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Models with nhon-minimal coupling

* In the context of unifying theories, modified gravity and renormalisation,
non-minimal coupling of scalar fields to the Ricci Scalar is common.
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* Models with non-minimal coupling
are favoured by Planck

Kaiser & Sfakianakis ’13, Kallosh & Linde ’13
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* In general we expect multiple fields in context of unifying theories

= Let us consider the general class of models with action of the form
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The Jordan and Einstein frames

* By making a conformal transformation g, = g"‘ 4 @

[ ~ [a'x =% {__{)gwa 6°9,9" - V<¢>+Lmaﬂer}] Vean

* Original frame called Jordan frame - matter minimally coupled

* New frame called Einstein frame - canonical Einstein Hilbert gravity
but mass-, length- and time-scales become spacetime dependent!

* Calculations seem easier in the Einstein frame - how are the Jordan and
Einstein frame quantities related?
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e In particular, we are interested in § <> Ed

0 How are { and 5 related?
—

O What 1s the effect of non-minimal coupling on CMB spectrum?



Linear order: single field case v swion
* Introduce canonically normalised field ¢ satlsfymg = \/Sss

* Decompose metric in Jordan frame as

d82 = CL(?])Z {—(1 + 2AY)d772 — QBY;dndZIZ -+ (1 + 27?,) 5@'3’ -+ 2HTEY,@]] dx dCUJ}

* Make similar decompos1t1on in Einstein frame, but with tildes everywhere,

then require dS° = 2 fds”

= f = of
H=H+ R=R+—
= Y +2f

* Substitute these relations into definition of C
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* ie. the comoving curvature perturbation is frame independent!




Linear order: multi-field case JAW,, M. Minamitsuji & M. Sasaki *12

e Cannot canonically normalise all fields 5q ox 5TO7L
H

ptp

= ( (~C=AK" +B, K" ]

* Using the fact that { =R + 0q in the JF and similarly in EF

* Where K* = 5¢a§bb 5¢b¢a are isocurvature perturbations
and A, and B, just depend on background quantites.

—

 Difference between § and { a direct consequence of
isocurvature modes

¢ In the absence of isocurvature modes, K =0 , the two
curvature perturbations do coincide.

e Also find é =0« C = 0, i.e. evolutions can be very different



Beyond linear order

* TFollowing Gong et al. 11 (1107.1840), define metric and conformal
transformation as

2 2R ~ 02 ~ =2 2R~ _ AQ
Gi; = a" e Vi,  Guv = Gu, Gij =a%e Ty, Q=€

= (73:72+A£2j

—> Curvature perturbations same in gauge where A() = ()
* Single field case: Q=Q(@)=>AQ=0=0p=0
AL} = 0 coincides with comoving gauges in both frames

= (¢=¢)

* Multi-field case: A2 = 0 does not necessarily coincide with the

comoving gauges. §
= ({=¢)




ON formalism in Jordan and Einstein frames

~ J. Wi, M. Minamitsuji & M. Sasaki 1306.6186
e Have established ¢ #{ in multi-field case

* We already know how to calculate 5 and its spectral properties

—> can we relate { back to ¢ beyond linear order using the ON?

® ON formalism states that C =oN = N(t*, lo; 513) — (N (t*y to)

No. of e-foldings between 1nitial flat

Fiducial back d no.
slice and final constant energy slice Iducial background no

of e-foldings

* ON expansions in the Jordan and Einstein frames are:

T S AT 1 a
(=6N =@¢R+§1Na 3PPl + ...
(= 0N = b6% + 5 Nutfdigpoly + ..

e Two differences:

* Dependence on initial conditions of N and N
* Definition of initial flat hypersurface field perturbations
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ON formalism in Jordan and Einstein frames
* Diagrammatically:

¢2

X 59.

W =const. defines final constant

energy surface in Jordan frame
— @=const. defines final constant
energy surface in Einstein frame

---------------

---------------

a0
e First turn to the relation N, <> IV,
w=const. ‘ B ~ f f a¢lz
N = Hd N, = N® _ 2@ b w
_— L = 27|, " 27|, Ber
w=const.
N = /~ Hdn >
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ON formalism in Jordan and Einstein frames

* Next turning to the relation 0@y <> 5¢%

* Using the definition of Sasaki-Mukhanov variables to first order:
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e Combining with N, = N% — + -
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® Terms circled in red cancel and we find:
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e [n an adiabatic limit:

W = const.< @ = const.
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Correlation functions

* Given the expansion for 4

. _ . 1 -~
¢ = 0N = Nadoy + 5 Nap0dis 06 + ...

we can determine its correlation functions if we know those of 0 (b%

* The ficlds ate minimally coupled in the E.F. and we know (5¢%50¢. )
and <6¢%5¢%5¢%> (See e.g. Elliston ef a/’12)

72
(505 ()5l (k) = (2m)°6% (R + o) 53 5

so we obtain the standard results
- Einstein frame
~ 2 - ~
-~ H ~ O AVAVE L
P:(k) = N, NS <2> fvp = ———
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Correlation functions

® In the Jordan frame we have the expansion

1
CZJN:AMW%+§NWM%M%+W

using the relation 0¢y, <> 095 and knowing (602097 ) and (605 097005 )

we can determine correlation functions of {

~ Jotrdan frame N

i ) ’ N NN, Sae gbd
fnr =

_ ab [ 11
= Pelk) = NuloS (27r NN Sef)?

. _/

_ N _da _ RATENA
N, =N, 2f and N =V, VN T + 2f
* Exactly the same form as E.F. but with but N . N, etc
~ s fo| O0%
* We have Ny,—N,=N, — N’ — — W
21|, 09%

~

= Equivalence in adiabatic limit follows from A/, = N,



Analytically soluble examples

e Using dN = Hdt and W = V/f? the slow-roll eom take the form

_ o Wo

dop® .
dN —2fh W

—> analytically soluble if a function of only a’th field

thabWb _ 99" L de” 1
W~ F(o) g\ (¢e) dN  F(o)

w2 function of all the fields
* Taking hgp = 04y = require W is either sum or product separable

* Introduce the new coordinates ¢ = gn® satisfying

Ing® = / 49" and Z(na)2 = 1.

gt (¢*) -
* FEom now written as - - N
dlngq 1 dn®
— d —0 N = Fdln
dN F(q,n%) o dN = . /<> C])




Non-minimally coupled “spectator” example

* Take a two field example ® = inflaton, minimally coupled
W product separable: X = “spectator”’, non-minimally coupled

but non-dynamical, i.e. X' =0

* X does contribute to the curvature perturbation due to its non-
minimal coupling

e At linear order we find ¢ — QZ =~ fx 5X7~z
2f¢€ difference due to

“spectator” field

(slow-roll parameter at final time) /

e Difference a result of the difference in definition of the final
constant energy surface:

v W
2 |

* For | |~|5| we consider fx/\/} ~ O(V/¢)

JF: p=3H"=



Non-minimally coupled “spectator” example

* (Consider the explicit example V = VO N and V(@) — m2¢2p
* Forp=1, 2f=V*¥=1, W, =W, =f,=0, m =194x107"
plot power spectra and tilts in JFF and EF as functions of N:
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8.)(10_97“ T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 1-017 ““““““““““““““““““““““
7 %1000 % —JF /=0 S LOOpommmmmarenee, _;:;X o
| LN === JF f,=005 ;o ST -== Fh.
T O JE £, =0.1 S 099F s e JF f=0.1
X 10~ > [~ EF f, =0
EF fX:() N [ TSsao ]
. EF £, =005 ﬁ 0.98:— ~~~~~~~ EF f,=005
5.)( 10_9’ EF f,=0.1 — r ~‘s~ EFfX:O.l
I T 8 097t TSN
i g i ~L,“~
4.x107%F I L W
' [ S~ 2 »n DO0F el T T e e e e e T e |
L ~ ;”,’ E ------------
3.x1079F SSsel LW et et 095F et
; | - . 7\7 ‘~~..\.-—:~_..—.l | d&_;——\——’ | L] 0 94 e
0 10 20 30 40 50 60 0 10 20 30 40 50 60

No. of e—folds after horizon crossing

No. of e—folds after horizon crossing

Evolution in the two frames is very different

The difference between frames goes as 1 / €o (—(~

—

* isinitially large as €, <1

------------------

* finally the frames agree to leading order as €, ~ 1



Non-minimally coupled “spectator’ example

* For p=1, p=1/2 and a range of f, and f,, we plot end-of-inflation
predictions for n and r.
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* Contribution from 0y suppresses tensor-to-scalar ratio and gives rise
to redder tilt as f  is increased.

e Non-zero [, ¢ gives rise to a more blue-tilted spectrum.
* Predictions can be brought within 68% CL of Planck




Non-minimally coupled “spectator’ example

* Going beyond linear order we find Iaw oSS — T ~ D) x fxx
® In our analytic calculation of f NL We require the curvature of the Einstein
frame field-space to be negligible, which in turn requires f%% <]
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* Strong dependence of f,, on f. py



Non-minimally coupled multi-brid example

M. Sasaki. 08 for original model

* Non-minimally coupled extension of the multi-brid inflation model with
V =Vyexp [za: ma¢“] J =+ Joexp [Za: Z;W]
* End of inflation determined by tachyonic instability of Y field:
V_EZ 2(¢a)2 2_|_i 2_0-_22
0 — 2 . wa, X 4 X )\ 9
* Becomes unstable for 2, w§(¢a)2 < o’ ¢2

e End of inflation condition 4 /
frame independent - /
: > gbl

e [n two field case:

¢<1>:0'COS’)//U)1 ,¢<2>:gsinfy/w2, ‘\ /:




Non-minimally coupled multi-brid example

e Find
a )
SNT — 1wy sinydp? + wy cos yopl N 1 (wiws)? (M16¢p? — Madgpl)?
-~ 2fo Mawgsiny 4+ Myjwycosy  2f, 20  (Msywsysiny + Mjw, cosy)3
N N oS
Gl 5 1 5 2 ol 5 1 5 2\2
\ _J

(M1 =m1 — 21 and M2 =Moo — ZQ)

Terms on first line are also present in minimally coupled case.

First two terms on 2nd line are new terms due to non-minimal
coupling and are significant

0S contains additional second-order contributions, but they are
negligible



Non-minimally coupled multi-brid example

* 'To compare with original model, set
M2=(m —z) =0.005, M2>=(m,—z,)=0035,
¥ =0, o,=0,=0.1, 2,/f,=1 and N, =60
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* For z,=z,=0 have (n,r,f,;)=1(0.96,0.04,4.1) (red dots)
* rand f,, within 68% CL from Planck for all 7, and Z,, but do vary

* Observational constraint n. =0.9697 £0.0073 can be used to
constrain Z; and Z, . (see black contours)



Aside on observational equivalence x v s siai 1007356
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* Fact that ( # 5 is an indication that they are not directly observable

* Conformally related frames are observationally indistinguishable
* The physical interpretation may differ from frame to frame

e.g. Start with Einstein gravity and FLRW metric:

ds?2 — g2 () (_d772 4 57;jd:l3idajj) — Observe redshift effect

due to expansion

Make conformal transformation §) = 1 / a(n)

No expansion! What
happened to redshift?

m
But, electron masses now time dependent  m(n) = o) = a(n)m

ds* = —d772 + 5136156261513] —

Atomic transition energies Observationally indistinguishable
vary with time X m(n) from redshift effect
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Conclusions

* Using the ON formalism we have determined the non-linear relation
between ¢ and {. Found that

® definition of the initial flat surface does not effect —5
® definition of the final constant energy surface is important

* Using the relation §¢% <+ d¢% we could also determine the
correlation functions of (¢ as well as é’

® Saw that { and f and their spectral properties can evolve differently

® In the non-minimally coupled “spectator” field model we found that the
additional contribution of the spectator field to the curvature
perturbation tended to reduce the tensor-to-scalar ratio and allow
for a tuneable tilt, allowing us to bring predictions into agreement with
recent observations.

® In the non-minimally coupled extension of the multi-brid inflation
model we found that observational constraints on the tilt could be
used to constrain the form of non-minimal coupling.



