Full success: δr < 0.001 (stat. ⊕ syst. ⊕ foreground ⊕ lensing)
 - δr is the total error on tensor-to-scalar ratio
- Observations
 - Full-sky CMB polarization survey at a degree scale (30arcmin @ 150 GHz)
 - 6 bands b/w 50 and 320 GHz
- Strategy
 - Part of technology verification from ground-based projects
 - Synergy with ground-based super-telescopes
 - Synergy with X-ray mission R&D
- Project status/plan
 - Selected as one of eight most important future projects by astronomy/astrophysics division of Science Council of Japan
 - Recognized as one of key future JAXA missions in fundamental physics
- Target launch year ~2020
 2013/08/30
 The CMB and theories of the primordial universe Kyoto University, Japan, Masashi Hazumi (KEK)

 Continuously-rotating HWP w/ 30cm diameter

- ✤ 60cm Primary Mirror
- w/ Cross-Dragone config.
- I00mK Focal Plane
 w/ Multi-chroic
 Superconducting
 Detector Array
 IT/ST + ADR
- w/ Heritages of X-ray Missions

2

LiteBIRD working group

67 members (as of June. 1, 2013) **

International and interdisciplinary **

KEK Y. Chinone	JAXA H. Fuke	<u>UC Berkeley</u> A. Ghribi	MPA E. Komatsu	ATC/NAOJ K. Karatsu	RIKEN K. Koga	
K. Hattori M. Hazumi (PI)	I. Kawano H. Matsuhara	W. Holzapfel A. Lee (US PI)	IPMU	T. Noguchi Y. Sekimoto	S. Mima C. Otani	
M. Hasegawa	K. Mitsuda	P. Richards	N. Katayama H. Nishino	Y. Uzawa	Tohoku U.	
N. Kimura	A. Noda		Yokohama NU.	<u>Saitama U.</u> M. Naruse	M. Hattori K. Ishidoshiro	
1. Matsumura H. Morii	S. Sakai Y. Sato	M. Dobbs	S. Murayama S. Nakamura	Osaka Pref II	K. Morishima	
R. Nagata S. Oguri	K. Shinozaki H. Sugita	LBNL L Borrill	K. Natsume	H. Ogawa	<u>Kinki U.</u> L Ohta	
N. Sato T. Suzuki	Y. Takei T. Wada	J. Domin		MR experiment	ers	
O. Tajima T. Tomaru	N. Yamasaki T. Voshida	M. Nagai		Berkeley, KEK, M	cGill, Eiichiro)	
M. Yoshida	K. Yotsumoto	X-ray astro	physicists			
SOKENDAI	<u>Okayama U.</u>					
Y. Akiba Y. Inoue	H. Ishino A. Kibayashi	Infrared astronomers				
H. Ishitsuka A. Shimizu	Y. Kibe					
H. Watanabe	<u>National Inst.</u> for Fusion	JAXA engineers, Mission Design (Berkeley, RIKEN, NA				
<u>Osaka U.</u> S. Takakura	<u>Science</u>	Support Group, SE office Okay			KEK etc.)	
D13/08/30 The CMB and theories of the primordial universe, Kyoto University, Japan, Masashi Hazumi (KEK)						

Outline

Introduction
 Pre LiteBIRD Era
 LiteBIRD Era
 Post-LiteBIRD Era
 Conclusion

1. Introduction

2013/08/30

Why so exciting?

Experimental cosmologists dream of

- Discovery of Primordial Gravitational Waves (PGW) !
- Determination of energy scale of inflation !
- Experimental quantum gravity !

Measuring CMB polarization is the only neat thing to do !

INTERNATIONAL CONFERENCE MICROWA BACKGR OKINAWA, JAPAN

10-14 June 2013 Okinawa Institute of Science and Technology Graduate University (OIST)

🆑 OIST

ts from WMAP, Planck, ACT, SPT, QUIET and BICEP ing CMB projects, future satellites Excursion and bang Excland and bandweet Near-future ground-based CMB experiments, public lecture, OIST tea time Foreground observations, balloon-bourne projects etc. no be theny talks on each day. Foster sessions will be held after lunch on kme 10, 11 and 13. cing committee: on (KEK),Chair Plands Institute for Astrophysic

http://www-conf.kek.jp/cmb/2013/index.html

	Sun.	Non.	Tue.	Wed.	Thu.	Fri.
	6/9	6/10	6/11	6/12	6/13	6/14
:00						
		Registration	Registration		Registration	Registration
00		Nelcome (Dorfan) Goels (Naturi)	SPIDER		Cross correlations	Foreground solence
		CMB science	(Jones, remote)		(Das)	(Finkbeiner)
0:00		introduction (Sugiyama)	EBEX (Hanany)		r values and ultimate theory (Yokoyama)	ANIBA (Lin)
		IMAP (Larson)	QUIJOTE (Genova-Santos)		CLASS (Marriage)	(Fukui) S-PASS
		Coffee	ABS (Kusaka)		BICEP-3/POLAR-1 (Thompston) GroundBIRD	(Bernard I) C-BASS (Jones)
1:00		Planck	Coffee		(Tajima)	Coffee
		(Piacentini)	POLARBEAR-1		Cottee	PIPER
			(Lee)		(Tomaru)	LSPE/SWIPE
2:00		Planck results	ACTPol		Simons Array (Arnold)	(Piacentini)
		(Tristram)	Foreground		MuSE (Kusaka)	Discussion
			Separation (Dickisson)		QUBIC (Hamilton)	
3:00		Discussion	Group photo	Free discussion	Announcement etc.	Closing
4:00		Lunch	Lunch		Lunch, poster, 01ST tour	
		Poster	Poster		& free discussion	
5:00		ACT	Intro (Nazumi)		OLST aminar	
		(Deviin)	EPIC (Bock, remote)		Utsi seniner	
6:00		SPT/SPTpol/SPT36 (Reichardt)	PIXIE (Fixson)		(Konatsu)	
			LiteBIRD		(de Graauw)	
		BICEP/BICEP2/Keck	(Matsumura)			
		(Buder)	Discussion			
		Coffee	Coffee			
	Registration	GULET (Tajima)	ODrE (Bouchet)			
8:00		(WR colorization	L-Class mission (Delabrouille)			
		(Kometsu)	Discussion	Welcome drink		
	Reception					
9:00	Sun Marina Hotel			Conference dinner		
				(buffet style)		
				Kafuu Resort Fuchaku Condo Hotel		
00:00						
1:00				tim	table v23. May 24. 2	013

2013/08/30

Physics of inflation

Leading hypothesis = new scalar field "Inflaton" In case of single-field slow-roll inflation (= so-to-speak "standard model Higgs" in cosmology)

Inflation potential proportional to r

 $V^{1/4} = 1.06 \times 10^{16} \times (r/0.01)^{1/4} \text{ GeV}$

Unique probe of GUT scale physics !

2013/08/30

Current limit on r from CMB temperature

• Targeting r=0.001 is needed to fully test large-field models.

2013/08/30

2. Pre-LiteBIRD Era

2013/08/30

Current Status of polarization measurements

CMB Polarization Data in the Can

- BICEP-2/Keck Array
- Planck
- POLARBEAR-1
- SPTpol
- ABS
- QUIJOTE
- EBEX

These experiments will publish results in the near future with sensitivity at r~0.1 or even better.

Four obstacles

2013/08/30

16

POLARBEAR

International collaboration including KEK, Kavli IPMU, UCSD, UC Berkeley from Asia Pacific regions POLARBEAR-1 project led by UC Berkeley

- Search for inflationary B-modes to r=0.025 (95%C.L.) and detect gravitational lensing B-modes
- 3.5m primary mirror and large focal plane with 1274 TES bolometers
- First light in Chile in Jan. 2012 and large amount of data already recorded
- Roadmap:
 - 7588 TESes in 2014 (POLARBEAR-2)
 - r<0.01 (95%C.L.)
 - >22000 TESes in 2016(Simons Array)

2013/08/30

The CMB and theories of the primordial universe, ryoto oniversity, Japan, wasashi nazumi (rer,

7

Overview

POLARBEAR Site: Atacama, Chile (5150m above sea level)

2013/08/30

2013/08/30

2013/08/30

POLARBEAR-1 Focal Plane

Lenslet

TES

637 pixels (91 pixels/wafer x 7 wafers) 1274 TES bolometers

21 μK√s array NET (achieved typically during observations)

Wafer module assembly

2 TES bolometers/pixel with dual-polarization double-slot dipole antenna

2013/08/30

H1 cm

The CMB and theories of the primordial universe, Kyoto University, Japan, Masashi Hazumi (KEK)

mm

Observation

(36 hour cycle)

Dec=90

2013/08/30

Systematic Error Mitigation

POLARBEAR-1 (First year of data)

E-mode polarization

2013/08/30

POLARBEAR-2 (led by KEK)

150GHz micro-strip filter

Al-Ti Bolometer

Sinuous-antenna

- 7588 TES bolometers
- 95GHz and 150GHz

Solutions

2013/08/30

How to reach r=0.001 ?

2013/08/30

Satellite(s) !

- All sky → at low l, lensing is subdominant even at r=0.001
- No atmospheric fluctuation
- No limitation in observing frequency
- Long observing time

End of ground-based CMB projects in ~5 years ?

CMB polarization with large telescopes (1>500 + Planck)

- Sum of neutrino masses to ~0.05ev
 - Hierarchy may be understood
- Constrain other new particles (e.g. gravitinos)
- (Early) dark energy

Discovery of lensing B-mode could be at any time soon High precision neutrino mass results in a few years

2013/08/30

Lensing B-mode Discovery by SPTPol arXiv:1307.5830

Next Step

- Cl_BB from CMB data alone is the next big step
 - -The discovery will truly open up the new era of cosmology with lensing Bmode.
 - -The discovery will give us promise for precision B-mode measurements toward r=0.01.

Synergy w/ 21cm

Oyama, Kohri and Hazumi (2013) in preparation

2013/08/30

3. LiteBIRD Era

2013/08/30

Strategy

Synergy

Small Satellite for ultimate meas. of r (δ r<0.001)

Super telescope array on ground 40 < I < 3000~10000

Powerful Duo

LiteBIRD mission

• Check representative inflationary models

• requirement on the uncertainty on r

(stat. ⊕ syst. ⊕ foreground ⊕ lensing)

 $\delta r < 0.001$

No lose theorem of LiteBIRD

> Many inflationary models predict r>0.01 \rightarrow >10sigma discovery

Representative inflationary models (single-large-field slow-roll models)
have a lower bound on r,
r>0.002, from Lyth relation. $r = \frac{1}{N^2} \left(\frac{\Delta \phi}{m_{\rm pl}}\right)^2 \approx 2 \cdot 10^{-3} \left(\frac{\Delta \phi}{m_{\rm pl}}\right)^2$

➢ no gravitational wave detection at LiteBIRD → exclude representative inflationary models (i.e. r<0.002 @ 95% C.L.)</p>

 \succ Early indication from non-space-based projects \rightarrow power spectra at LiteBIRD !

Similar to LHC Higgs case (Occam's razor)

2013/08/30

LiteBIRD focal plane design

tri-chroic(140/195/280GHz)

L2 vs. LEO

Both cases satisfy the requirement on statistical error

Foreground removal and observing bands

Foreground removal $\rightarrow \geq 4$ bands in 50-270GHz

N. Katayama and E. Komatsu, ApJ 737, 78 (2011) (arXiv:1101.5210)

pixel-based polarized foreground removal (model-independent) very small bias r~0.0006 with 60,100,240GHz (3 bands)

2013/08/30

Expected sensitivity on r

The CMB and theories of the primordial universe, Kyoto University, Japan, Masashi Hazumi (KEK)

42

Delensing with SuperPOLARBEAR

Other scientific objectives

- Tensor tilt (n_t): $\delta n_t \sim 0.07$ (@r=0.1)
- Other non-standard cosmology with BB, EB, EE
 - Tests of superstring theory (e.g. non-zero Cl_EB)
 - Power spectra deviation from standard cosmology
 - Loop quantum gravity ? Primordial magnetic field ? Cosmic strings ?
 - Isocurvature
 - Non Gaussianity
 - etc.

No dedicated studies so far You are welcome to contribute !

- Astronomy
 - Reionization w/ EE, TE correlations
 - Galactic magnetic field
 - Galactic haze emission

Systematic effect requirements

We set the required level of each systematic effect as 1% of lensing floor in C_l at all l range.

Effects	Types	Requirement (bias)	Requirement (random)	Comments	Mitigation
Absolute gain	$E \rightarrow B$	Cancel on <i>r</i>	3%	Calibration in every 10 min.	Dipole, planets
Polarization angle	$E \rightarrow B$	1 arcmin.	24 arcmin.		
Beam size stability	$E \rightarrow B$		O(10%)		Scan strategy
Absolute pointing	$E \rightarrow B$	6 arcmin.	25 arcmin.	20degx30deg FOV	Scan strategy
Diff. pointing	$T \rightarrow B$	5 arcsec.	16 arcsec.		Continuous HWP
Diff. gain	$T \rightarrow B$	0.01%	0.3%		Continuous HWP
Diff. beam size	$T \rightarrow B$	0.7%	2%		Continuous HWP
Diff. beam ellipticity	$T \rightarrow B$	7% @l=2 0.04% @ l=300	2.7 %		Continuous HWP

2013/08/30

4. Post-LiteBIRD Era

Large mission in ~2030
– European proposal: PRISM

Polarized Radiation Imaging and Spectroscopy Mission

PRISM

Probing cosmic structures and radiation with the ultimate polarimetric spectro-imaging of the microwaye and far-infrared sky

- CMB-alone will not be enough
 → Synergy w/ other measurements will be crucial
- Measurements of nt and slow-roll consistency !
 - CMB + 21cm + pulsar timing + Space interferometer (such as Ultimate DECIGO)
 - Understanding of systematic errors and foregrounds in each measurements will decide the game

We have a lot to do next 100 years 😳

2013/08/30

5. Conclusion LiteBIRD Roadmap POLARBEAR-2

TES

POLARBEAR

TES

Ground-based projects as important steps
 Verification of key technologies
 Good scientific results
 International projects

MKID

GroundBIRD

2013/08/30

The CMB and theories of the primordial universe, Kyoto University, Japan, Masashi Hazumi (KEK)

LiteBIRD

TES or MKID

5. Conclusions

• We are at the dawn of the new era of "cosmology with CMB polarization"

- Big discovery "r>0" awaits us !
- Neutrino masses to ~0.05ev
- And more (dark energy, new particles, etc.)
- Many new results will come in next ~5 years $-r \sim 0.01$
- Studies with future satellites are MUST, regardless of the value of r
 - $-r \sim 0.001$ from LiteBIRD

CMB polarization measurements are exciting !

2013/08/30