Geometries of D1-D5-P states

Stefano Giusto

Università di Padova

Exotic structures of spacetime, YITP , March 2013

Based on

- S.G., L. Martucci, M. Petrini, R. Russo: arXiv:1306.1745
- S.G., R. Russo: arXiv:1311.5536

Introduction: the D1-D5-P system

• Paradigmatic example of BPS black hole in string theory (Strominger, Vafa)

Type II B

 \mathbb{R} \times \mathbb{R}^4 \times S^1 \times T^4 xⁱ y za t D1: - • 0 D5: -0 $P: - \circ$ 0

The "naive" D1-D5-P geometry

$$ds^{2} = -\frac{2}{\sqrt{Z_{1}Z_{2}}} dv \left(du + \frac{\mathcal{F}}{2} dv \right) + \sqrt{Z_{1}Z_{2}} ds_{4}^{2} + \sqrt{\frac{Z_{1}}{Z_{2}}} ds_{7^{4}}^{2}$$
$$v = \frac{t + y}{\sqrt{2}} \quad , \quad u = \frac{t - y}{\sqrt{2}} \quad , \quad ds_{4}^{2} = dx^{i} dx^{i}$$
$$Z_{i} = 1 + \frac{Q_{i}}{r^{2}} \quad , \quad \mathcal{F} = -\frac{Q_{p}}{r^{2}}$$

 Q_1 : D1 charge , Q_2 : D5 charge , Q_p : P charge

- The geometry has an "extremal" horizon of finite area at r = 0.
- The geometry only depends on the charges: "no-hair theorem".

The near-horizon decoupling limit

In the limit

$$r^2\,,\, Q_p\,\ll\, Q_1\,,\, Q_2 \quad \Rightarrow \quad Z_i o Z_i - 1$$

one obtains a geometry that is $AdS_3 \times S^3 \times T^4$ asymptotically $(r^2 \gg Q_p)$

$$ds^2 \approx -rac{r^2}{\sqrt{Q_1 Q_2}} 2 \, du \, dv + rac{\sqrt{Q_1 Q_2}}{r^2} \, dr^2 + \sqrt{Q_1 Q_2} \, d\Omega_3^2 + \sqrt{rac{Q_1}{Q_2}} \, ds_{T^4}^2$$

This limit is described by a CFT:

(4,4) sigma model with target space (a deformation of) $(T^4)^{n_1 n_5}/S_{n_1 n_5}$

↓ D1-D5 CFT

4/25

Microstate geometries

- There exist solutions of supergravity that reduce to the "naive" D1-D5-P geometry for large *r* up to $O\left(\frac{1}{r^2}\right)$ F (and hence carry the same charges as the D1-D5-P black hole) but are completely smooth and have no horizon.
- In the near-horizon limit these geometries are dual to states of the D1-D5 CFT.

Conjecture: these geometries account for (a finite fraction of) the entropy of the D1-D5-P black hole.

(Mathur, Bena, Warner,...)

Our goal

To develop systematic methods to construct geometries that

- carry D1,D5,P charges and preserve 4 supersymmetries;
- are dual to states of the D1-D5 CFT.

Note: for geometries carrying only two charges (egs. D1-D5) this problem has been solved in full generality.

(Lunin, Mathur; Kanitscheider, Skenderis, Taylor)

- We will follow the steps:
 - find the general supergravity ansatz that preserves the same susy as D1-D5-P;
 - select solutions dual to known states of the D1-D5 CFT: apply symmetries of the CFT to known microstates.

General D1-D5-P ansatz I

We apply methods of Generalized Geometry in 10D (Tomasiello)

- $\exists \epsilon_1, \epsilon_2$ Majorana-Weyl Killing spinors;
- the spinor bilinear K ≡ -¹/₂(ε₁Γ^Mε₁ + ε₂Γ^Mε₂)∂_M is a Killing vector;
- we restrict to the case *K* is null $\Rightarrow K = \frac{\partial}{\partial u}$;
- other spinor bilinears

(*i*)
$$\chi \equiv -\frac{1}{2} (\bar{\epsilon}_1 \Gamma^M \epsilon_1 - \bar{\epsilon}_2 \Gamma^M \epsilon_2) dx^M$$
 1 - form
(*ii*) $\Psi \equiv -32 \epsilon_1 \otimes \bar{\epsilon}_2 \Gamma_{(10)}$ polyform

satisfy

$$d\chi = i_{\mathcal{K}} \mathcal{H}$$
 , $(d - \mathcal{H}) \wedge (e^{-\phi} \Psi) = i_{\mathcal{K}} \mathcal{F} + \chi \wedge \mathcal{F}$

(*H*, *F* NSNS and RR field strengths);

General D1-D5-P ansatz II

- the missing susy equations come from the *v*-component of the gravitino variation ⇒ extra constraints;
- the previous equations plus the Bianchi identities for *H* and *F* imply all the equations of motion apart from the *vv*-component of Einstein equations ⇒ *R_{vv}* + ... = 0;

• split the metric as $10 \rightarrow \begin{array}{cc} (u,v) & x^i & z^a \\ 2 + 4 + 4 & and restrict (for simplicity) \\ to geometries that are homogeneous and isotropic with respect to <math>T^4 \Rightarrow$ non-trivial dependence on (v, x^i) ;

• impose that the susy preserved is of D1-D5 type:

$$\Gamma_{D_1} \epsilon_2 = \epsilon_1 \quad , \quad \Gamma_{D5} \epsilon_2 = \epsilon_1$$

General D1-D5-P ansatz III

the various conditions constrain the metric to be of the form

$$ds^{2} = -\frac{2\alpha}{\sqrt{Z_{1}Z_{2}}}(dv+\beta)\left[du+\omega+\frac{\mathcal{F}}{2}(dv+\beta)\right] + \sqrt{Z_{1}Z_{2}} ds_{4}^{2} + \sqrt{\frac{Z_{1}}{Z_{2}}} ds_{7^{4}}^{2}$$

with $\alpha = \frac{Z_{1}Z_{2}}{Z_{1}Z_{2} - Z_{4}^{2}}$
 $e^{2\phi} = \dots$, $B = \dots$, $F = \dots$

all fields of type IIB sugra can be excited;

General D1-D5-P ansatz IV

$$ds^{2} = -\frac{2\alpha}{\sqrt{Z_{1}Z_{2}}}(dv+\beta) \Big[du+\omega+\frac{\mathcal{F}}{2}(dv+\beta) \Big] + \sqrt{Z_{1}Z_{2}} \, ds_{4}^{2} + \sqrt{\frac{Z_{1}}{Z_{2}}} \, ds_{74}^{2}$$

 the sugra equations can be organized in such a way that the problem reduces to an almost linear one

(Bena, SG, Shigemori, Warner)

- the non-linear part involves ds_4^2 , β :
 - ds²₄ admits an almost hyperkäler structure

 $J_A \wedge J_B = -2 \, \delta_{AB} \operatorname{vol}_4 \quad , \quad J_A = - *_4 J_A \quad , \quad dJ_A = \partial_{\nu} (\beta \wedge J_A)$

• $D\beta = *_4 D\beta$ with $D \equiv d - \beta \wedge \partial_v$;

the equations for Z₁, Z₂, Z₄, ω, F... are linear (but inhomogeneous), if solved in the right order.

10/25

v-dependence

- The sugra equations simplify for *v*-independent geometries:
 - ds₄² is hyperkähler;
 - $d\beta = *_4 d\beta$.
- On general grounds, geometries are expected to be *v*-independent if they are dual to eigenstates of momentum.
- Typically classical geometries are dual to coherent states (egs. e^{α a_{-n}}|ψ₀) with a_{-n} carrying momentum n)
 - \Rightarrow generic 3-charge microstates are *v*-dependent.

D1-D5 geometries (Lunin, Mathur; Kanitscheider, Skenderis, Taylor)

- D1-D5 microstates are v-independent.
- They have a flat 4D base: $ds_4^2 = dx^i dx^i$.
- The (*T*⁴-isometric) geometries are encoded in a profile in ℝ⁵ (*Fⁱ*(*v'*), *F*(*v'*)) :

$$\beta = \frac{-A+B}{\sqrt{2}} , \ A = -\frac{Q_2}{L} \int_0^L \frac{dv' \dot{F}^i}{|x-F|^2} dx^i , \ dB = -*_4 dA$$
$$Z_2 = 1 + \frac{Q_2}{L} \int_0^L \frac{dv'}{|x-F|^2} , \ Z_1 = 1 + \frac{Q_2}{L} \int_0^L \frac{dv' |\dot{F}|^2}{|x-F|^2}$$
$$Z_4 = -\frac{Q_2}{L} \int_0^L \frac{dv' \dot{F}}{|x-F|^2} , \ \omega = -\frac{A+B}{\sqrt{2}}$$

• $\beta \neq 0$: KK-monopole dipole charge from binding D1 and D5.

Adding momentum to D1-D5 I

• Start from a D1-D5 geometry and take its near-horizon limit:

 $Z_1 \rightarrow Z_1 - 1$, $Z_2 \rightarrow Z_2 - 1 \Rightarrow$ asymptotically AdS geometry

 Act with an operator of the CFT chiral algebra that preserves susy and adds momentum:

• L_{-n} : Virasoro; • J_{-n}^{α} : $SU(2)_L$ R-symmetry; • $J_{-n}^{z^a}$: $U(1)^4$ T^4 translations.

On the gravity side this is equivalent to performing a change of coordinates that does not vanish at the boundary of AdS.

At the perturbative level, this method was applied by Mathur, Saxena, Srivastava; Mathur, Turton; Shigemori.

Adding momentum to D1-D5 II

 Rewrite metric and gauge fields in the form of the general ansatz and read-off ds²₄, β, Z_I, ω, F.

One generates a *v*-dependent solution of the sugra equations that is asymptotically $AdS_3 \times S^3 \times T^4$.

 Extend the metric back to the asymptotically flat region, where the metric reduces to ℝ^{4,1} × S¹ × T⁴.

Note: the replacement $Z_1 \rightarrow Z_1 + 1$, $Z_2 \rightarrow Z_2 + 1$, leaving the remaining metric functions unchanged, does not produce a solution of the sugra constraints.

This is a non-trivial problem that can be solved exactly in some cases.

Case 1: *v*-independent ds_4^2

- Assume that ds²₄, β do not depend on v after the change of coordinates.
- Assume also that ds_4^2 , β have a tri-holomorphic isometry $\frac{\partial}{\partial \tau} \Rightarrow$

$$ds_4^2 = V^{-1}(d au + A)^2 + V ds_3^2 \quad , \quad *_3 dA = dV$$

 $eta = rac{K_3}{V}(d au + A) + \xi \quad , \quad *_3 d\xi = -dK_3$

- Egs: $ds_4^2 = \text{flat } \mathbb{R}^4 \implies \tau = \phi + \psi$, $V = \frac{1}{r}$
- The remaining metric coefficients may depend on v and τ .

Case 1: v-independent ds₄² - An example

Start from the D1-D5 geometry associated with the profile

$$F^{1} + iF^{2} = a e^{\frac{2\pi i v'}{L}}$$
, $F^{3} = F^{4} = 0$, $\mathcal{F} = -b \sin\left(\frac{2\pi v'}{L}\right)$

The geometry depends on the angle of the (1, 2) plane but β does not.

- Apply the operator $e^{\chi(J_{-1}^+ J_1^-)} = e^{\Sigma} e^{\chi(J_0^+ J_0^-)} e^{-\Sigma}$ $\phi \to \phi + \frac{t}{R}, \psi \to \psi + \frac{y}{R} \leftarrow \text{spectral flow rotation in } \mathbb{R}^4$ Note: when b = 0 the action of this operator is trivial.
- One can see that ds_4^2 and β are left invariant, while the other metric coefficients transform non-trivially under this operator.

Case 1: v-independent ds₄² - The solution I

 Niehoff, Warner found a general way to solve the sugra constraints in Case 1:

(almost) all metric coefficients can be expressed algebraically in terms of harmonic functions for the covariant Laplacian $*_4D *_4D$.

Egs:
$$Z_1 = L_1 + \frac{K_2 K_3}{V}$$
, $Z_2 = L_2 + \frac{K_1 K_3}{V}$ with
 $\partial_{\tau} K_{2,1} + \partial_{\nu} L_{1,2} = 0$, $*_4 D *_4 D K_{1,2} = *_4 D *_4 D L_{1,2} = 0$

To find ω one has to solve a system of partial differential equations.

Case 1: v-independent ds₄² - The solution II

 To construct an asymptotically flat 3-charge geometry one starts from the geometric data generated by the chiral algebra transformation, extracts the corresponding harmonic functions, and replaces

$L_1 \rightarrow 1 + L_1 \quad , \quad L_2 \rightarrow 1 + L_2$

The coefficients of other harmonic functions have to be modified to preserve regularity and absence of Dirac-Misner strings.

- There is a unique asymptotically flat solution that solves all the regularity constraints and matches the near-horizon solution.
- The asymptotic charges of the solution match the values expected from the CFT (more on this in Rodolfo's talk).

Case 2: v-dependent ds_4^2

- After the change of coordinates ds_4^2 and β are *v*-dependent.
- An example:
 - Start from the 2-charge metric (in the near-horizon limit) with

 $F^{1} + iF^{2} = a e^{\frac{2\pi i v'}{L}}, F^{3} = F^{4} = \mathcal{F} = 0;$

• Apply the transformation $e^{\epsilon (J_{-n}^3 - J_n^3)}$ which is equivalent to

(*)
$$\psi \to \psi - \epsilon \sin\left(\frac{n\sqrt{2}v}{R}\right), \phi \to \phi - \epsilon \sin\left(\frac{n\sqrt{2}v}{R}\right) \Leftrightarrow x^i \to x^i - f^i(v)$$

- The coordinate transformation generates the 3-charge near-horizon geometry; ds²₄, β depend on v.
- The Niehoff, Warner method does not apply directly: how to construct the asymptotically flat solution?
- Note: the transformation (*) cannot be applied to the asymptotically flat solution because it screws up the asymptotic structure.

Case 2: v-dependent ds_4^2 - The solution

- Strategy: apply the Niehoff, Warner method before the change of coordinates (when ds²₄ and β are ν-independent) to generate a new non-explicitly asymptotically flat solution that becomes explicitly asymptotically flat after the transformation (*).
- The new solution needs to have the following asymptotic limit

 $Z_{1,2}
ightarrow 1$, $\omega
ightarrow -\dot{f}_i(v) dx^i$, $\mathcal{F}
ightarrow -|\dot{f}(v)|^2$

Note: these boundary conditions force all metric coefficients (apart from ds_4^2 , β) to be *v*-dependent.

• Result: there is a unique solution with the correct asymptotic behavior that is regular.

Case 2: relation with "Vachaspati transform"

- The solution generating technique we employ to add momentum to D1-D5 geometries is analogous to the one used by Dabholkar et al. and Callan at al. to construct D1-P geometries:

 - start from the "naive" D1 solution; turn on $\omega = -\dot{f}_i(v)dx^i$, $\mathcal{F} = -|\dot{f}(v)|^2$;
 - perform the coordinate shift $x^i \rightarrow x^i f^i(v)$.
- One important technical difference: the D1 solution has

 $\beta = \mathbf{0} \Rightarrow \frac{\partial}{\partial u}$ is hypersurface orthogonal

 \Rightarrow constant ω and \mathcal{F} solve the equations of motion.

 Moreover, for D1-P solutions all equations are linear and homogeneous \Rightarrow one can superpose solutions

Multiply-wound profiles

• One can also considers profiles that are multiply-wound along S¹ :

$$f^i\Big(\mathbf{v}+2\pi\,\mathbf{w}\,\frac{R}{\sqrt{2}}\Big)=f^i(\mathbf{v})\,,\quad\mathbf{w}>1$$

- This is crucial to obtain the full D1-P entropy.
- The shift $x^i \rightarrow x^i f^i(v)$ is not defined globally on spacetime.
- An equivalent description: $f^i(v) \rightarrow f^i_{\alpha}(v)$, $\alpha = 1, ..., w$ with

$$f^{i}_{\alpha}\Big(\mathbf{v}+2\pi\,\frac{\mathbf{R}}{\sqrt{2}}\Big)=f^{i}_{\alpha+1}(\mathbf{v})$$

- For D1-P: use linearity to superpose solutions for different α.
- For D1-D5-P: the problem is non-linear.
 How to construct geometries for multiply-wound profiles?

Summary

- We have determined the general class of susy solutions carrying D1,D5,P charges.
- Within this class, we have constructed geometries dual to BPS states of the D1-D5 CFT with momentum.
- The class of microstates we can construct is very particular: chiral algebra descendants of RR ground states.
- It is non-trivial that a unique, regular and asymptotically flat solution exists with the quantum numbers predicted by the CFT.

Outlook

- Main open problems:
 - can one extend the construction of microstate geometries to more generic states?
 Note: constructing geometries corresponding to multi-wound profiles would be a big step in this direction;
 - can microstate geometries account for a finite fraction of the 3-charge entropy?
- Extract more informations from the geometries we have:
 - compute holographically 1-point functions of chiral operators in the 3-charge microstates and compare with the CFT;

(Kanitscheider, Skenderis, Taylor)

• compute holographically the entanglement entropy in the microstate geometries.

(Ryu, Takayanagi)

Entanglement entropy in black hole microstates

- Most computations of entanglement entropy are done in the vacuum or the thermal state $\Rightarrow AdS_3 \times S^3 \times T^4$.
- T^4 -isotropic microstates can be easily reduced on T^4 $\Rightarrow ds_6^2$ 6D Einstein metric.
- In the near-horizon limit ds²₆ is asymptotically AdS₃ × S³ but depends non-trivially on S³.
- The Ryu, Takayanagi holographic recipe for computing entanglement entropy applies to asymptotically AdS₃ spaces.
- A small generalization: consider a 1D domain *A* and a geodesic (with respect to ds_6^2) 4-manifold $\Gamma_A = \gamma_A \times S^3$, where γ_A is a curve at t = const. such that $\partial \gamma_A = \partial A$; the entanglement entropy is

$$S_{A} = \frac{\operatorname{Area}(\Gamma_{A})}{4G_{6}}$$

 Can one compare with the D1-D5 CFT prediction? (work in progress with R. Russo)