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1. BRIEF INTRODUCTION 



CMB LENSING 

Last scattering surface Observer 

Comoving distance 

𝒅 

 Deflection angle 

Θ (𝑛) = Θ 𝑛 + 𝑑  

(Reviews : Lewis&Challinor’06, Hanson+’10) 

𝑑 𝑛 = 𝛻𝝓(𝒏) 

Lensing potential 
𝜙(𝑛) = −2 𝑑𝜒

𝜒𝑠 − 𝜒

𝜒𝜒𝑠
Ψ(𝜂0 − 𝜒, 𝜒𝑛)

𝜒𝑠

0

 

Gravitation potential from LSS 

(𝜒 = 𝜒𝑠) 

Θ(𝑛) 

Θ 𝑛 + 𝑑  

(𝜒 = 0) 

Estimate lensing potential from lensed CMB maps, 

and extract cosmological information 

 CMB Lensing  =  distortion of spatial pattern of CMB anisotropies 



Cosmological Application 1: Dark energy/ Massive Neutrinos 

(see, e.g., Hu’01, Lesgourgues&Pastor’06) 

Density perturbations 

Gravitational potential 

Dark energy, massive neutrinos 

𝜙 𝑛  

gradient mode 

ℓ4𝐶ℓ
𝜙𝜙

 

𝐶ℓ
𝜙𝜙

=
1

2ℓ + 1
 𝜙ℓ𝑚

2

ℓ

𝑚=−ℓ

 

𝜙ℓ𝑚 = ∫ 𝑑2𝑛 𝑌ℓ,𝑚(𝑛)𝜙(𝑛) 



COSMOLOGICAL APPLICATION 2: CURL MODE 

Scalar 

Vector 

Magnetic fields 

from NASA from ESO 

Cosmic string GWs 

Also important for a test of systematics 

density perturbations (linear) 

 Even/Odd parity decomposition 

𝜛 

 Sources 

𝜙 
Gradient 

Curl 
Tensor 

gradient curl 

𝑑𝑎 = 𝜕𝑎𝜙 + 𝜖𝑎
  𝑏𝜕𝑏𝜔  Deflection angle 

(e.g., Cooray+’05; TN+’12; Book+’12; Yamauchi+’12; Yamauchi+’13 ; TN+’13 ) 



Other motivations to measure CMB lensing 

Primordial GWs 

e.g., Knox+’02, Kesden+’02, Smith+’09 

[B-mode power spectrum] 

Hanson+’09 

Primordial non-Gaussianity 

 CMB Lensing generates B-mode and secondary non-Gaussianity 

noise for primordial GWs detection noise for primordial non-Gaussianity 



2. HOW TO ESTIMATE LENSING EFFECT 



ESTIMATING LENSING FIELDS THROUGH ... 

(Das+’11; van Engelen+’12; PLANCK’13) 

 Lensing reconstruction = estimate lensing potentials 

 useful for cross-correlation studies with, e.g., cosmic shear, 

galaxy clustering, etc 

 Minkowski Functionals (e.g., Schmalzingr+’00)  may be another possible 

method to measure lensing effect 

 Angular power spectrum 

 useful to see whether the observed CMB anisotropies are 

lensed or not 



LENSING RECONSTRUCTION 

 Estimator for 𝑥 (= 𝜙,𝜛 ) (e.g., Hu&Okamoto’02; Hirata&Seljak’03a,b; Namikawa+’12) 

𝑥 𝐿
(ΘΘ)

= 𝐴𝐿
𝑥𝑥,(ΘΘ)

 𝑑2ℓ  𝑔𝐿,ℓ
𝑥,(ΘΘ)

 Θ ℓΘ 𝐿−ℓ Θ 𝐿 =
Θ 𝐿

𝐶𝐿
ΘΘ

 

Determined by “unbiased” and “optimal” (minimize non-lensing 

contributions) conditions 

 Anisotropy induced by lensing creates mode coupling between 

different Fourier modes 

(Review: Hanson+’10)  Basic Idea 

Lensing fields are estimated through mode-coupling (off-diagonal 

covariance) of CMB anisotropies 

optimal weighting 

(Filtered) observed data 

Θ ℓ = Θℓ −  d2𝐿  𝐿′ 𝜙𝐿′ + ⋆ 𝐿′  𝜛𝐿′ ⋅ 𝐿 Θ𝐿 (𝐿′ = 𝐿 − ℓ) 



LENSING RECONSTRUCTION 

 Similar to temperature case, anisotropy induced by lensing creates 

mode coupling between different Fourier modes 

 Parity decomposition of polarization 

𝐸 ℓ = 𝐸ℓ −  𝑑2𝐿  𝐿′ 𝜙𝐿′ + ⋆ 𝐿′  𝜛𝐿′ ⋅ 𝐿 (𝐸𝐿 cos 2𝜑𝐿,ℓ − 𝐵𝐿 sin 2𝜑𝐿,ℓ) 

𝐸ℓ ± i 𝐵ℓ = − d2𝑛 e−i𝑛ℓ 𝑄 ± 𝑖𝑈 𝑒∓2𝑖𝜑ℓ 

Stokes Q and U parameters 

𝐵 ℓ = 𝐵ℓ −  𝑑2𝐿  𝐿′ 𝜙𝐿′ + ⋆ 𝐿′  𝜛𝐿′ ⋅ 𝐿 (𝐵𝐿 cos 2𝜑𝐿,ℓ + 𝐸𝐿 sin 2𝜑𝐿,ℓ) 

 Generalizing quadratic estimator 

𝑥 𝐿
(𝑋𝑌)

= 𝐴𝐿
𝑥𝑥(𝑋𝑌)

 𝑑2ℓ  𝑔𝐿,ℓ
𝑥, 𝑋𝑌

 𝑋 ℓ𝑌 𝐿−ℓ (𝑋, 𝑌 = Θ, 𝐸, 𝐵) 



LENSING RECONSTRUCTION 

 Signal and noise (Planck) 

Signal 



LENSING RECONSTRUCTION 

 Signal and noise (ground based experiment like SPTpol, PolarBear, ACTPol) 

 Near future, polarizations are quite useful to reconstruct lensing fields. 

Signal 



3. BIAS-HARDENED ESTIMATOR FOR LENSING 
RECONSTRUCTION FROM CMB MAPS 

Based on TN, Hanson & Takahashi (2013) 

TN, Hanson & Takahashi in prep. 



𝝓  〈𝝓 〉 

MEAN-FIELD BIAS (MASK) 

mean-field bias 

 Survey boundary, points source masks 

𝛩 obs Fluctuations 

Estimated potential 

 Mean-field bias 

Θ 
ℓ
obs = 𝛩 ℓ − ∫ 𝑑2𝐿  𝑀ℓ−𝐿Θ

 
𝐿 

Θ obs(𝑛) = (1 − 𝑀 𝑛 )Θ (𝑛) 𝑀 𝑛 =    
0 
1 

 
(otherwise) 

(observed region) 

𝑥 
𝐿

(ΘΘ)
= 𝑅𝐿

𝑥𝑀,(ΘΘ)
𝑀𝐿 𝑅𝐿

𝑥𝑀,(ΘΘ)
≡ 𝐴𝐿

𝑥𝑥,(ΘΘ)
 d2𝐿 𝑔ℓ,𝐿

𝑥,(ΘΘ)
𝑓ℓ,𝐿
𝑀,(ΘΘ)

 

Window function 

mean-field bias 
𝑓ℓ,𝐿
𝑀,(ΘΘ)

= −𝐶𝐿
ΘΘ − 𝐶|ℓ−𝐿|

ΘΘ  

 The situation is similar for polarizations (Q,U) 



MEAN-FIELD BIAS (UNRESOLVED PS) 

 Unresolved point sources/inhomogeneous noise  

𝑥 
𝐿

(𝑋𝑌)
= 𝑅𝐿

𝑥𝑆, 𝑋𝑌
𝑆𝐿
𝑋𝑌 

 Mean-field bias 

Data model must be 

𝑋𝑜𝑏𝑠 𝑛 = 𝑋 𝑛 + 𝑛𝑋(𝑛) 

Assumptions:  

𝑋 𝑛𝑌 = 0 

𝑛𝑋 𝑛 𝑛𝑌(𝑛′) = 𝑆𝑋𝑌 𝑛 𝛿(𝑛 − 𝑛′) 

𝑅𝐿
𝑥𝑆,(𝑋𝑌)

≡ 𝐴𝐿
𝑥𝑥,(𝑋𝑌)

 𝑑𝐿 𝑔ℓ,𝐿
𝑥 𝑓ℓ,𝐿

𝑆, 𝑋𝑌
 

𝑓ℓ,𝐿
𝑆, 𝑋𝑌

= 1 

(𝑋 = Θ, 𝐸, 𝐵) 



MEAN-FIELD BIAS (BEAM) 

 Polarization angle systematics associated with beam  

𝑥 ℓ =   𝑅ℓ
𝑥,(𝑛,𝑝)

𝜓ℓ
(𝑛,𝑝)

𝑛𝑝=0,±

 

 Mean-field bias 

𝑒𝜃 𝑒𝜃 

𝑒𝜑 𝑒𝜑 

𝜓 

𝑋 𝑜𝑏𝑠 𝑛;𝜓 =  d2𝑟  𝐵 𝑟 ;𝜓  𝑋 (𝑛 − 𝑟 ) 

For two-beam experiment,  

If 𝜓 depends on sky position, the observed anisotropies have off-diagonal covariance 

(e.g., Souradeep+’01; Ng’05; Shimon+’08) 

Polarization angle 

beam shape 𝐵(𝑟 ) 

𝑛 

𝑛’ 



EXPRESSION FOR MEAN-FIELD BIAS 

 Mean-field bias 

𝑅ℓ
𝑥𝑦,(𝛼)

≡ 𝐴ℓ
𝑥𝑥,(𝛼)

 𝑑𝐿 𝑔ℓ,𝐿
𝑥,(𝛼)

𝑓ℓ,𝐿
𝑦,(𝛼)

 〈𝑥 𝐿
𝛼

〉 =  𝑅𝐿
𝑥𝑦, 𝛼

𝑦=𝜙,𝜛,𝑀,…

𝑦𝐿
(𝛼)

 

𝛼 = ΘΘ, Θ𝐸,… 



SIGNIFICANCE OF MEAN-FIELD BIAS 

Monte Carlo Noise floor 

 In conventional method, we compute 𝑅ℓ
𝜙𝑀

with Cl’s to estimate 𝜙 ℓ , 

and then subtract as  𝜙 𝐿 − 〈𝜙 𝐿〉  

 This method rely entirely on the knowledge of 𝑅ℓ
𝜙𝑀

, but 𝜙  would be 

biased due to uncertainties of e.g., Cl’s,  

We need alternative method for cross-check  

EE (mask) 𝜙 𝐿
2

 

 Mean field bias 

𝜙 𝐿
2

 〈 𝜙𝐿
2〉 

(Planck collaboration’13) 



BIAS-HARDENED ESTIMATOR 

1.  Simiar to 𝑥  , we formulate estimator for 𝑎 (= 𝑀, 𝑆,Ψ(𝑛,𝑝)) 

𝑥 𝐿
(𝛼)

=  𝑅𝐿
−1 𝑥,𝑦,(𝛼)

𝑦=𝜙,𝜛,𝑀,…

𝑦 𝐿
(𝛼)

 

2.  𝑎  also has mean-field bias, so we combine 𝑎  and 𝜙  to construct 

an estimator which has no mean-field bias:  

 Comparing with the conventional approach, uncertainty in 𝑅𝐿
𝑥𝑦

 propagates 

to estimator in a different way, so the above estimator would utilize for 

cross check (more robust but a bit noisy than the conventional approach) 

 It would be possible to estimate origin of unknown systematics (e.g., patchy 

reionization, motion of the earth, unresolved point sources, etc) 

 We formulate an estimator as follows 

𝑅𝐿
𝑥,𝑦,(𝛼) = 𝐴ℓ

𝑥𝑥,(𝛼)
∫ 𝑑2ℓ𝑔𝐿,ℓ

𝑥, 𝛼
𝑓𝐿,ℓ

𝑥,(𝛼)
 

  Higher order terms of 𝑎 is ignored 



NUMERICAL TEST 

 For mask, the assumption 𝜖ℓ ≪ 1 is not always satisfied 

 Purpose 

 100 realizations  5 × 5 deg2  10242 grids 

 With ”filtering” ( suppress 𝜖ℓ ), we test how well the bias-hardened 

estimator works 

 Simulated lensed map made by Takahashi-san 

 Filtering for survey boundary 

1. Apodization: window function is 

modified so that the Fourier 

counterpart becomes δ-like function 

𝑎𝑠0 𝑎 

𝑋
ℓ
𝑜𝑏𝑠 = ∫ 𝑑2𝐿 𝑊ℓ−𝐿𝑋

 
𝐿 ∼ 𝑋 ℓ 

𝑊ℓ  

𝑊(𝑛) = 𝛿ℓ + 𝜖ℓ 

2. Pure-EB estimator (e.g., Smith+’06) 



NUMERICAL RESULTS 

 Mean-field bias from masking 

Bias-hardened estimator suppresses mean-field bias down to MC 

noise level 

EE: 

EB: Even without pure-EB estimator, mean-field bias from masking is 

negligible compared to the signal 

EB EE 

[Gradient mode] 

(w/o pure-EB) 

Monte Carlo Noise floor 

Monte Carlo Noise floor 



EE 

 Mean-field bias from masking [Curl mode] 

Mean-field bias from masking is negligible 

NUMERICAL RESULTS 

EB 



LOSS OF SIGNAL-TO-NOISE 

 One concern for using bias-hardened estimator is the loss 
of signal-to-noise. 

EB (pol. angle, circular beam) mask 

[Fractional difference of noise level between BHE and conventional] 

 The loss of S/N is not so significant (but depends on scale) 



APPLICATION TO PLANCK DATA (TEMPERATURE) 

Unexpected discrepancy 

(so they conservatively use L>40 for parameter estimation ) 

(Planck collaboration’13) 

 Difference of the results between bias-hardened estimator 

and conventional method 



LENSING POWER SPECTRUM ESTIMATE 

〈 𝑥 𝐿
𝑋𝑌 2

〉 =  𝑑ℓ1  𝑑ℓ2 𝐹𝐿,ℓ1
𝑥,(𝑋𝑌)

𝐹𝐿,ℓ2
𝑥,(𝑋𝑌)

〈𝑋 ℓ1
∗ 𝑌 

𝐿−ℓ1

∗ 𝑋 ℓ2𝑌
 
𝐿−ℓ2

〉 

= 𝑀ℓ
𝑥 + 𝑁ℓ

𝑥, 0
+ 𝐶ℓ

𝑥𝑥 + 𝑁ℓ
𝑥, 1

+ 𝑁ℓ
𝑥, 2

+ ⋯ 

from intrinsic scatter of 

CMB anisotropies 

(Gaussian bias)  

𝑶(𝑪ℓ
𝒙𝒙) 𝑶( 𝑪ℓ

𝒙𝒙 𝟐) 

(e.g., Kesden+’03; Hanson+’11) 

 For cosmology we are interested in 𝐶ℓ
𝑥𝑥 rather than 𝑥 

 From 𝑥  to 𝐶ℓ
𝑥𝑥 

Generated by lensing 

In estimating power spectrum, we have to know many bias terms accurately 

due to non-lensing 

anisotropy (residual 

mean-field bias)  



SIGNIFICANCE OF BIAS TERMS ON CL ESTIMATE 

 Mean-field bias and Gaussian bias in the power spectrum estimate 

 Bias-hardened estimator suppress mean-field bias enough to ignore in the 

power spectrum estimates 

[Gradient mode, EE-estimator] 

 Gaussian bias, however, is significant and should be accurately corrected  

conventional BHE 



ESTIMATOR FOR GAUSSIAN BIAS 

 Gaussian bias estimate 

𝑁 ℓ
𝑥, 0

= 2 𝑑ℓ1  𝑑ℓ2 𝐹𝐿,ℓ1
𝑥 𝐹𝐿,ℓ2

𝑥 𝐶 ℓ1,ℓ−ℓ2𝐶
 
ℓ−ℓ1,ℓ2 

𝑁 ℓ
𝑥, 0

= 2 𝑑ℓ1  𝑑ℓ2 𝐹𝐿,ℓ1
𝑥 𝐹𝐿,ℓ2

𝑥 [2𝐶 ℓ1,ℓ−ℓ2X
 
ℓ−ℓ1Y

 
ℓ2
∗ − 𝐶 ℓ1,ℓ−ℓ2𝐶

 
ℓ−ℓ1,ℓ2] 

(𝐶 𝐿1,𝐿2
≡ 〈X 𝐿1

Y 𝐿2

∗ 〉) 

• Naturally derived as an optimal trispectrum estimator with maximum 

likelihood approach 

• More accurate than previous method ( e.g., 𝐶 𝐿1,𝐿2
 ) 

（ if 𝐶 𝐿1,𝐿2
→ 𝐶 𝐿1,𝐿2 + 𝛿𝐶 𝐿1,𝐿2

 , the bias propagates as 2nd order of 𝛿𝐶 𝐿1,𝐿2
） 

 Conventional 

 Our approach 

(e.g., Hu’01) 



Summary 

 We present estimators to mitigate 
  
1) mean field bias (from masking, point sources, beam, etc)  
 
2) Gaussian bias  

29 

 Using numerical test, we found that the mean-field bias from 
masking is suppressed by combining “bias-hardened estimator” 
and some filtering approach 

 Noise level would be degraded at most by factor of 2-3 


