

Granular friction in a wide rage of shear rates

Takahiro Hatano

(The University of Tokyo)

Collaborators: Osamu Kuwano (JAMSTEC, Yokohama) Ryosuke Ando (AIST, Tsukuba)

06/27/2013 Physics of Granular Flow (Kyoto)

granular friction: examples

MASS FLOW

FUNNEL FLOW

friction of fault

(microscopic basis)

character of "fault gouge"

particle size distribution is power-law (fractal)

(Heilbronner & Keulen 2006)

exponent 2.5 to 3.0

numerous sub-micron particles

very different from industrial situation!

velocity range of fault motion

granular friction: an empirical law

0.7

0.6

0.5

0.4 $\mu_{\rm s}$

0.3

 $\mu = \frac{\tau}{P}$

... works well for large inertial number; I=O(1)

Q*=94

Q*=34.0

Q*=15.2

2

1

positive slope

3

5

4

granular friction: numerical experiment

consistent with Pouliquen's law

$$\mu(I) = \mu_s + \frac{\mu_2 - \mu_s}{I_0/I + 1}$$

$$\xrightarrow{} \mu(I) \simeq \mu_s + \frac{\mu_2 - \mu_s}{I_0} I$$

size-dependence <-- nonlocal effect

(Kamrin's talk)

positive slopes only $I \ge 10^{-4}$

da Cruz et al. Phys. Rev. E (2005) TH, Phys. Rev. E (2007) Peyneau & Roux, Phys. Rev. E (2008) Koval et al. Phys. Rev. E (2009)

granular friction: physical experiments

negative slope --> positive slope

see also: Lu et al. J. Fluid Mech. 2007 Petri et al. EPJB 2008

in earthquake physics....

(up to ~ mm/sec)

normal pressure ~ 100 MPa

negative slope is rather ubiquitous!

current status

At very low shear rates, constitutive law is still not established

$$\begin{split} \mu(V) &= \mu(V_*) + \alpha \log \frac{V}{V_*} & \longleftrightarrow \quad \mu(I) \simeq \mu_s + \frac{\mu_2 - \mu_s}{I_0} I \\ \end{split} \\ \end{split} \\ \textbf{physical experiment} & \textbf{numerical experiment} \end{split}$$

and an example is ...

exponential velocity profile in inclined plane flow

what kind of constitutive law can explain this?

questions

1. At very low shear rates, constitutive law is still not established

A. nonlocal effect (e.g. Kamrin & Koval 2012)

B. physics of negative slope? (Dieterich 1979)

2. If negative slope is true, how is it compatible with Pouliquen's law?

$$\mu(V) = \mu(V_*) + \alpha \log \frac{V}{V_*} \quad \longleftrightarrow \quad \mu(I) \simeq \mu_s + \frac{\mu_2 - \mu_s}{I_0} I$$

OUR GOAL

- **1. Negative slope for glass beads?**
- 2. Negative to positive crossover? How?

3. What if fault gouge?

experimental

A commercial rheometer (AR2000ex, TA Instruments)

sliding velocity $\Omega D_2/2 = 10^{-4}$ to 3 [m/sec] normal stress 10 to 30 kPa (constant pressure)

velocity profile

(depth)/(mean diameter)

normalized by upper plate velocity $V_{0}^{0.40}$

- —> collapse to a master curve
 - $V(x) \simeq V_0 10^{-x/W}$

$$\longrightarrow W \simeq 5d$$

(effective flow width)

shear rate $\ \dot{\gamma} \equiv V_0/W$

$$\longrightarrow$$
 $I = \frac{V_0}{W} \sqrt{\frac{m}{Pd}}$

0.46

Ľ

0.44

0.42

rate dependence of friction coefficient

comparable to fault gouge

negative slope apparent for $I \leq 10^{-2}$

10kPa

20kPa

30kPa

10kPa

30kPa

what sets α ? (open question)

constitutive law at high velocities

 $I > I_c \longrightarrow \mu = \mu_{\min} + cI$ (c=0.6)

agrees with simulations (including numerical factor!) e.g., da Cruz et al. PRE 2005

dilation at high velocities

agrees with simulations (including numerical factor!)

1. At higher shear rates, constitutive law agrees with DEM simulation.

2. Collapse to a master curve using I --> Bagnold's regime.

3. No master curves at sufficiently lower inertial number $I \leq 10^{-2}$

Instead,
$$\mu = \mu_* + \alpha \log \frac{V}{V_*}$$

 $\alpha \sim -10^{-2} \text{ to } -10^{-3}$

where is crossover point?

constitutive law

$$\mu = \mu_0 + \alpha \log(\dot{\gamma}/\dot{\gamma}_0) + c\dot{\gamma}\sqrt{m/Pd}$$

$$\rightarrow I_c = -\alpha/c = O(10^{-3})$$

$$\mu = \mu_0 + \alpha \log(\dot{\gamma}/\dot{\gamma}_0) + c\dot{\gamma}\sqrt{m/Pd}$$

an application:

exponential velocity profile for "creep" deformation of solid regime

velocity profile in inclined plane flow

Pouliquen's law cannot reproduce this. --> Other laws may come into play

can reproduce exponential flow profile

$$\mu = \mu_0 - \alpha \log(V/V_0) + c\dot{\gamma}\sqrt{m/Pd}$$
 (1)

force balance eq. for heap flow (along flow direction)

$$\frac{d\sigma}{dh} = \rho g \sin \theta$$
$$\sigma = \mu P$$

ρ: mass density
θ: angle of slope
σ: shear stress
h: depth
P: normal pressure

if P is independent of h (Janssen's law),

$$\longrightarrow \frac{d\dot{\gamma}}{dh}\frac{d\mu}{d\dot{\gamma}} = \frac{\rho g \sin\theta}{P}$$

use (1)
$$\longrightarrow \dot{\gamma}(h) \simeq \dot{\gamma}_0 e^{-h/h_0} \quad h_0 \equiv \alpha P/\rho g \sin\theta$$

underlying physics of weakening?

 $\mu = \mu_0 + \alpha \log(\dot{\gamma}/\dot{\gamma}_0) + c\dot{\gamma}\sqrt{m/Pd}$

underlying physics?

first term is particle-level friction

aging of grain contact

particle-level friction is not a constant (but time-dependent)

increase of contact area due to plasticity

(Brechet & Estrin 1994)

 $A(t) = A_0(1 + a\log\frac{t}{t_0})$

t: duration of contact

a, to: constants

in sheared systems,

$$t \simeq \dot{\gamma}^{-1} \longrightarrow A(t) = A_0(1 - a\log(\dot{\gamma}t_0))$$

 $\longrightarrow \mu_p(\dot{\gamma}) = \mu_0(1 - a'\log(\dot{\gamma}t_0))$

aging of grain contact

$$\mu_p(t) = \mu_0(1 - a\log(\dot{\gamma}t/t_0))$$

$$\mu_p(\dot{\gamma}) = \mu_0(1 - a' \log(\dot{\gamma}t_0))$$

particle-level friction is time-dependent!

(in DEM, it is constant)

cf. Bocquet et al. Nature 1998

aging due to moisture

OUR GOAL

1. How does this crossover occur?

2. Inertial-number description valid for gouge?

experimental

- Slip rate : 100µm/s to 0.3m/s
- Normal stress: 0.1-0.9 MPa
- Room temperature and humidity
- Cylindrical Specimen
 - Westerly granite
 - Inner/outer diameters : 6mm/10mm.
- Temperature measurement with an IR sensor
- Gouge layer formed by preshearing.

(sample not sealed; an open system)

experimental

velocity dependence of friction coefficient

 $\mu = \mu_* + \alpha \log rac{V}{V_*}$? $\alpha \simeq -0.2$ too large!

e.g. Goldsby & Tullis 2002; di Toro et al. 2004, etc...

inertial number description?

Inertial number description verified for gouge!

★ data do not collapse completely due to fluctuation in gouge layer thickness
 ★ constant c is much larger than glass beads (wide size dispersity?)

conclusions

1. Negative to positive rate dependence of friction

 $\mu = \mu_0 + \alpha \log(\dot{\gamma}/\dot{\gamma}_0) + c\dot{\gamma}\sqrt{m/Pd}$

 $I_c = lpha/c$ $I_c = O(10^{-3})$ in this system

2. Inertial-number description valid for gouge

(with power-law size distribution)

3. Anomalous weakening in intermediate regime?

References:

Kuwano, Ando, Hatano, Geophys. Res. Lett. 40, 1295 (2013) Kuwano, Ando, Hatano, Powders & Grains. in press (2013) Kuwano, Hatano, Geophys. Res. Lett. 38, L17305 (2011)