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Introduction: the D1-D5-P system

Paradigmatic example of BPS black hole in string theory
(Strominger, Vafa)

Type II B

R × R4 × S1 × T 4

t x i y za

D1 : − ◦ − ◦

D5 : − ◦ − −

P : − ◦ − ◦
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The “naive” D1-D5-P geometry

ds2 = − 2√
Z1Z2

dv
(

du +
F
2

dv
)

+
√

Z1Z2 ds2
4 +

√
Z1

Z2
ds2

T 4

v =
t + y√

2
, u =

t − y√
2

, ds2
4 = dx idx i

Zi = 1 +
Qi

r2 , F = −
Qp

r2

Q1 : D1 charge , Q2 : D5 charge , Qp : P charge

The geometry has an “extremal” horizon of finite area at r = 0.
The geometry only depends on the charges: “no-hair theorem”.
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The near-horizon decoupling limit

In the limit

r2 , Qp � Q1 , Q2 ⇒ Zi → Zi − 1

one obtains a geometry that is AdS3 × S3 × T 4 asymptotically
(r2 � Qp)

ds2 ≈ − r2√
Q1Q2

2 du dv +

√
Q1Q2

r2 dr2 +
√

Q1Q2 dΩ2
3 +

√
Q1

Q2
ds2

T 4

This limit is described by a CFT:

(4,4) sigma model with target space (a deformation of) (T 4)n1n5/Sn1n5

m

D1-D5 CFT
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Microstate geometries

There exist solutions of supergravity
that reduce to the “naive” D1-D5-P
geometry for large r up to O

(
1
r2

)
(and hence carry the same charges
as the D1-D5-P black hole)
but are completely smooth
and have no horizon.
In the near-horizon limit these
geometries are dual to states of the
D1-D5 CFT.

3AdS x S3

R4,1XS1xT4

xT4

Conjecture: these geometries account for (a finite fraction of) the
entropy of the D1-D5-P black hole.

(Mathur, Bena, Warner,. . . )
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Our goal

To develop systematic methods to construct geometries that

carry D1,D5,P charges and preserve 4 supersymmetries;
are dual to states of the D1-D5 CFT.

Note: for geometries carrying only two charges (egs. D1-D5) this
problem has been solved in full generality.

(Lunin, Mathur; Kanitscheider, Skenderis, Taylor)

We will follow the steps:

find the general supergravity ansatz that preserves the same susy
as D1-D5-P;
select solutions dual to known states of the D1-D5 CFT:
apply symmetries of the CFT to known microstates.
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General D1-D5-P ansatz I

We apply methods of Generalized Geometry in 10D (Tomasiello)

∃ ε1, ε2 Majorana-Weyl Killing spinors;
the spinor bilinear K ≡ −1

2(ε̄1ΓMε1 + ε̄2ΓMε2) ∂M
is a Killing vector;
we restrict to the case K is null⇒ K = ∂

∂u ;
other spinor bilinears

(i) χ ≡ −1
2

(ε̄1ΓMε1 − ε̄2ΓMε2) dxM 1− form

(ii) Ψ ≡ −32 ε1 ⊗ ε̄2 Γ(10) polyform

satisfy

dχ = iK H , (d − H) ∧ (e−φ Ψ) = iK F + χ ∧ F

(H , F NSNS and RR field strengths);
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General D1-D5-P ansatz II

the missing susy equations come from the v -component of the
gravitino variation⇒ extra constraints;

the previous equations plus the Bianchi identities for H and F
imply all the equations of motion apart from the vv -component of
Einstein equations⇒ Rvv + . . . = 0;

split the metric as 10→
(u,v) x i za

2 + 4 + 4 and restrict (for simplicity)
to geometries that are homogeneous and isotropic with respect to
T 4 ⇒ non-trivial dependence on (v , x i);

impose that the susy preserved is of D1-D5 type:

ΓD1 ε2 = ε1 , ΓD5 ε2 = ε1
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General D1-D5-P ansatz III

the various conditions constrain the metric to be of the form

ds2 = − 2α√
Z1Z2

(dv +β)
[
du+ω+

F
2

(dv +β)
]

+
√

Z1Z2 ds2
4 +

√
Z1

Z2
ds2

T 4

with α =
Z1Z2

Z1Z2 − Z 2
4

e2φ = . . . , B = . . . , F = . . .

all fields of type IIB sugra can be excited;
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General D1-D5-P ansatz IV

ds2 = − 2α√
Z1Z2

(dv +β)
[
du +ω+

F
2

(dv +β)
]

+
√

Z1Z2 ds2
4 +

√
Z1

Z2
ds2

T 4

the sugra equations can be organized in such a way that the
problem reduces to an almost linear one

(Bena, SG, Shigemori, Warner)
the non-linear part involves ds2

4 , β :

ds2
4 admits an almost hyperkäler structure

JA ∧ JB = −2 δAB vol4 , JA = − ∗4 JA , dJA = ∂v (β ∧ JA)

Dβ = ∗4Dβ with D ≡ d − β ∧ ∂v ;

the equations for Z1 , Z2 , Z4 , ω , F . . . are linear (but
inhomogeneous), if solved in the right order.
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v -dependence

The sugra equations simplify for v -independent geometries:

ds2
4 is hyperkähler;

dβ = ∗4dβ.

On general grounds, geometries are expected to be
v -independent if they are dual to eigenstates of momentum.

Typically classical geometries are dual to coherent states
(egs. e α a−n |ψ0〉 with a−n carrying momentum n)

⇒ generic 3-charge microstates are v -dependent.
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D1-D5 geometries (Lunin, Mathur; Kanitscheider, Skenderis, Taylor)

D1-D5 microstates are v -independent.
They have a flat 4D base: ds2

4 = dx i dx i .

The (T 4-isometric) geometries are encoded in a profile in R5

(F i(v ′),F(v ′)) :

β =
−A + B√

2
, A = −Q2

L

∫ L

0

dv ′ Ḟ i

|x − F |2
dx i , dB = − ∗4 dA

Z2 = 1 +
Q2

L

∫ L

0

dv ′

|x − F |2
, Z1 = 1 +

Q2

L

∫ L

0

dv ′ |Ḟ |2

|x − F |2

Z4 = −Q2

L

∫ L

0

dv ′ Ḟ
|x − F |2

, ω = −A + B√
2

β 6= 0 : KK-monopole dipole charge from binding D1 and D5.
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Adding momentum to D1-D5 I

Start from a D1-D5 geometry and take its near-horizon limit:

Z1 → Z1 − 1 , Z2 → Z2 − 1 ⇒ asymptotically AdS geometry

Act with an operator of the CFT chiral algebra that preserves susy
and adds momentum:

L−n : Virasoro;
Jα
−n : SU(2)L R-symmetry;

Jza

−n : U(1)4 T 4 translations.

On the gravity side this is equivalent to performing a change of
coordinates that does not vanish at the boundary of AdS.

At the perturbative level, this method was applied by
Mathur, Saxena, Srivastava; Mathur, Turton; Shigemori.
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Adding momentum to D1-D5 II

Rewrite metric and gauge fields in the form of the general ansatz
and read-off ds2

4 , β , ZI , ω , F .

One generates a v -dependent solution of the sugra equations that
is asymptotically AdS3 × S3 × T 4.

Extend the metric back to the asymptotically flat region, where the
metric reduces to R4,1 × S1 × T 4.

Note: the replacement Z1 → Z1 + 1 , Z2 → Z2 + 1, leaving the
remaining metric functions unchanged, does not produce a
solution of the sugra constraints.

This is a non-trivial problem that can be solved exactly in some
cases.
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Case 1: v -independent ds2
4

Assume that ds2
4 , β do not depend on v after the change of

coordinates.
Assume also that ds2

4 , β have a tri-holomorphic isometry ∂
∂τ ⇒

ds2
4 = V−1(dτ + A)2 + V ds2

3 , ∗3dA = dV

β =
K3

V
(dτ + A) + ξ , ∗3dξ = −dK3

Egs: ds2
4 = flat R4 ⇒ τ = φ+ ψ , V = 1

r

The remaining metric coefficients may depend on v and τ .
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Case 1: v -independent ds2
4 - An example

Start from the D1-D5 geometry associated with the profile

F 1 + iF 2 = a e
2πi v′

L , F 3 = F 4 = 0 , F = −b sin
(2π v ′

L

)
The geometry depends on the angle of the (1,2) plane
but β does not.

Apply the operator e χ(J+
−1−J−1 ) = eΣ e χ(J+

0 −J−0 ) e−Σ

↗ ↖
φ→ φ+ t

R , ψ → ψ + y
R ← spectral flow rotation in R4

Note: when b = 0 the action of this operator is trivial.

One can see that ds2
4 and β are left invariant, while the other

metric coefficients transform non-trivially under this operator.
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Case 1: v -independent ds2
4 - The solution I

Niehoff, Warner found a general way to solve the sugra constraints
in Case 1:

(almost) all metric coefficients can be expressed algebraically in
terms of harmonic functions for the covariant Laplacian ∗4D ∗4 D.

Egs: Z1 = L1 + K2K3
V , Z2 = L2 + K1K3

V with

∂τK2,1 + ∂v L1,2 = 0 , ∗4D ∗4 DK1,2 = ∗4D ∗4 DL1,2 = 0

To find ω one has to solve a system of partial differential
equations.
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Case 1: v -independent ds2
4 - The solution II

To construct an asymptotically flat 3-charge geometry one starts
from the geometric data generated by the chiral algebra
transformation, extracts the corresponding harmonic functions,
and replaces

L1 → 1 + L1 , L2 → 1 + L2

The coefficients of other harmonic functions have to be modified
to preserve regularity and absence of Dirac-Misner strings.

There is a unique asymptotically flat solution that solves all the
regularity constraints and matches the near-horizon solution.

The asymptotic charges of the solution match the values expected
from the CFT (more on this in Rodolfo’s talk).
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Case 2: v -dependent ds2
4

After the change of coordinates ds2
4 and β are v -dependent.

An example:
Start from the 2-charge metric (in the near-horizon limit) with

F 1 + iF 2 = a e
2πi v′

L , , F 3 = F 4 = F = 0;

Apply the transformation eε (J3
−n−J3

n ) which is equivalent to

(∗) ψ → ψ − ε sin
(n
√

2v
R

)
, φ→ φ− ε sin

(n
√

2v
R

)
⇔ x i → x i − f i (v)

The coordinate transformation generates the 3-charge
near-horizon geometry; ds2

4, β depend on v .

The Niehoff, Warner method does not apply directly:
how to construct the asymptotically flat solution?

Note: the transformation (∗) cannot be applied to the
asymptotically flat solution because it screws up the asymptotic
structure.
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Case 2: v -dependent ds2
4 - The solution

Strategy: apply the Niehoff, Warner method before the change of
coordinates (when ds2

4 and β are v -independent) to generate a
new non-explicitly asymptotically flat solution that becomes
explicitly asymptotically flat after the transformation (∗).

The new solution needs to have the following asymptotic limit

Z1,2 → 1 , ω → −ḟi(v)dx i , F → −|ḟ (v)|2

Note: these boundary conditions force all metric coefficients
(apart from ds2

4, β) to be v -dependent.

Result: there is a unique solution with the correct asymptotic
behavior that is regular.
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Case 2: relation with "Vachaspati transform"

The solution generating technique we employ to add momentum
to D1-D5 geometries is analogous to the one used by Dabholkar et
al. and Callan at al. to construct D1-P geometries:

start from the “naive” D1 solution;
turn on ω = −ḟi (v)dx i , F = −|ḟ (v)|2;
perform the coordinate shift x i → x i − f i (v).

One important technical difference: the D1 solution has

β = 0⇒ ∂

∂u
is hypersurface orthogonal

⇒ constant ω and F solve the equations of motion.

Moreover, for D1-P solutions all equations are linear and
homogeneous⇒ one can superpose solutions
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Multiply-wound profiles

One can also considers profiles that are multiply-wound along S1 :

f i
(

v + 2πw
R√
2

)
= f i(v) , w > 1

This is crucial to obtain the full D1-P entropy.

The shift x i → x i − f i(v) is not defined globally on spacetime.

An equivalent description: f i(v)→ f i
α(v) , α = 1, . . . ,w with

f i
α

(
v + 2π

R√
2

)
= f i

α+1(v)

For D1-P: use linearity to superpose solutions for different α.

For D1-D5-P: the problem is non-linear.
How to construct geometries for multiply-wound profiles?
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Summary

We have determined the general class of susy solutions carrying
D1,D5,P charges.
Within this class, we have constructed geometries dual to BPS
states of the D1-D5 CFT with momentum.
The class of microstates we can construct is very particular:
chiral algebra descendants of RR ground states.
It is non-trivial that a unique, regular and asymptotically flat
solution exists with the quantum numbers predicted by the CFT.
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Outlook

Main open problems:

can one extend the construction of microstate geometries to
more generic states?
Note: constructing geometries corresponding to multi-wound
profiles would be a big step in this direction;
can microstate geometries account for a finite fraction of the
3-charge entropy?

Extract more informations from the geometries we have:

compute holographically 1-point functions of chiral operators in the
3-charge microstates and compare with the CFT;

(Kanitscheider, Skenderis, Taylor)
compute holographically the entanglement entropy in the
microstate geometries.

(Ryu, Takayanagi)

24 / 25



Entanglement entropy in black hole microstates

Most computations of entanglement entropy are done in the
vacuum or the thermal state⇒ AdS3 × S3 × T 4.
T 4-isotropic microstates can be easily reduced on T 4

⇒ ds2
6 6D Einstein metric.

In the near-horizon limit ds2
6 is asymptotically AdS3 × S3 but

depends non-trivially on S3.
The Ryu, Takayanagi holographic recipe for computing
entanglement entropy applies to asymptotically AdS3 spaces.
A small generalization: consider a 1D domain A and a geodesic
(with respect to ds2

6) 4-manifold ΓA = γA × S3, where γA is a curve
at t = const. such that ∂γA = ∂A; the entanglement entropy is

SA =
Area(ΓA)

4G6

Can one compare with the D1-D5 CFT prediction?
(work in progress with R. Russo)
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