Classifying SUSY Solutions

(Exotic) Branes in 3D 0000000000 Summary 00

Classifying Supersymmetric Solutions in 3D Maximal Supergravity

Daniel Mayerson University of Amsterdam d.r.mayerson@uva.nl

March 20, 2014

• J. de Boer, D. R. Mayerson, M. Shigemori [arXiv:1403:4600] (Today!)

Introduction	Exotic Brance (1)		
•00000000000	000000000000	0000000000	
Introduction	Classifying SUSY Solutions	(Exotic) Branes in 3D	Summary

String theory contains strings, D-branes; also 7-branes such as D7 in IIB:

- $\tau = C_0 + ie^{-\phi}$
- D7: $C_0 = Q_{D7} \theta$
- $Q_{D7} = \int_{\infty} F_1$
- go around brane: $\tau \rightarrow \tau + 1$ "monodromy"

Introduction 00000000000 Classifying SUSY Solutions

(Exotic) Branes in 3D 0000000000 Summary 00

Introduction: Exotic Branes (2)

More "exotic" example: 5_2^2 :

•
$$ds_{10}^2 = H(dr^2 + r^2 d\theta^2) + H \ \mathbf{K}^{-1} dx_{89}^2 + dx_{034567}^2$$

Introduction 00000000000 Classifying SUSY Solutions

(Exotic) Branes in 3D 0000000000 Summary 00

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction: Exotic Branes (3)

In general, for 7-brane ("exotic brane"):

- τ : some fields
- $\tau \rightarrow M \tau$ as go around brane
- $M \in$ U-duality group $(E_{8(8)})$

Classifying SUSY Solutions

(Exotic) Branes in 3D 0000000000 Summary 00

Introduction: Exotic Branes (4)

U-duality groups in different dimensions:

d	$G(\mathbb{R})$	K	$\dim(G)$	rank(G)	dim(K)
10A	\mathbb{R}_+	1	1	1	0
10B	<i>SL</i> (2)	<i>SO</i> (2)	3	1	1
9	$SL(2) imes \mathbb{R}_+$	<i>SO</i> (2)	4	2	1
8	$SL(3) \times SL(2)$	$SO(3) \times SO(2)$	8+3	2 + 1	3 + 1
7	<i>SL</i> (5)	<i>SO</i> (5)	24	4	10
6	<i>SO</i> (5, 5)	SO(5) imes SO(5)	45	5	20
5	E ₆₍₆₎	<i>USp</i> (8)	78	6	36
4	E ₇₍₇₎	<i>SU</i> (8)	133	7	63
3	E ₈₍₈₎	<i>SO</i> (16)	248	8	120

▲□ > ▲圖 > ▲目 > ▲目 > → 目 - のへで

Introduction
000000000000000000000000000000000000000

Classifying SUSY Solutions

(Exotic) Branes in 3D 0000000000 Summary 00

Introduction: Exotic Branes (5)

Properties of exotic branes:

- codim-2 (non-contractible circle around brane)
- non-geometric: even metric can jump! (U-fold)
- tension $\sim g_s^{-n}$, $n \geq 2$

Summary 00

Introduction: Exotic Branes (6)

Non-Abelian charge (=monodromy) lattice: de Boer, Shigemori 1209.6056

- Normal branes: Abelian charge lattice Zⁿ e.g. D1 + D5 = D5 + D1
- Codim-2 branes: monodromy is charge

$$\tau \to M \tau$$
 (1)

- Charge $M \in E_{8(8)}(\mathbb{Z})$ <u>non-Abelian</u> charge lattice
- Not trivial to "add" branes!

Introduction: Exotic Branes (7)

Results for 1/2 BPS branes in max SUGRA:

Bergshoeff, Riccioni, {+Romano 1303.0221; +Marrani 1201.5819; +Ortin 1109.4484; 1109.1725; 1009.4657; ... }

- Codim-2 branes ↔ longest weights in adjoint rep. of U-duality group (3D, e₈: 248-8=240)
- degeneracy of BPS condition \rightarrow can form multi-charge codim-2 brane orbits that are 1/2 BPS
- In principle, all x BPS states should be in some way "bound states" of fundamental 1/2 BPS branes. In practice, difficult to determine all possible states (↔ non-Abelian charge lattice!)

Introduction: Exotic Branes (8)

Supertube effect: Mateos & Townsend hep-th/0103030

- 7-branes sometimes considered "pathological"
- Supertube effect: dipole exotic branes de Boer, Shigemori 1004.2521
 - original supertube "puff-up" effect: F1(1)+D0 ightarrow D2(1 ψ)

- U-dual to e.g.: D4(6789) + D4(4589) \rightarrow $5^2_2(4567\psi,89)$
- Only <u>ordinary</u> brane charge at infinity (no pathological 7-brane behaviour), but <u>exotic</u> dipole charges!
- Exotic puffed-up microstates may be crucial for constructing (enough) black hole microstates...

Introduction

Classifying SUSY Solutions

(Exotic) Branes in 3D 0000000000 Summary 00

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction: Going to 3D(1)

7 branes in 10D:

- point particle in 3D
- metric is single-valued
- only scalar monodromies
- would be nice to classify possible monodromies!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction: Going to 3D (2)

Compactify string theory on $T^7 \rightarrow 3D$ maximal SUGRA:

- Can ask well-defined question: What are necessary/sufficient conditions for a solution to preserve SUSY?
- Despite complicated scalar structure, we obtain <u>complete</u> <u>necessary/sufficient conditions, complete classification</u> of SUSY solutions
- Afterwards: what is the relation between classification of SUSY solutions and possible monodromies?

Introduction	Classifying SUSY Solutions	(Exotic) Branes in 3D 0000000000	Summary 00

Introduction: Going to 3D (3)

Classifying SUSY solutions:

• Previous classifications of SUSY solutions done in e.g. $\mathcal{N}=1,2$ SUGRA in 4/5/6D

Gauntlett, Gutowski, Hull, Pakis, Reall hep-th/0209114 and many others

- Usual strategy:
 - Assume Killing spinor ϵ , construct bilinears, e.g. $V_{\mu} = \overline{\epsilon} \gamma_{\mu} \epsilon$
 - $\bullet~$ Algebraic/differential relations $\rightarrow~$ restriction solutions
- Usually can't explicitly construct all SUSY spacetimes
- Still very useful: construct *AdS*₅ BHs, SUSY microstate geometries, ...

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction: Recap

Recap:

- Interested in studying all possible (supersymmetric) exotic branes
- Go to 3D (codim-2: point particles) for richest explicit U-duality structure
- First: classify supersymmetric sols in 3D (pure SUGRA problem)
- Then: relate to classification of point particles

Classifying SUSY Solutions

(Exotic) Branes in 3D 0000000000 Summary 00

3D Maximal SUGRA (1): $\mathbf{e_{8(8)}}$

Constructing the algebra **e**₈: GSW, 6.A

• Take the 120 **so**(16) generators X^{IJ}:

$$[X^{IJ}, X^{KL}] = \delta^{IL} X^{JK} + \delta^{JK} X^{IL} - \delta^{IK} X^{JL} - \delta^{JL} X^{IK}.$$
(2)

Append 128 generators Y^A in Majorana-Weyl spinor rep. of so(16):

$$[X^{IJ}, \mathbf{Y}^{A}] = \Gamma^{IJ}_{AB} \mathbf{Y}^{B}.$$
 (3)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $e_8 = \{X^{IJ}, Y^A\}!$
- For split real form $e_{8(8)}$, can take Y^A as non-compact generators

Classifying SUSY Solutions

(Exotic) Branes in 3D 0000000000 Summary 00

3D Maximal SUGRA (2): Action

Fields in the theory:

• 128 non-compact scalars $\phi := \phi^A Y^A \in \mathbf{e_{8(8)}} \ominus \mathbf{so(16)}$

•
$$V = e^{\phi} \in E_{8(8)}/SO(16)$$

• Global symmetry (U-duality): $e^{\phi} \rightarrow g e^{\phi} h(\phi)$, $g \in E_{8(8)}$ (*h* compensating gauge transformation to keep gauge)

Classifying SUSY Solutions

(Exotic) Branes in 3D 0000000000 Summary 00

3D Maximal SUGRA (3): Action

Constructing a bosonic action: Marcus, Schwarz '83

- $V^{-1}\partial_{\mu}V = P_{\mu} + Q_{\mu}$
- $\mathcal{Q}_{\mu} \in \mathbf{so(16)}$: compact "gauge field"
- $P_{\mu} \in \mathbf{e_8} \ominus \mathbf{so(16)}$: non-compact part
- E_8 invariant action: $\mathcal{L} = R g^{\mu\nu} tr(P_{\mu}P_{\nu})$

Classifying SUSY Solutions

(Exotic) Branes in 3D 0000000000 Summary 00

3D Maximal SUGRA (4): Action

SL(2) toy example:

• $V \in SL(2)/SO(2)$

• Can choose (Borel) gauge: $V = \begin{pmatrix} 1 & \tau_1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \sqrt{\tau_2} & 0 \\ 0 & \sqrt{\tau_2}^{-1} \end{pmatrix}$

•
$$V^{-1}dV = P + Q$$
:
• $P = \frac{1}{2\tau_2} \begin{pmatrix} d\tau_2 & d\tau_1 \\ d\tau_1 & -d\tau_2 \end{pmatrix}$
• $Q = \frac{1}{2\tau_2} \begin{pmatrix} 0 & d\tau_1 \\ -d\tau_1 & 0 \end{pmatrix}$

• Kinetic term: $tr(P^2) = \frac{1}{2\tau_2^2} \left(d\tau_1^2 + d\tau_2^2 \right)$

Classifying SUSY Solutions

(Exotic) Branes in 3D 0000000000 Summary 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

3D Maximal SUGRA (5): Variations

SUSY transformations:

- SUSY parameters ϵ^{I}_{α}
- $I = 1, \cdots 16$ $\mathbf{so(16)}$ vector; $\alpha = 1, 2$ 3D Majorana spinor

•
$$\delta \psi^I_\mu = \nabla_\mu \epsilon^I + Q^{IJ}_\mu \epsilon^J$$

•
$$\delta \chi^{\dot{A}} = P^{A}_{\mu} \gamma^{\mu} \Gamma^{I}_{\dot{A}A} \epsilon^{I}$$

Classifying SUSY Solutions

(Exotic) Branes in 3D 0000000000 Summary 00

Classification - Null and Timelike Solutions (1)

- Find ϵ^{I} such that $\delta\psi^{I}_{\mu}=\delta\chi^{A}=0$
- Construct $V_{\mu} = (\epsilon')^T \gamma_{\hat{0}} \gamma_{\mu} \epsilon'$
- $abla_{\mu}V_{
 u} = 0$ V is Killing, but also stronger
- $V^2 \leq 0$

Introduction 0000000000000000 Classifying SUSY Solutions

(Exotic) Branes in 3D 0000000000 Summary 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Classification - Null and Timelike Solutions (2)

Null class: $V = \partial_u$ null

•
$$ds^2 = -dudv - 2\omega(v, x)dvdx + h(v, x)dx^2$$

• pp-waves, all 1/2-SUSY

• scalars $\phi(v)$

Classifying SUSY Solutions

(Exotic) Branes in 3D 0000000000 Summary 00

Classification - Null and Timelike Solutions (3)

Timelike class: $V = \partial_t$ timelike

•
$$ds^2 = -dt^2 + e^{U(z,\overline{z})} dz d\overline{z}$$
 $(\partial_t \phi = 0)$

• SUSY condition (
$$\xi = \epsilon_1 + i\epsilon_2$$
):

$$P_z^A \Gamma_{\dot{A}A}^I \xi^I = 0 \tag{4}$$

 Introduction
 Classifying SUSY Solutions
 (Exotic) Branes in 3D
 Summary

 Occorrection
 Occorrection
 Nilpotent Orbits (1)

Necessary and sufficient SUSY condition timelike solutions:

$$P_{z}^{A}\Gamma_{\dot{A}A}^{\prime}\xi^{\prime}=0 \tag{5}$$

- Invariant under (compact) conjugation $K \in SO(16)$: $P \rightarrow K^{-1}PK$
- SUSY determined by conj. class = orbit of P_z in $\mathbf{p} \equiv \mathbf{e_8} \ominus \mathbf{so(16)}$
- Lots of math results about these objects! Rich (Zariski) topology of orbits... Kostant & Rallis '71, Collingwood & McGovern '93, Djokovic '00, '03 '05

Introduction 000000000000000 Classifying SUSY Solutions

(Exotic) Branes in 3D 0000000000 Summary 00

Classification (Timelike) - Nilpotent Orbits (2)

First results:

- a) ("smaller orbit = more SUSY") If $\overline{\mathcal{O}}_1 \subseteq \overline{\mathcal{O}}_2$, then (#SUSY \mathcal{O}_1) \geq (#SUSY \mathcal{O}_2) Example:
 - 1/4 BPS orbit O of (N_1 D1-branes) + (N_5 D5-branes)

• 1/2 BPS orbit $\mathcal{O}' \subset \overline{\mathcal{O}}$ of (N₁ D1-branes)

- b) For SUSY, *P* needs to be nilpotent $(P^n = 0)$
 - e.g.: trivial orbit $\mathcal{O}_0 = \{0\}$ is max. SUSY; $\mathcal{O}_0 \subseteq \overline{\mathcal{O}}_X$ for all nilpotent X

・ロト・日本・日本・日本・日本・日本

 Introduction
 Classifying SUSY Solutions
 (Exotic) Branes in 3D
 Summary

 October String Subscription
 October String
 October String
 Summary

 Classification (Timelike) - Nilpotent Orbits (3)
 Orbits (3)
 Summary

Proof of (a) ("smaller orbit = more SUSY") If $\overline{\mathcal{O}}_1 \subseteq \overline{\mathcal{O}}_2$, then (#SUSY \mathcal{O}_1) \geq (#SUSY \mathcal{O}_2)

- $P_z^A \Gamma_{\dot{A}A}^I \xi^I = 0$ is essentially matrix equation $M\xi = 0$ with $M = P_z^A \Gamma_{\dot{A}A}^I$
- \exists non-trivial solutions for $\xi^{\prime}
 ightarrow$ all 16 imes 16 det. of M vanish
- More SUSY preserved → smaller and smaller sub-determinants must vanish
- det = 0 → (homogeneous) equations involving *P*; solutions form closed set in Zariski topology

Proof of (b) For SUSY, *P* needs to be <u>nilpotent</u> $(P^n = 0)$

• Unique Jordan decomposition algebra element: $X = X_N + X_S$; X_N nilpotent, X_S semisimple; $[X_N, X_S] = 0$

- (math result) $\mathcal{O}_{X_S} \subseteq \overline{\mathcal{O}}_X$
- (math result) some element in CSA $c_i H_i \in \mathcal{O}_{X_S}$
- Solve for $c_i \rightarrow \text{all } c_i = 0$ for SUSY $\rightarrow X_S = 0$

Introduction 00000000000 Classifying SUSY Solutions

(Exotic) Branes in 3D 0000000000 Summary 00

Classification (Timelike) - Nilpotent Orbits (5)

Narrowed problem down to nilpotent orbits of P_z

- Nilpotent orbits very special
- Only finitely many $0,\cdots,115$
- Partial ordering (Hasse diagram) $\mathcal{O}_i \leq \mathcal{O}_j$ if $\overline{\mathcal{O}}_i \subseteq \overline{\mathcal{O}}_j$ Collingwood & McGovern '93; Djokovic '00, '03, '05

No SUSY preserved by 5 → no other orbits preserve SUSY!
 Recall: (a) "smaller orbit = more SUSY",

Introduction	Classifying SUSY Solutions	(Exotic) Branes in 3D	Summary
00000000000		0000000000	00
Classification -	Summary		

Complete classification of SUSY solutions in 3D maximal SUGRA:

- Null class: pp-waves, 1/2-SUSY
- Timelike class:
 - $ds^2 = -dt^2 + e^{U(z,\overline{z})} dz\overline{z} \ (\partial_t \phi = 0)$
 - Orbit of P_z completely determines SUSY preserved

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- *P_z* nilpotent, "smaller orbit = more SUSY"
 - max. SUSY: 0
 - 1/2 SUSY: 1
 - 1/4 SUSY: 2
 - 1/8 SUSY: 3,4
 - 1/16 SUSY: 6, 7, 9, 12, 14

Classifying SUSY Solutions

(Exotic) Branes in 3D ●○○○○○○○○○ Summary 00

Branes in 3D - Single Center Ansatz

Take simple single-center spherically symmetric ansatz (timelike class):

• metric $ds^2 = -dt^2 + e^{U(r)}(dr^2 + r^2 d\theta^2)$

• scalars
$$M = e^{\theta \mathbf{X}} m(r) e^{\theta \mathbf{X}^T}$$

• $M = e^{\phi} e^{\phi^T} (\in E_{8(8)}/SO(16))$

• $X \in e_{8(8)}$ gives monodromy (through $g = e^{2\pi X}$) (Remember $e^{\phi} \rightarrow g e^{\phi} h$)

• with any solution m, X; can conjugate by $U \in E_{8(8)}$ to get solution UXU^{-1}, UmU^T

Branes in 3D - Easy Brane Representatives (1)

Identify $X = E_{\alpha}$ with 240 "fundamental" 1/2 BPS branes (D7-brane U-duality multiplet):

- Root 8-vector α : $(\pm 1, \pm 1, 0, 0, 0, 0, 0, 0)$, $\frac{1}{2}(\pm 1, \pm 1)$ (and perm.)
- Brane tension $2\alpha_8 2$
- General mass formula:

$$M \sim g_s^{2\alpha_8 - 2} \prod_{i=1}^7 R_i^{\alpha_i - \alpha_8 + 1}$$
 (6)

Introduction Classifying SUSY Solutions (Exotic) Branes in 3D Summa

Branes in 3D - Easy Brane Representatives (2)

$$M \sim g_s^{2\alpha_8 - 2} \prod_{i=1}^7 R_i^{\alpha_i - \alpha_8 + 1}$$
 (7)

Examples:

- $D3(123) \leftrightarrow \frac{1}{2}(+1,+1,+1,-1,-1,-1,-1,|+1)$ $\leftrightarrow M \sim g_s^{-1} R_1 R_2 R_3$
- $F1(1) \leftrightarrow (+1, 0, 0, 0, 0, 0, 0, |+1)$ $\leftrightarrow M \sim g_s^0 R_1$
- $KK(12345; 6) \leftrightarrow (0, 0, 0, 0, 0, +1, -1, |0)$ $\leftrightarrow M \sim g_s^{-2} R_1 R_2 R_3 R_4 R_5 (R_6)^2$

Introduction Classifying SUS 00000000000 00000000	SY Solutions (Exotic)	Branes in 3D S	Summary 00	

Branes in 3D - Easy Brane Representatives (3)

$$M \sim g_s^{2\alpha_8 - 2} \prod_{i=1}^7 R_i^{\alpha_i - \alpha_8 + 1}$$
 (8)

Allows us to construct brane reps for each (SUSY) nilpotent orbit: e.g. orbit 14 (1/16 BPS):

M5	Х			Х		Х	Х	Х
M5		Х	Х			Х	Х	Х
M5		Х		Х	Х		Х	Х
M5	Х		Х		Х		Х	Х
M5			Х	Х	Х	Х		Х
M5	Х	Х			Х	Х		Х
M5	Х	Х	Х	Х				Х
Р								Х

Introduction Classifying SUSY Solutions (Exotic) Branes in 3D Summary

Branes in 3D - All Nilpotent & Semi-Simple Charges (1)

sl(2) solutions: we can find (SUSY) solutions for: Bergshoeff, Hartong, Ortin, Roest hep-th/0612072

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

•
$$X_N = \begin{pmatrix} 0 & \pm 1 \\ 0 & 0 \end{pmatrix}$$
 "N-brane"
• $X_K = \begin{pmatrix} 0 & \lambda \\ -\lambda & 0 \end{pmatrix}$ "K-brane"
• $X_A = \begin{pmatrix} \lambda & 0 \\ 0 & -\lambda \end{pmatrix}$ "A-brane" (not globally well-defined)
• Always $P \sim \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

 Introduction
 Classifying SUSY Solutions
 (Exotic) Branes in 3D
 Summar

 Branes in 3D - All Nilpotent & Semi-Simple Charges (2)

Scalars:
$$M = e^{\theta X} m(r) e^{\theta X^T}$$

$$N\text{-brane:}$$

$$X = \begin{pmatrix} 0 & \pm 1 \\ 0 & 0 \end{pmatrix} \qquad m = \begin{pmatrix} \log r & 0 \\ 0 & (\log r)^{-1} \end{pmatrix}$$

$$K\text{-brane:}$$

$$X = \begin{pmatrix} 0 & \lambda \\ -\lambda & 0 \end{pmatrix} \qquad m = \begin{pmatrix} \frac{1+r^{2|\lambda|}}{1-r^{2|\lambda|}} & 0 \\ 0 & \frac{1-r^{2|\lambda|}}{1+r^{2|\lambda|}} \end{pmatrix}$$

$$A\text{-brane:}$$

$$X = \begin{pmatrix} \lambda & 0 \\ 0 & -\lambda \end{pmatrix} \qquad m = \begin{pmatrix} \sec v & \tan v \\ \tan v & \sec v \end{pmatrix},$$

$$v \equiv c_1 + 2\lambda \log r$$

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

Any <u>nilpotent</u> monodromy $X_N \in \mathbf{e_{8(8)}}$:

- X_N is part of an $sl(2)\mbox{-subalgebra}$ of $e_{8(8)}$ (Jacobson-Morozov theorem)
- embed ${\rm sl}(2)$ N-brane solution into ${\rm e}_{8(8)}$ so that $X_{sl(2)} \to X_N$ Djokovic '00
- SUSY of resulting solution depends on nilpotent orbit of X_N

Branes in 3D - All Nilpotent & Semi-Simple Charges (4)

Any semisimple monodromy $X_{S} \in \mathbf{e_{8(8)}}$:

- X_S is conjugate to the sum of at most 8 X_K 's and X_A 's, where X_K, X_A are the corresponding **sl**(2) elements; moreover all these (8) **sl**(2) algebras <u>commute</u> _{Sugiura} ¹⁵⁹
- can paste (up to 8) K- and A-branes together (and conjugate) to construct X_S as monodromy
- relative orientation of K/A-branes determines SUSY preservation

(Exotic) Branes in 3D ○○○○○○○○

Branes in 3D - General Monodromies

General monodromy X:

- Unique Jordan decomposition $X = X_S + X_N$, $[X_S, X_N] = 0$
- Can't just "paste" brane sols for X_S, X_N separately together (except special cases)
- ullet \rightarrow case by case analysis?

(Exotic) Branes in 3D ○○○○○○○●○

Branes in 3D - Other Monodromies

Questions:

- How do we find solutions for general monodromies?
- Are the solutions we found for nilpotent/semisimple monodromies the only ones possible for these monodromies?
- Can we construct a SUSY solution for any monodromy?

No definitive answers... but:

- It is possible to find multiple solutions for the same monodromy
- Different solutions for same monodromy can preserve different SUSY

Classifying SUSY Solutions

(Exotic) Branes in 3D

Summary 00

Branes in 3D - Plethora of Examples

Study plethora of examples:

subalgebra	X	semisimple	nilpotent	compact	SUSY	global
sl (2)	$\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right)$		0		0	0
sl (2)	$\left(egin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} ight)$	0		0	0	0
sl (2)	$\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right)$	0			0	
$(\mathfrak{sl}(2) \subset) \mathfrak{e}_8$	any nilpotent		0		0	0
$(\mathbf{sl}(2)^n \subset) \mathbf{e}_8$	any semisimple	0		(\bigcirc)	0	(\bigcirc)
sl (2) ⁿ	any (in sl (2) ⁿ)	(())	(())	(\bigcirc)	0	0
sl (3)	$\left(\begin{array}{rrrr} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$		0			
$(\mathbf{sl}(2) \subset \mathbf{sl}(3))$			0		0	0
sl(3)	$\left(\begin{array}{rrrr}1 & 0 & 1\\0 & -2 & 0\\0 & 0 & 1\end{array}\right)$					0
sl(3)	$\left(\begin{array}{rrrr}1 & 0 & \pm 2\\ 0 & -2 & 0\\ 0 & 0 & 1\end{array}\right)$				0	
sl(3)	$\left(\begin{array}{rrrr} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right)$		0		0	
$(sl(2) \subset sl(3))$			0			0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

00000000000	000000000000	0000000000	•0
Summary			

- Exotic branes: objects in string theory with weird properties
- e.g. spacetime/other fields can change when we loop around; monodromy
- Classify these \rightarrow compactify to 3D; only scalar monodromies $\phi \rightarrow \phi + X$
- $P \sim \partial \phi$ completely determines SUSY of 3D; particular nilpotent orbits allowed
- Relation P ↔ X? No easy relation → no easy way to classify "allowed" SUSY exotic branes; lots of examples

00000000000 000000000 0000000 0 0				
Introduction Classifying SUSY Solutions (Exotic) Branes in 3D Summa	ntroduction 000000000000	Classifying SUSY Solutions	(Exotic) Branes in 3D 0000000000	Summary O

- Multi-center solutions? In general multi-punctured Riemann surface, difficult mathematical problem
- Codim-1 branes like D8-brane? Need 3D massive/gauged SUGRA
- Repeat analysis for other non-maximal 3D SUGRA (e.g. SO(8, 22) theory from heterotic on T^7)?
- Place in double/extended field theory of such objects, natural place to discuss them

• Relevance for BH microstates

αιιοοκ