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Introduction: Exotic Branes (1)

String theory contains strings, D-branes; also 7-branes such as D7
in [1B:

oT7=C +ie?
e DT: C():QD7€ Nx
° Q7= [ F (

@ go around brane: 7 - 741 v
“monodromy”
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Introduction: Exotic Branes (2)

More “exotic” example: 53:

o ds?y = H(dr? + r?d6?) + H K tdx3y + dx334567

o K = H(r)?+ o202

© 0=0: ggg =g =H"! (xx

99:27T:g88=g99zm Y
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Introduction: Exotic Branes (3)

In general, for 7-brane ( “exotic brane”):

@ 7: some fields
@ 7 — Mt as go around brane

e M € U-duality group (Egs))
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Introduction: Exotic Branes (4)

U-duality groups in different dimensions:

| d | G(R) \ K | dim(G) | rank(G) | dim(K) |

10A R, 1 1 1 0
10B SL(2) SO(2) 3 1 1

9 [ SL(2) xR, SO(2) 4 2 1

8 | SL(3)x SL(2) | SOB)xSO(2) | 8+3 | 2+1 | 3+1

7 SL(5) SO(5) 24 4 10

6 SO(5,5) SO(5) x SO(5) | 45 5 20

5 E6(6) USp(8) 78 6 36

4 Ez(7) SU(8) 133 7 63

3 Eq(s) SO(16) 248 8 120
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Introduction: Exotic Branes (5)

Properties of exotic branes:

@ codim-2 (non-contractible circle around brane)
@ non-geometric: even metric can jump! (U-fold)

@ tension ~ g ", n>?2
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Introduction: Exotic Branes (6)

Non-Abelian charge (=monodromy) lattice: de Boer, Shigemori 1200.6056

@ Normal branes: Abelian charge lattice Z"
e.g. D1 + D5 =D5 + D1

@ Codim-2 branes: monodromy is charge

T — Mt (1)
o Charge M € Egg)(Z) - non-Abelian charge lattice

@ Not trivial to “add” branes!
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Introduction: Exotic Branes (7)

Results for 1/2 BPS branes in max SUGRA:

Bergshoeff, Riccioni, {+Romano 1303.0221; +Marrani 1201.5819; +Ortin 1109.4484; 1109.1725; 1009.4657; ...}

@ Codim-2 branes <> longest weights in adjoint rep. of U-duality
group (3D, eg: 248-8=240)

@ degeneracy of BPS condition — can form multi-charge
codim-2 brane orbits that are 1/2 BPS

@ In principle, all x BPS states should be in some way “bound
states” of fundamental 1/2 BPS branes. In practice, difficult
to determine all possible states (+» non-Abelian charge
lattice!)
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Introduction: Exotic Branes (8)

SU pel’tu be efFeCt Mateos & Townsend hep-th /0103030

@ 7-branes sometimes considered “pathological”

@ Supertube effect: dipole exotic branes de Boer, Shigemori 1004.2521

—e—o

N o
e original supertube “puff-up” effect: handl
F1(1)+D0 — D2(11) e A
\\t////m3

o U-dual to e.g.: D4(6789) + D4(4589) — 52(45671,89)

e Only ordinary brane charge at infinity (no pathological 7-brane
behaviour), but exotic dipole charges!

@ Exotic puffed-up microstates may be crucial for constructing
(enough) black hole microstates...
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Introduction: Going to 3D (1)

7 branes in 10D:
@ point particle in 3D
@ metric is single-valued

@ only scalar monodromies

@ would be nice to classify possible monodromies!
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Introduction: Going to 3D (2)

Compactify string theory on T’ — 3D maximal SUGRA:

@ Can ask well-defined question: What are necessary/sufficient
conditions for a solution to preserve SUSY?

@ Despite complicated scalar structure, we obtain complete
necessary /sufficient conditions, complete classification of
SUSY solutions

o Afterwards: what is the relation between classification of
SUSY solutions and possible monodromies?
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Introduction: Going to 3D (3)

Classifying SUSY solutions:
@ Previous classifications of SUSY solutions done in e.g.
N =1,2 SUGRA in 4/5/6D

Gauntlett, Gutowski, Hull, Pakis, Reall hep-th/0209114 and many others

@ Usual strategy:
e Assume Killing spinor €, construct bilinears, e.g. V), = €y,e

o Algebraic/differential relations — restriction solutions
@ Usually can't explicitly construct all SUSY spacetimes

@ Still very useful: construct AdSs BHs, SUSY microstate
geometries, ...
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Introduction: Recap

Recap:

@ Interested in studying all possible (supersymmetric) exotic
branes

Go to 3D (codim-2: point particles) for richest explicit
U-duality structure

First: classify supersymmetric sols in 3D (pure SUGRA
problem)

@ Then: relate to classification of point particles
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3D Maximal SUGRA (1): egg

Constructing the algebra eg: csw, 6
o Take the 120 so(16) generators X"/:
(XY, XKL = giLxIK 4 g xIL _ §IKxIL _ gILXIK  (2)
o Append 128 generators Y* in Majorana-Weyl spinor rep. of
so(16):
XY YA =Y ". (3)
o eg = { XY, YA}

e For split real form egg), can take YA as non-compact
generators
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3D Maximal SUGRA (2): Action

Fields in the theory:
@ 128 non-compact scalars ¢ := ¢pAY* € eg(g) ©so(16)

o Global symmetry (U-duality): e? — ge®h(¢), g € Eg(g) (h
compensating gauge transformation to keep gauge)



Classifying SUSY Solutions
©0e00

3D Maximal SUGRA (3): Action

Constructing a bosonic action: Marcus, Schwarz ‘83
o V19,V="P,+Q,
® Q, €5s0(16): compact “gauge field”
e P, € eg ©s0(16): non-compact part

e Eg invariant action: £ = R — g"tr(P,P,)
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3D Maximal SUGRA (4): Action

SL(2) toy example:
e Ve SL(2)/S0O(2)
@ Can choose (Borel) gauge:
V = 1 1 ) \/6 0
—\o0 1 o yrt
o V714V =P+ Q:
1 dT2 dT1
°"3_272(C/7'1 —dT2>
0 dTl
° Q=14 ( —dn, 0 )

e Kinetic term: tr(P?) = % (df + d73)
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3D Maximal SUGRA (5): Variations

SUSY transformations:
o SUSY parameters ¢/,
e /=1,---16 - so(16) vector; a = 1,2 - 3D Majorana spinor
° (51/1L = Vﬂe’ + QLJGJ

° 5XA = P;‘wri.me’
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Classification - Null and Timelike Solutions (1)

Find €/ such that (51% =6x"=0

e Construct V, = (/) Ty5vue’

V.V, =0 - Vis Killing, but also stronger

e V2<0
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Classification - Null and Timelike Solutions (2)

Null class: V = 9, null
o ds?> = —dudv — 2w(v, x)dvdx + h(v, x)dx?
e pp-waves, all 1/2-SUSY

@ scalars ¢(v)
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Classification - Null and Timelike Solutions (3)

Timelike class: V = 0; timelike
o ds? = —dt? + eY(# D) dzdz (D:¢ = 0)
@ SUSY condition (£ = €1 + iep):

Arl I __
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Classification (Timelike) - Nilpotent Orbits (1)

Necessary and sufficient SUSY condition timelike solutions:

PUTaE =0 (5)

e Invariant under (compact) conjugation K € SO(16):
P— K-1PK

@ SUSY determined by conj. class = orbit of P, in
p = eg ©so(16)

@ Lots of math results about these objects! Rich (Zariski)
tOpOIOgy Of Orbits. .. Kostant & Rallis '71, Collingwood & McGovern '93, Djokovic '00, '03

'05
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Classification (Timelike) - Nilpotent Orbits (2)

First results:

@ a) (“smaller orbit = more SUSY")

If @1 - 62, then (#SUSY Ol) > (#SUSY 02)
Example:

o 1/4 BPS orbit O of (N; D1-branes) + (N5 D5-branes)
e 1/2 BPS orbit O’ C O of (N; D1-branes)
@ b) For SUSY, P needs to be nilpotent (P" = 0)

e e.g.: trivial orbit Op = {0} is max. SUSY; Oy C Ox for all
nilpotent X
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Classification (Timelike) - Nilpotent Orbits (3)

Proof of (a) (“smaller orbit = more SUSY")
If O1 C Oy, then (#SUSY O1) > (#SUSY 0y)
o PAT! ¢! =0 is essentially matrix equation M& = 0 with
M= PAT!

@ 3 non-trivial solutions for &/ — all 16 x 16 det. of M vanish

@ More SUSY preserved — smaller and smaller
sub-determinants must vanish

e det = 0 — (homogeneous) equations involving P; solutions
form closed set in Zariski topology
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Classification (Timelike) - Nilpotent Orbits (4)

Proof of (b) For SUSY, P needs to be nilpotent (P" = 0)

@ Unique Jordan decomposition algebra element: X = Xy + Xs;
Xn nilpotent, Xs semisimple; [Xy, Xs] =0

o (math result) Ox, C Ox
@ (math result) some element in CSA ¢;H; € Ox.

@ Solve for ¢; — all ¢; =0 for SUSY — X5 =0
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Classification (Timelike) - Nilpotent Orbits (5)

Narrowed problem down to nilpotent orbits of P,

@ Nilpotent orbits very special

@ Only finitely many - 0,--- ;115

o Partial ordering (Hasse diagram) O; < O; if O; C O; coliingwood

& McGovern '93; Djokovic '00, '03, '05

14« 26<

@ No SUSY preserved by 5 — no other orbits preserve SUSY!
o Recall: (a) “smaller orbit = more SUSY”
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Classification - Summary

Complete classification of SUSY solutions in 3D maximal SUGRA:
@ Null class: pp-waves, 1/2-SUSY

@ Timelike class:
o ds? = —dt? + eV#2)dzz (0,0 = 0)

e Orbit of P, completely determines SUSY preserved

e P, nilpotent, “smaller orbit = more SUSY"
max. SUSY: 0

1/2 SUSY: 1

1/4 SUSY: 2

1/8 SUSY: 3,4

1/16 SUSY: 6,7,9,12,14



(Exotic) Branes in 3D
.

Branes in 3D - Single Center Ansatz

Take simple single-center spherically symmetric ansatz (timelike
class):

o metric ds? = —dt? + eV(")(dr? + r?d6?)
o scalars M = e®X m(r)e?*"
o M=e?e? (€ Eys/SO(16))

o X € eg(g) gives monodromy (through g = ™)

(Remember e? — ge?h)

@ with any solution m, X; can conjugate by U € Egg) to get
solution UXU~L, UmUT
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Branes in 3D - Easy Brane Representatives (1)

Identify X = E, with 240 “fundamental” 1/2 BPS branes
(D7-brane U-duality multiplet):

@ Root 8-vector a: (+1,4+1,0,0,0,0,0,0),
2(£1,£1,+1, 41,41, +1, +1,41) (and perm.)

@ Brane tension 2ag — 2

@ General mass formula:

7
M ~ g52a8—2 H R?i_a8+1 (6)
i=1
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Branes in 3D - Easy Brane Representatives (2)

7
M~ g2 [[ Reeet (7)
i=1

Examples:

o D3(123) ¢» 3(+1,+1,41,-1,—-1,-1,—-1,| + 1)
& M~ g 'RiRyRs

o F1(1) < (+1,0,0,0,0,0,0,| + 1)
M~ glR

o KK(12345:6) « (0,0,0,0,0, 11, 1,(0)
“ M~ g, RiRoR3 R4 Rs(Rs)?
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Branes in 3D - Easy Brane Representatives (3)

7
M ~ g2os 2 T Rei—ee ! (8)
i=1
Allows us to construct brane reps for each (SUSY) nilpotent orbit:
e.g. orbit 14 (1/16 BPS):

M5 || X X X | XX
M5 XX X | XX
M5 X X | X X | X
M5 || X X X X | X
M5 X| X[ XX X
M5 || X | X XX X
M5 || X | X | X ]| X X
P X
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Branes in 3D - All Nilpotent & Semi-Simple Charges (1)

5/(2) SO|uti0nSZ we can flnd (SUSY) SO|uti0nS for: Bergshoeff, Hartong, Ortin,

Roest hep-th/0612072

o Xy = < 0 0 ) “N-brane”

o Xy = < 0 A > "K-brane”

0 Xy = < ?)\ I\ > “A-brane” (not globally well-defined)

01
caAIwaysP~<O 0)
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Branes in 3D - All Nilpotent & Semi-Simple Charges (2)

Scalars: M = X m(r)e?X’

N-brane:
(0 =£1 [ logr 0
(0% ) (" o)
K-brane:
r2IA|
(nd) ()
- 1—r
A0 0 T
A-brane:

A0
X—<O—)\) m

v=cy+2\logr

secv tanv
tanv secv /'
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Branes in 3D - All Nilpotent & Semi-Simple Charges (3)

Any nilpotent monodromy Xy € egg):

@ Xy is part of an sl(2)-subalgebra of egg) (Jacobson-Morozov
theorem)

@ embed sl(2) N-brane solution into eg(g) so that Xy z) — Xy

Djokovic '00

@ SUSY of resulting solution depends on nilpotent orbit of Xy
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Branes in 3D - All Nilpotent & Semi-Simple Charges (4)

Any semisimple monodromy Xs € egg):

@ Xs is conjugate to the sum of at most 8 Xk's and X4's,
where Xk, X4 are the corresponding sl(2) elements; moreover
all these (8) sl(2) algebras commute sugiura 59

@ can paste (up to 8) K- and A-branes together (and conjugate)
to construct Xs as monodromy

e relative orientation of K/A-branes determines SUSY
preservation
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Branes in 3D - General Monodromies

General monodromy X:
e Unique Jordan decomposition X = Xs + Xy, [Xs, Xy] =0

@ Can't just “paste” brane sols for Xs, Xy separately together
(except special cases)

@ — case by case analysis?
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Branes in 3D - Other Monodromies

Questions:

@ How do we find solutions for general monodromies?

@ Are the solutions we found for nilpotent/semisimple
monodromies the only ones possible for these monodromies?

@ Can we construct a SUSY solution for any monodromy?
No definitive answers... but:

@ It is possible to find multiple solutions for the same
monodromy

@ Different solutions for same monodromy can preserve different
SUSY
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Branes in 3D - Plethora of Examples

Study plethora of examples

[ subalgebra [ [ semisimple [ nilpotent [ compact [ SUSY [ global ]
§(2) ( P ) o o o
) (% 5) o o o| o
SI(2) (s %) o o

(sl(2) C)eg any nilpotent [@) O @)
(s1(2)" C)eg any semisimple O (@) [@) (@)
si(2)” any (in sl(2)") © (@) Q) O O
0 0 1
sI(3) ( 0 0 0 ) O
0O 0 O
(sl(2) C sl(3)) @) @) @)
1 0 1
sl(3) ( 0o -2 0 ) O
0 0 1
1 0 +2
sI(3) 0 -2 0 @)
0 0 1
0 1 0
sI(3) ( 0 0 1 ) @) @)
0O 0 ©
(sl(2) C sl(3)) @) @)
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Summary

@ Exotic branes: objects in string theory with weird properties

@ e.g. spacetime/other fields can change when we loop around;
monodromy

@ Classify these — compactify to 3D; only scalar monodromies
o=+ X

@ P ~ 0¢ completely determines SUSY of 3D; particular
nilpotent orbits allowed

@ Relation P <> X7 No easy relation — no easy way to classify
“allowed” SUSY exotic branes; lots of examples
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Outlook

@ Multi-center solutions? In general multi-punctured Riemann
surface, difficult mathematical problem

e Codim-1 branes like D8-brane? Need 3D massive/gauged
SUGRA

@ Repeat analysis for other non-maximal 3D SUGRA (e.g.
S0(8,22) theory from heterotic on T7)?

@ Place in double/extended field theory of such objects, natural
place to discuss them

@ Relevance for BH microstates



