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1. Introduction

T-duality is one of the characteristic symmetry of

the string, and distinguishes it from the theory of
particles.

Thus to understand the stringy geometry, we

need a framework where such a symmetry is
manifest.

We take “Generalized Geometry” for this purpose.

alternative: Double Field Theory,



There appear various EXOTC geometries as string
background such as

1. For the open string with B-field background:
The NCG in effective theory of D-brane

2. For the closed string with various fluxes such as non-geometric

flux: It seems there appears also NCG, even NAG in the effective
theory

We want to understand these structures in a unified way,
using Generalized Geometry



* Generalized Geometry is proposed by N.
Hitchin:
Generalized Complex Geometry, is used for example, for
classifying compactification, CY, Flux ...
mainly to analyze closed string sector

However, it is also possible to use it for characterization of D-brane
effective theory (Open string sector)

DBIl-action, Seiberg-Witten map, effect of H-flux,...

Today we show a result from these attempts:

There is a new type of representation of gauge theory as an
effective theory of D-brane. This may give also a hint to

understand “non-geometric flux”
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briefly

2. Generalized Geometry

 Ge. Geom. is a generalization of Diff. Geom. with the properties

(1) over the target space M, consider generalized tangent bundle
™ =TM®T*M — M

(@ Its section is generalized vector (1-vector+1-form)
v+€el(TM), vel'(TM), £E€T(T"M)

v+ & =0y + Enda™
@) canonical inner prodduct

T
(& vt ) = o) = ("g) ((1) é) (j;’) ,

Symmetry: O(D, D)

@ anchor map « : (TM) — T (TM), 7(v+&) =



It generalizes the following properties of tangent bundle:

* Closed under Lie bracket
Tangent vectors [ (I"M ) is Lie algebra
 Anchormap (trivial): a : E=TM — TM

[u, fo] = flu,v] + (a(w)f)v

which are the properties of a Lie algebroid

For generalized tangent bundle

* There is a Dorfman bracket, instead of Lie bracket

[U _I_ 5,’0 _I_ 77] — [U,U] _I_ ﬁ’uﬂ? o ZUd€7 I_(TM)

e Anchormap w:[(TM) —>T(TM), n(v+§) =v

We get, as a generalization of Lie algebroid, a Courant algebroid



Symmetry of T A (Courant algebroid)

e Diffeomorphism

Diff(M): For a diffeo. f: M — M,

u+ & — fa(u)

1),

. B-transformation: For B € Q2 ___ (M),

closed

eBu4€) —»u+ &+ wB,

Shift of 1-form

 For generic B: H-twisted Courant algebroid

They are a generalization of the symmetry of TM (diffeo)
Generalized diffeomorphism



Summary

Differential geometry Generalized Geometry
T'M TM ®T*M
v =ovMa,, v+ & =vMoy + EypdaM
Lie bracket [-, ] - Dorfman bracket [', ]
Lie algebroid Courant algebroid
symmetry  Diff (M) DIff (M) x Q24 (M)
generator  Lie derivative Generalized Lie derivative

/Jv £v+£



3. D-brane as a Dirac structure

Before we start to discuss the effective theory of D-
brane, let us first explain how we can characterize
the D-brane in Generalized Geometry.

It is Dirac structure that gives a geometrical
characterization of D-brane



D-brane as a Dirac structure
* Standard description of D-brane:

D-brane:
v Embedding ¢ : ¥ 30% < zM(c)e M

Fluctuations is

' Scalar fields ®* (in static gauge): transverse
displacements

* Gauge fields Ag:

In static gauge: they are function of z% = ¢¢
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Dirac structure

What is the Dirac structure:
Dirac structure is a subbundle L with properties:

* lIsotropic:  vX, Y eT(L) (X,Y)=0
* |nvolutive: sections of L, i.e. generalized vectors
are closed under Dorfman bracket

* Example:
L=Span{dy, ..., Op, dePt1...deP=1}Y  ~flat Dp-brane
i) generalized vector of L X = u9q + &dxt € L

ii) generalized 1-form (connection) of dual of L
a = P1Y; + Agdx® € L*

(this represents just a fluctuation)



* Dirac structure: maximally isotropic, involutive
(X,Y)=0

1. lsotropic

[’UJ—|—£,”U—|—’I7] — [uav]+£u77—zvdf
— [Uav]+£un—£v§_d<u‘|‘§a’0+n>
Last term vanishes and Dorfman becomes Lie bracket

2. Maximal subbundle dimension =D
3. Involutive
generalized vectors closed under Dorf. bracket

Courant algebroid becomes Lie algebroid on Dirac
structure. (Lie (anti) + anchor+Jacobi)

generalization of TM
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Geometrical image of D-brane

Static gauge: q;’i(ma) aji independent
( a D-brane = aleaf )

Lie algebroid defines a foliation

Mathematically, a Lie algebroid (Lie bracket of
v € (TS)) defines a foliation.

|dentify a leaf in foliation as a D-brane

Scalar field defines a deformation of a leaf by
diffeo.

We may consider deformation of foliation in
static gauge.
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Fluctuation of D-brane in Ge. Ge.

We identify a D-brane with a sub-bundle defined by a Dirac structure

Furthermore, D-brane with fluctuation is also a Dirac structure

It means that the fluctuation of D-brane
is @ deformation of Dirac structure

Subbundle L = span{d,,dz'} C TM
corresponds to D-brane  z' = const

Sectionis Vi = v*(x)0, + Q(a:)dxi c L.

Fluctuation is identified with an element of a dual Dirac structure:

Generalized 1-form o= & + A = ®'9; + Aqdax® € L*




Fluctuation of D-brane in Ge. Ge.

a generalized 1-form generates a deformation of Dirac structure L

a=CD—|—A=C|>i@,,;—|—Aad:13“€L*

Fluctuation g, defines diffeo.,
in general a defines a generalized diffeo.
and corresponding deformed Dirac structure is

Ly =e ~+AL C TM,
In static gauge, it is easy to show : fields are function of ¢
Lr>V 4+ F(V) =v¥2)(8q + 0aP'8; + Fupda®) + &;(x)(dz’ — 8 d'dx®),

F = Fudz® A dz? + 0,D%dz® A §; € T(AZLY),
And this “field strength” is defined by using the differential of
Lie algebroidas F =dpa=d.(A+ @)
it is a generalized 2-form



Defi n itIO n : Note for explanation
The exterior derivative of Lie algebroid

For a given Lie algebroid (A, p,[-,:]4), an asso-
ciated A-differential form (IF(A®A*),A,d4) can
be defined. The exterior differential d4 Is de-

fined by

dAw(Xla co 7Xk—|-l)
= Y ()" p(X) w(Xy, s Xy, Xp1)

1
+ Z(_)Z—l_Jw([X?,: Xj]Aaxla ey Xy ana T 7Xk—|—l)'
1<
d4 IS a graded derivation on a wedge product,
and d4 = 0.
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Graphical representation of Dirac structure

Deformed Dirac structure can be represented by a graph of
the map from L to L*

Lr>V 4+ FV) =14z)(0a + 8aD8; + Fpdz®) + &;(z)(dz’ — .Pdz®),
Dp-brane with fluctuation

X
L Lr

FV) | V4 FW)

L

Dirac structure of
Dp-brane

v
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Symmetry of the Dirac structure

Generalized diffeo.L.4,, Diffeo.x B-field gauge trans-
formation:

e =¢ +e; =cVOy = c0n+ €0,
A=A+ A= Ayda™ = Nda" + Nadz®.

Note that € + A €L and ¢ —|—/\|| c L*.

Symmetry: (in static gauge)

1. Generalized diffeo which preserve foliation
Ope' =0, Iy =0

2. Generalized diffeo which preserve leaf:

( a D-brane = aleaf )

L-Diff C F-Diff
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Low energy theorem

F-Diff is total symmetry of D-brane keeping the foliation

strucuture. A D-brane chooses a leaf and induces SSB
F-Diff EEEE) L-Diff

broken symmetry direction becomes NG boson and
generalized diffeo. symmetry is realized nonlinearly in DB
action. This is a generalization of the low energy theorem
based on Lie algebra to Courant/Lie algebroid

Note: Inportant result here is that we could identify a vector

field as a kind of NG boson. We discuss this later again.
[T.Asakawa,S.Sasa,S.W.] JHEP10(2012)064,

/\a — ECFCa _I— /\kaacbk,

Transf. of broken 6 A,
e’ — €0 D",

direction is S



4. Altenative representation of

Fluctuation of D-brane

e Using this formulation we can define a new type

of representation of the fluctuation:

Field strength F is 2-vector

Potential is 1-vector

Bianchi identity is Maurer-Cartan type relation

—~ 1 ~~ —~ _
d9F+§[F7F]S =0

Gauge symmetry is generated by Hamiltonian

vector field

[T.Asakawa,S.Muraki,S.W]|



What is the alternative representation of Dirac
structure?

From a graph, one can see that there is always another
representation of the same Dirac structure

In the following, we only consider the D9-brane

thus L =1TM
then 2-form w € A2T*M defines a deformation

Lo ={X+w(X)|X eTM}

This becomes Dirac structure if W is symplectic.

Then the same Dirac structure can be represented by a
2-vector § as



Dirac structure can be represented by
B-transformation
Lo ={e¥(X) = X—|—w(X)|X e TM,w € N2T*M}.
symplectic form 4, = 0
B-transformation
Lo = {ef(¢) =¢ 9(§)|§ e T*M,0 € N\°TM}.
Poisson bivector [0,0]¢ =0

In general, take a pair (L,L*), deformation can be
Lby Fe A2L* or L*by F' € A2L
with Maurer-Cartan relation d,F + [F,F], =0



2 ways to represent a Dirac structure:
6 = %92381 A\ 6‘3

T* M Ly
o
¢ X +w(X) =&+ 6(6)
W
X TM

E=w(X) = winjd:ci = —iyxw
X = 0(¢) = 0¢;0;
£ = w(0(8)) 0 = 1
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* Now we consider the fluctuation of the bound
state of D-branes given by a background w

The fluctuation is given by 1-form A
a=A=Asdx*cT*M

The D-brane with fluctuation is also Dirac struc.
(X +w(X))=X+ (w+ F)YX), F=dA
This is a natural way to add the fluctuation

for L., , since d(w—+ F) =0

L4+ becomes Dirac structure again.

This is the standard description of fluctuation.



Defining the Dirac structure Lg by B-transformation, a
natural way to describe a fluctuation is also by B-
transformation

P

The fluctuation is given by 2-vector F’

F(X+0(X)) =X+ 0+ F)(X), FeAL
The deformed Dirac structure LG—I—F becomes Dirac
structure again if

[6’—I—F,9—I—F’]5:O
Or equivalently Maurer-Cartan type relation:

1 ~ . _ 1 .
5[9‘|‘F79‘|‘F]S = [Q,F]S-I-E[F,F]S

1 - .
doF + S[F, Flg =0




* Graphically, we can represent the relation as

T*M Lg




Therefore, the fluctuation can be represented in two ways,
and their equivalence can be written by the condition:

E+ 0+ F)(E) =X+ (w+ F)(X)

0+ F=(w+F)"1=14+0F)"10
F=[Q+60F)"1-116=—-1+46F)"1oF0

F=0F'6
n /
For constant 97 F, F

This is the relation given by
Seiberg-Witten as a relation

between the commutative and

noncommutative field strengths.




* This relation to NCG is interesting : discussion

 Here, | want to concentrate on the fluctuations
and its gauge symmetry.

Our previous result tells us :[ASW]

Among the total symmetry of generalized tangent
bundle, the generalized diffeo. which preserves the
Dirac structure is not fluctuation, since we
identified D-brane and Dirac structure, and the
broken direction can be considered as a Nambu-
Goldstone mode and thus as a fluctuation.



-[For L, case,]the generalized diffeo.

transformation of vector x + w(X) ¢ L, can be written:
ﬁe—l—w(e)—l—/\(X —I—w(X)) — ﬁeX —I—w(ﬁgX) —iXdA.

where € is 1-vector and A is 1-form parameters
of symmetry.

From this we can read that the symmetry is
generalized diffeo. by € 4+ w(e) + dA

But if Ais not dA, then symmetry is broken.

Such 1-form A can be identified with NG boson
corresponding to the gauge potential: A€ L =T*M

e FAX + w(X)) = X + (w+ F)(X),



°[For Lg case,]the generalized diffeo.

transformation of vector £ +0(§) € Lg s

Letato@)(€+0(8)) = (Lepga)s —loe)da) +0(Leyg(a)s — io(eyda)
+(Le6) (£).
where € is 1-vector and a is 1-form parameters

of symmetry.

From this we can read that the symmetry is
general. Diffeo. by ¢ 4+ 6(a) + a where L6 =0

But if € is not O preserving diffeo., then symmetry
is broken, and such 1-vector € can be identified
with NG boson corresponding to the gauge
potential: ® ¢ L} =TM



Infinitesimal action of the 1-vector is
Lo(E+0(8)) = Lp€ + 0(LpE) + (L) (E),
and finite version is

e Lo (¢ 4 60(8)) e~ Eog + (e7Eeh) (e L),

& +0'(&)
where 0 = e £og
and ¢ definesamap Ly — Ly

0/ =0+ F where F = e Lo9 — 9.



 We can prove that

.

F=e¢Ltog—0.
can be considered as field strength and ¢ as
gauge potential in a sense that by considering

Maurer-Cartan type relation as a Bianchi identity
and the f written by ¢ guarantees

doF + 3[F,Flg =0
However, the relation with field strength and
potential is nontrivial as

. 1 1
F=dg® = J[®,dg®Pls + [P, [P, dyP]gs - .
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* Finally the gauge transformation of ¢ is given
by the Hamiltonian vector field

th — {hv '}9
since

Lynb = —dgh =0



5. Summary and discussion

1. We have constructed the 1-vector gauge potential:

-Field strength is 2-vector F

Bianchi identity is Maurer-Cartan type relation
which guarantees that the B-transformation by
[ gives Dirac structure again so that it can be
identified with the D-brane fluctuation.

*Gauge symmetry is generated by Hamiltonian
vector field.
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*We have analyzed the relation between the
field A and ¢ and also the relation between the
gauge parameters.

*The explicit relations can be derived by using
Moser’s Lemma and Magnus expansion.[AMW]
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2. Dual description of the same subbundle from the

dual Dirac structure works also for metric structure:
In Generalized Geometry , metric is also characterized by a
subbundle, and can be represented by a graph:

E=g+B : TM - T*M : X7+ (g+ B)s; X’
This subbundle is a set of generalized tangent vectors of
positive/negative length

Cp ={Vy =v+(g+B)w) [veTM}, , (V4,Vy) =g(v,v) >0

C_={V_=v4+(—g+B)(w)|lveTM}, 6 (V_,V_) = —g(v,v) <O

sk
Or equivalently M

GVy=4Vy, for Viel(Cy). /C_|_

o~ 4

’ /Q+B
O(D,D) — O(D) xO(D) .TM




We see the metric from L‘9

Similarly to the fluctuation case
E+(0+1)(€) =X+ (9g+ B)(X)

thus

0+t=(g+ B) !

Here, { is the metric seen from L

6 1 1 T*M Lg
G+® = g+B
We get Seiberg relation or C_|_
so-called open-closed relation 0 /t /

/Q-I-B
M




3. Discussion (H, B, A, \) (gerbe structure)

3-form flux, 2-form potential
closed 2-form with 1-form potential
(R, F, &, h)
3-vector flux, 2-vector potential MC-nontrivial
MC trivial 2-vector with 1-vector gauge pot.
(this part is now identified)
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