Gradient and Vorticity Banding Phenomena in a Sheared Granular Fluid: Order Parameter Description

Meheboob Alam (with Priyanka Shukla)

Engineering Mechanics Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, INDIA

July 1, 2013 @YITP, Physics of Granular Flows, 24 June - 5 July 2013

Outline of Talk

- Shear-banding phenomena in granular and complex fluids
- Gradient Banding and Patterns in 2D granular PCF (Landau-Stuart Eqn.)
- Vorticity Banding in 3D gPCF
- Theory for Mode Interactions
- Spatially Modulated Patterns (Ginzburg-Landau Eqn.)
- Summary and Outlook

Shear-banding?

Sheared granular material (or any complex fluid) does not flow homogeneously like a simple fluid, but forms banded regions having inhomogeneous gradients in hydrodynamic fields.

Origin of Shear-banding?

Multiple Branches in <u>Constitutive Curve</u>

Non-monotonic Steady state <u>Shear Stress vs. Shear Rate Curve</u>

Gradient Banding

Shear Rate > 'Critical' shear rate Flow breaks into bands of high and low shear rates with same shear stress along the gradient direction.

Vorticity Banding

Shear Stress > Critical Shear Stress Flow breaks into bands of high and low shear stresses with same shear rates along the vorticity direction.

Gradient Banding in 2D-gPCF

Order-parameter description of shear-banding?

Shukla & Alam (2009, 2011a,b, 2013a,b)

Tuesday 2 July 13

V

Granular Hydrodynamic Equations

(Savage, Jenkins, Goldhirsch, ...)

Balance Equations

Mass

$$\frac{D P}{Dt} = -\rho \nabla . u$$

 D_{0}

Momentum
$$\rho \frac{Du}{Dt} = -\nabla . \Sigma$$

Pseudo Thermal Energy

$$\frac{\dim}{2}\rho \frac{DT}{Dt} = -\nabla \cdot q - \sum : \nabla u - D$$

- $\boldsymbol{\varphi}:$ Volume fraction of particles
- *T* : Granular temperature
- *u* : Streamwise velocity
- v: Normal velocity

$$\rho = \rho_p \phi$$

Navier-Stokes Order Constitutive Model

tress
$$\sum = (p - \zeta (\nabla . u))I - 2\mu S$$
$$S = \frac{1}{2} (\nabla u + \nabla u^T) - \frac{1}{\dim} (\nabla . u)I$$

Flux of pseudo-thermal energy

$$q = -\kappa \nabla T$$

S

dim: Dimension of system κ: Thermal Conductivity μ: Shear Viscosity D: Sink of granular energy

Base Flow : Steady, Fully developed.

Boundary condition: No Slip, Zero heat flux.

Linear Stability

$$\Phi^{0} = const. \ T^{0} = const.$$

$$u^{0}(y) = y$$

$$Perturbation (X')$$

$$I = X_{total}$$

If the disturbances are of infinitesimal magnitude, 'nonlinear terms' in disturbance eqns. can be neglected.

 $X'(x,y,z,t) \sim \exp(\langle \text{omega t})\exp(ik_x x + ik_z z)$ $\frac{\partial X'}{\partial t} = LX' \quad \text{Linear Problem}$ $\int \\ L\hat{X} = \omega \hat{X} \\ B^{\pm} \hat{X} = 0 \quad \text{Eigenvalue}$ Problem

Can 'Linear Stability Analysis' able to predict '**Gradient-banding'** in Granular Couette flow as observed in **Particle Simulations**?

Can 'Linear Stability Analysis' able to predict '**Gradient-banding'** in Granular Couette flow as observed in **Particle Simulations**?

Not for all flow regime

Linear Theory

Particle Simulation

One must look beyond Linear Stability

Nonlinear Stability Analysis: Center Manifold Reduction

(Carr 1981; Shukla & Alam, PRL 2009)

Dynamics close to critical situation is dominated by finitely many "critical" modes.

Z (t): complex amplitude of `finite-size' perturbation

$$\begin{aligned} & D^{\text{isturbance}}_{\text{inite-size' perturbation}} X' &= \phi + \psi^{\text{Non-Critical Mode}}_{\text{odd}} & \overbrace{(1): \text{ complex amplitude of } \\ & \widehat{(1): \text{ complex amplitude of } \\ & \text{inite-size' perturbation}} \end{aligned}$$

$$\begin{aligned} & \mathcal{U}(\underline{v}) &= N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial t} - \omega)}_{\text{odd}} ZX_{11} = N_2 + N_3 & \underbrace{(\frac{\partial}{\partial$$

 $\langle \mathbf{n} \rangle$

 $\langle \mathbf{n} \rangle$

Taking the inner product of slow mode equation with adjoint eigenfunction of the linear problem and separating the like-power terms in amplitude, we get Landau-Stuart equation

 $\langle \mathbf{n} \rangle$

$$\phi = ZX^{[1,1]} + ZX^{[1,1]}$$

$$(\frac{\partial}{\partial t} - L)\psi = N_2 + N_3$$

$$(\frac{\partial}{\partial t} - L)\psi = N_2 + N_3$$
Taking the inner product of slow mode equation with adjoint eigenfunction of the linear problem and separating the like-power terms in amplitude, we get Landau-Stuart equation
$$(\frac{\partial}{\partial t} - \omega)ZX_{11} = N_2 + N_3 \longrightarrow \frac{dZ}{dt} = c^{(\omega)}Z + c^{(2)}Z + c^{(4)}Z +$$

Cont...

Other perturbation methods can be used:

e.g. Amplitude expansion method and multiple scale analysis

1st Landau Coefficient

Linear Problem $LX^{[1;1]} = c^{(0)} X^{[1;1]}$ Second Harmonic $L_{22}X^{[2;2]} = G_{22}$ _Analytically solvable Distortion to mean flow $L_{02}X^{[0;2]} = G_{02}$ Shukla & Alam (JFM 2011a) Distortion to fundamental $L_{13}X^{[1;3]} = c^{(2)}X^{[1;1]} + G_{13}$ Analytical expression of first Landau coefficient $c^{(2)} = \frac{\phi^{a} G_{13}^{1} + u^{a} G_{13}^{2} + v^{a} G_{13}^{3} + T^{a} G_{13}^{4}}{\phi^{a} \phi^{[1;1]} + u^{a} u^{[1;1]} + v^{a} v^{[1;1]} + T^{a} T^{[1;1]}}$ **Analytical solution exists** • We have developed a <u>spectral based numerical code</u> to calculate Landau coefficients.

Numerical Method: comparison with analytical solution

This validates spectral-based numerical code

Equilibrium Amplitude and Bifurcation

Phase Diagram

gradient banding in 2D-GPCF (PRL 2009)

Incompressible Newtonian Fluids

All in one! Granular Plane Couette flow admits all types of Pitchfork bifurcations

Conclusions

>Problem is analytically solvable.

Landau-Stuart equation describes gradient-banding transition in a sheared granular fluid.

≻Landau coefficients suggest that there is a "sub-critical" (bifurcation from infinity) finite amplitude instability for "dilute" flows even though the dilute flow is stable according to linear theory.

≻This result agrees with previous MD-simulation of gPCF.

≻gPCF serves as a **paradigm** of pitchfork bifurcations.

≻Analytical solutions have been obtained.

≻An spectral based numerical code has been validated.

References: Shukla & Alam (2011a), J. Fluid Mech., vol **666**, 204-253 Shukla & Alam (2009) Phys. Rev. Lett., vol **103**, 068001.

``Gradient-banding" and Saturn's Ring?

➢Self gravity?... other effects needed...

References: Schmitt & Tscharnuter (1995, 1999) Icarus Salo, Schmidt & Spahn (2001) Icarus, Schmidt & Salo (2003) Phys. Rev. Lett.

Patterns in 2D-gPCF

Flow is linearly unstable due to stationary and traveling waves, leading to particle clustering along the flow and gradient directions

Particle Simulations of Granular PCF

(Conway and Glasser 2006)

Stability of 2D-gPCF when subject to "finite amplitude perturbation"

Seeking an **order parameter theory** for stationary and traveling wave instabilities...

Linear Theory

$\phi = 0.2, H = 100, e = 0.8$

Long-Wave Instabilities $k_x \approx 0$ Supercritical pitchfork/Hopf bifurcation $\phi = 0.2, H = 100, e = 0.8$ x 10⁻⁶ x 10⁻⁴ 9.2 (c) (b) 1.6 -0. $b^{(2)}$ a(0) -0. 1.2 $k_x = 2.1 \times 10^{-5 \times 10^{2}}$ Real and Imag. Part 8.8 of first LC -2 Amplitude 0.8 a⁽²⁾ 8.6 (a) **Growth Rate** -40.4 2 2 x 10⁻⁵ k, x 10⁻⁵ x 10 Non-linear Linear (a).5 (b (((-----))) line V $k_x = 10^{-5}$ ٧ SW Density -0.50.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 x/2λ x/2λ Patterns Linear Non-linear (b^{Q.'} (a y $k_x = 4 \times 10^{-5}$ **TW Density** -0.5 -0.5₀ 0.2 0.4_{x/2λ} 0.6 0.8 0.4 Patterns 0.2 0.6 0.8 x/2λ

Stationary Instability

 $\phi = 0.2, H = 100, e = 0.8$

Travelling Instabilities

Supercritical Hopf bifurcation

0.4_{x/2λ}0.6

0.8

0.2

Ό

0.8

^{0.4} x/2λ x^{0.6}

0.2

Supercritical Hopf Bifurcation/ Limit Cycle Solutions

Subcritical Hopf Bifurcation/ Limit Cycle Solutions

Dominant Stationary Instabilities

Dominant Traveling Instabilities

Conclusions

- The origin of nonlinear states at long-wave lengths is tied to the corresponding subcritical / supercritical nonlinear gradient-banding solutions (discussed in 1st Part of talk).
- ➢ For the dominant stationary instability nonlinear solutions appear via supercritical bifurcation.
- Structure of patterns of supercritical stationary solutions look similar at any value of density and Couette gap.
- For the dominant traveling instability, there are supercritical and subcritical Hopf bifurcations at small and large densities.
 Uncovered mean flow resonance at quadratic order.

 References:
 Shukla & Alam (2011b), J. Fluid Mech., vol. 672, p. 147-195.

 Shukla & Alam (2011a), J. Fluid Mech., vol 666, p. 204-253.

 Shukla & Alam (2009) Phys. Rev. Lett., vol 103, 068001.

Vorticity Banding in 3D-gPCF

Pure Spanwise Perturbations

$$\frac{\partial}{\partial x} = 0, \ \frac{\partial}{\partial y} = 0, \ \frac{\partial}{\partial z} \neq 0$$

Shukla & Alam (2013b, JFM)

Linear Vorticity Banding

Nonlinear Stability

Linear Problem $LX^{[1;1]} = c^{(0)} X^{[1;1]}$ Second Harmonic $L_{22}X^{[2;2]} = G_{22}$ Analytically solvable Distortion to mean flow $L_{02}X^{[0;2]} = G_{02}$ Distortion to fundamental $L_{13}X^{[1;3]} = c^{(2)}X^{[1;1]} + G_{13}$ Analytical expression for first Landau coefficient $c^{(2)} = \frac{\phi^{a} G_{13}^{1} + w^{a} G_{13}^{4} + T^{a} G_{13}^{5}}{\phi^{a} \phi^{[1;1]} + w^{a} w^{[1;1]} + T^{a} T^{[1;1]}} \qquad \text{Adjoint Eigenfunct} \qquad (\phi^{a}, w^{a}, T^{a})$ Adjoint Eigenfunction

Analytical solution exists at any order in amplitude

Nonlinear Vorticity Banding

Significance of higher order nonlinear correction

Vorticity Banding in Dilute 3D Granular Flow (Conway and Glasser. Phys. Fluids, 2006)

Vorticity Banding in Dense 3D Granular Flow

(Grebenkov, Ciamarra, Nicodemi, Coniglio, PRL 2008, vol 100)

Patterns in three-dimensional gPCF

Shukla & Alam (2013c, preprint)

Nonlinear Stability

Shukla & Alam (2013) (Preprint for PoF)

Analytical Expression of first Landau Coefficient

$$c^{(2)} = \frac{\phi^{a} G_{13}^{1} + u^{a} G_{13}^{2} + v^{a} G_{13}^{3} + w^{a} G_{13}^{4} + T^{a} G_{13}^{5}}{\phi^{a} \phi^{[1;1]} + u^{a} u^{[1;1]} + v^{a} v^{[1;1]} + w^{a} w^{[1;1]} + T^{a} T^{[1;1]}}$$
Adjoint Eigenfunction
$$(\phi^{a}, u^{a}, v^{a}, w^{a}, T^{a})$$

Analytical solution exists

Dilute Flows

Moderate-to-Dense Flows

Linear Stability Curve

Linear and Nonlinear Density Patterns

У

Stable, supercritical patterns

$$H = 135, \phi^0 = 0.2,$$

 $e = 0.8, k_z = 2$

Nonlinear

0.5

 $z/2\lambda$

Nonlinear

Linear

Unstable, subcritical patterns

$$H = 140, \phi^0 = 0.5,$$

 $e = 0.8, k_z = 2$

Patterns exists in streamwise and gradient direction.Nonlinear pattern looks very different from linear patterns.

Conclusions

≻In dilute limit finite amplitude solutions occur via supercritical bifurcation for large wavenumbers and via subcritical bifurcation for small wavenumbers.

➤Transition from supercritical to subcritical in moderate-to-dense limit.

➤The finite amplitude nonlinear patterns look very different from its linear analogue.

Shukla & Alam (2013c, preprint for PoF)

Theory for Spatially Modulated Patterns

Complex Ginzburg Landau Equation (CGLE)

Landau Equation

 $\frac{dA}{dt} = c^{(0)}A + c^{(2)}A |A|^2$

Ordinary differential equation

Holds for **spatially periodic** patterns

Complex Ginzburg Landau Equation

$$\frac{\partial A}{\partial t} = \varepsilon^2 A + a_2 \frac{\partial^2 A}{\partial X^2} + c^{(2)} A |A|^2$$

Partial differential equation

Holds for spatially modulated patterns

Under which condition CGLE arises?

For $H < H_c$ all modes are decaying : Homogeneous state is stable, $H = H_c$ at $k_x = k_{xc}$ a critical wave number gains neutral stability, $H > H_c$ there is a narrow band of wavenumbers around the critical value where the growth rate is slightly positive.

width of the unstable wavenumbers:

$$\propto \left(H - H_c\right)^{1/2}$$

Theory (Multiple scale analysis)

$$\left(\frac{\partial}{\partial t} - L\frac{1}{j}X'(x, y, t) = \sum_{i=2}^{\infty} N_i\right)$$

Growth rate is of order $H - H_c$ Stewartson & Stuart (1971)

The timescale at which nonlinear interaction affects the evolution of fundamental mode is of order 1/(growth rate)

Patterns in Vibrated Bed

Patterns in Vibrated bed can be predicted by the complex Ginzburg LE (*Tsimring and Aranson 1997, Blair et. al. 2000*)

$$\frac{\partial \psi}{\partial t} = \gamma \psi^* - (1 - i\omega)\psi + (1 + ib)\nabla^2 \psi - |\psi|^2 \psi - \rho \psi$$

Recent work of Saitoh and Hayakawa (Granular Matter 2011) on TDGL in ``*unbounded*'' shear flow.

Conclusions

➢Complex Ginzburg Landau equation has been derived that describes spatio-temporal patterns in a ``*bounded*" sheared granular fluid.

➤ Numerical results awaited...

Summary

Landau-type order parameter theory for the gradient banding in gPCF has been developed using center manifold reduction.
 Ref: PRL, vol. 103, 068001, (2009)

Analytical solution for the shearbanding instability, comparison with numerics & bifurcation scenario have been obtained.
 Ref: JFM, vol. 666, 204-253, (2011a)

≻ The order parameter theory for the 2D and 3D gPCF has been developed. Nonlinear patterns and bifurcations have been studied. **Ref: JFM, vol. 672, 147-195 (2011b)**

➢Nonlinear states and bistability for vorticity banding have been analysed.
Ref: JFM, vol. 718 (2013b)

➢Coupled Landau equations for resonating and non-resonating cases have been derived.
Preprint

➢Complex Ginzburg Landau equation has been derived for bounded shear flow.
Preprint

Outlook

Present order-parameter theory can be modified for other pattern forming problems, e.g. granular convection, granular Taylor-Couette flow, inclined Chute flow, etc.

Standing Wave Patterns

Oscillons

Kelvin-Helmholtz Instability

Granular Taylor

Granular Chute Flow: Longitudinal Vortices

Revisit nonlinear theory of Saturn's Ring

 Non-isothermal model with spin, stress anisotropy & self-gravity ...??
 Spatially modulated waves ...
 Wave interactions ...
 Secondary instability,