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Quantum Gravity/Cosmology 

Cosmological Observations 

Phenomenology of String/Particle/Cosmology 
Modified Gravity 

Probability of observables that depend on models 
Guideline to phenomenological models 

Theoretical requirements? 
Observational expectations? 
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What is the no-boundary proposal? 

Brief introduction 



Problem of singularity 

The singularity theorem: 
Our universe should begin from the initial singularity. How to resolve? 
 

Maybe, by using the Schrodinger equation for fields: 
so-called, the Wheeler-DeWitt equation. 

Wave function of Universe 

3-metric (and fields) ∈superspace 
(quantized) 
Hamiltonian constraint 



No-boundary proposal 

What is the boundary condition of WDW eqn? 
Perhaps, the ground state? 

Hartle-Hawking wave function 

path integral 
over regular compact manifold 

Euclidean action 



Initial singularity  wave function 

Alternative histories: 
many-world interpretation 
Probabilities will be assigned 

Present universe: 
we want to know 
the probability of here. 



𝑡 → 𝑡 − 𝑖𝜏 

There can be various 
analytic continuations. 

If this path is regular, 
then we will choose this. 

Due to analyticity, the path-integral 
still makes sense, 
even though we analytically continue 
to Euclidean time. 



Big-bang singularity 



Big-bang singularity 

Find geometry over the complex time, 
until the geometry to be regular. 



How to use the no-boundary wave 
function? 

Use of fuzzy instantons 



Fuzzy instantons 

In general, all functions (metric and fields) should be complex 
functions (Halliwell and Hartle, 1990). 

 
An on-shell solution of Euclidean complexified fields are called by 

fuzzy instanton (Hartle, Hawking and Hertog, 2007). 



How to calculate path integral? 

Approximation 1: Mini-superspace 
 
 
 
Approximation 2: Steepest-descent (sum-over fuzzy instantons) 
 
 
 
Additional constraint to fuzzy instantons: Classicality 



Time contour 

No-boundary condition Turn to the Lorentzian time 

Eventually, should be real, 
i.e., classicalized. 



Example (Einstein gravity) 

Initial conditions for no-boundary 

Junction conditions at the turning point 

The remained initial conditions. 

For given initial field amplitude, 
by tuning the phase angle and the turning point, 
we find a classical fuzzy instanton! 



Summarize 

Step 1: We impose the mini-superspace metric. 
 
Step 2: We only consider on-shell solutions (fuzzy instantons), that 

begins from the no-boundary condition. 
 
Step 3: Between on-shell fuzzy instantons, we only restrict that 

satisfies classicality. 

on-shell: dof = 8+1 
on-shell + no-boundary: dof = 8+1 – 6 
on-shell + no-boundary + classicality: dof = 8+1 – 6 – 2 = 1 



Classicality is satisfied for a long Lorentzian time. 
= Probability is a constant over the time. 
= All fields are reallized. 

One typical example of fuzzy instanton 



Example (Einstein gravity, quadratic potential) 

(Hartle, Hawking and Hertog, 2007) 



Good inflation models 

Preference of large e-foldings 



Does this prefer inflation? 

Traditionally, Euclidean probability does not prefer inflation. 
 
Possible answers: 
1. No inflation (Ekpyrotic, big bounce, string gas cosmology, etc.) 
2. Not ground state (Vilenkin’s tunneling proposal) 
3. Not wave function (Susskind, landscape + multiverse + anthropic) 
4. Additional weighting (Hartle-Hawking-Hertog) 
 
Is there any better explanation, apart from these unsatisfactory 

opinions? 



Criterion of a good model (Hwang, Park and DY, in preparation) 

Typicality for a given hypothesis 
 
 
 
For a given probability cutoff, there is corresponding typicality bound. 

If the typicality is smaller than the bound, then we reject 棄却 

the hypothesis. 



Criterion of a good model (Hwang, Park and DY, in preparation) 

Reduced action that does not depend on energy scale of inflation but 
depend on the shape of potential 

 
 
Ratio of field space that allows sufficient and insufficient e-folding. 
 
 
Then, the typicality is presented by the competition of three factors: 

potential shape, energy scale, and the field space of large e-folds 



1. The first inflation began at large energy scale. 

2. Potential shape is finely tuned. 

Three ways to prefer inflation 

3. There is something new effects. 



CASE1: First inflation was near-Planck scale? 

1/2 stable vs. 1/2 unstable 

(Hwang, Sahlmann and DY, 2011; Hwang, Lee, Sahlmann and DY, 2012) 



CASE1: First inflation was near-Planck scale? 
(Hwang, Park and DY, in preparation) 



CASE1: First inflation was near-Planck scale? 
(Hwang, Park and DY, in preparation) 



CASE2: Fine-tuning of the potential (Hwang, Park and DY, in preparation) 



CASE2: Fine-tuning of the potential (Hwang, Park and DY, in preparation) 



CASE2: Starobinski-like model (Kallosh and Linde, 2013) 



CASE2: Starobinski-like model (Kallosh and Linde, 2013) 



CASE3: New ingredient from multi-field inflation 
(Hwang, Kim, Lee, Sahlmann and DY, 2012) 



CASE3: New ingredient from massive gravity 
(Sasaki, DY and Zhang, 2013) 



Conclusion 

Now is the time to select inflation models. 
No-boundary wave function is useful to judge a good inflation 
hypothesis. 
There are three ways to satisfy a good inflation model. 
1. If inflation began at the high energy scale, then it can 

prefer large e-foldings, as well as moduli/dilaton 
stabilization. 

2. Starobinski-like model can be helpful to explain sufficiently 
large e-foldings, although we need justification. 

3. New ingredients can be introduced by multi-field dynamics or 
modified gravity (e.g., massive gravity). 


