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We investigate experimentally granular piles exhibiting steady surface flow. Below the surface flow, it
has been believed that a “frozen” bulk region exists, but our results show no such frozen bulk. We report
here that even the particles in layers deep in the bulk exhibit very slow flow and that such motion can be
detected at an arbitrary depth. The mean velocity of the creep motion decays exponentially with depth,
and the characteristic decay length is approximately equal to the particle size and is independent of the
flow rate. It is expected that the creep motion we have seen is observable in all sheared granular systems.
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Granular materials exhibit behavior not seen in ordinary
fluids or solids. Considerable effort has been made to un-
derstand them, but further studies of various phenomena
in granular materials are still required [1–4]. One of the
typical behaviors of granular materials is the avalanche be-
havior of a sandpile [1,5,6]. In contrast to ordinary fluids,
granular materials can form piles with a sloped surface.
When the angle of the surface exceeds some critical value,
the pile cannot sustain the steep surface and an avalanche
occurs. Without careful observation, flow of particles in an
avalanche appears to be limited to a surface layer, with a
“frozen” bulk region below. Many studies have been made
under such an assumption without convincing experimen-
tal evidence [1,5,6]. Indeed, it is difficult to detect the
frozen bulk clearly because an avalanche is a transient be-
havior. If such a frozen region actually exists and is well
separated from the flow layer, it should be possible to ob-
serve and definitively identify it even in the case of steady
surface flow. With the purpose of making such an obser-
vation, we experimentally investigated particle movements
in piles exhibiting steady surface flow.

Here we report unexpected experimental findings in
such piles: Even the particles in deep layers are not frozen
but exhibit very slow flow (creep), and such motion can be
detected at an arbitrary depth (Fig. 1). The mean velocity
of the creep motion decays exponentially with depth and
the characteristic decay length is approximately equal to
the particle size and is independent of the flow rate. This
velocity profile differs from that for the surface flow, and
it is in this sense that the flow of particles is separated
into two regions. We believe that creep motion of the type
we have seen should be observable in all sheared granular
systems.

Our experiments were performed in a quasi-two-
dimensional system, as described by Fig. 2. Alumina
beads of diameter a were continuously fed into the gap

!A" existing between two vertical, parallel plates separated
by width W . In this gap, the particles formed a trian-
gularly shaped pile with rapid flow on the surface slope,
pouring out of the system from the right side !B". The
existence of the short wall on the right side eliminates
the slipping of particles on the bottom of the cell. Its
presence thus assures that the motion of particles we
observe is strictly due to the flow on the slope of the pile.
In order to maintain a steady surface flow on the pile,
particles were continuously fed onto the pile from the left

FIG. 1. Snapshots of a granular pile in a steady flow state.
Particles were fed constantly from the surface of the left side,
out of these figures. The particles used were monodisperse
alumina spheres with diameter 1.1 6 0.1 mm (weight density
3.6 g#cm3). All photographs were taken under the same
conditions, with only the shutter speeds differing: (a) 1 sec,
(b) 1 min, (c) 1 h. (a) A boundary between the surface flow
and the “frozen” layers appears to exist at a depth of several
particles below the surface. (b) The apparent frozen layer of
(a) is seen to flow. Similarly, (c) reveals the flow of a thicker
layer than that revealed by (b). These observations reveal that
the apparently frozen particles under the rapidly flowing surface
are not stationary but slowly creep and that the layer in which
this creeping motion can be detected grows as observation time
increases.
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friction of fault

Damage zone

From  Faulkner et al. (2006)

Fault core

100 m

10−3 m

102 m

The onset of the power law aftershock decay rate across different stress regimes – p.7/36

10  m-4
10  m3

fine rock powder

friction of fault friction of granular matter

(microscopic basis)

“fault gouge”
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character of “fault gouge”

particle size distribution is power-law (fractal)particle-size distribution = power law

 Exponent  D = 2.0 – 3.0
 depends on the strain?

(Chester et al. 1993)

Sammis1987, Blenkinsop 1991, Storti et al. 2003

NOTE: exponent different from impact fragmentation
(e.g. D=1.3-1.6)

(Chester & Chester 1993)

exponent 2.5 to 3.0

(Heilbronner & Keulen 2006)

numerous sub-micron particles

very different from industrial situation!
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velocity range of fault motion

slip velocity
[m/s]

10�10 plate motion

“slow earthquakes”

earthquakes100

10�2

(no seismic waves)

note:
shear rate depends on
shear-band thickness

must investigate a very wide range

(thickness < 10cm)

10�9 � �̇ � 101

?
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Jop et al. JFM 2005; Jop et al. Nature 2006

Role of sidewalls in granular surface flows 177
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Figure 8. Friction coefficient µ as a function of the dimensionless parameter I
(µs = tan(20.9◦), µ2 = tan(32.76◦), I0 = 0.279).

The interesting result arises when comparing this relation with the one obtained
on the inclined plane for the basal friction law (4.1). If we assume that the material
is everywhere defined by the local constitutive law given by (4.2), predictions can
be made for flows on inclined planes (see Appendix A). We can then show that the
predictions are compatible with the basal friction law (4.1) issued from experimental
measurements only if we choose for the function µ(I ) the following form:

µ(I ) = µs +
µ2 − µs

I0/I + 1
with I =

|γ̇ |d√
P/ρs

. (4.3)

The coefficients µs and µ2 are the same as in (4.1) and the constant I0 is related to
the coefficient L0 and β in (4.1) (see Appendix A). According to this law, the friction
coefficient goes from a minimum value µs for very low I up to an asymptotical value
µ2 when I increases, as sketched in figure 8.

By interpreting the basal friction law found in inclined-plane experiments in the
framework of the constitutive law found in plane shear, we are then able to propose
a simple local rheology. The next step is to ask whether this rheology, which correctly
describes plane shear and flows on inclined planes, can also predict surface flows on
heaps. In the following, we apply (4.2) and (4.3) to heap flows taking into account
the friction with sidewalls, and we compare the predictions with the experimental
results presented in the previous section. In order to do so, we must quantitatively
determine the coefficients of the constitutive law (4.3). The glass beads used in our
study being the same as those used by Forterre & Pouliquen (2003) in an inclined-
plane experiment, we can easily compute the coefficients of the relation µ(I ) from
the coefficients that have been measured for the basal friction law. We found that
µs = tan(20.9◦), µ2 = tan(32.76◦) and I0 = 0.279 (see Appendix A). This choice implies
that there is no fit parameter in our constitutive law. In other words, the idea adopted
here is to calibrate the constitutive law on previous experiments on an inclined plane,
and check if quantitative predictions can be made for surface flows on heaps.

© 2006 Nature Publishing Group 

 

A constitutive law for dense granular flows
Pierre Jop1, Yoël Forterre1 & Olivier Pouliquen1

A continuum description of granular flows would be of consider-
able help in predicting natural geophysical hazards or in designing
industrial processes. However, the constitutive equations for dry
granular flows, which govern how thematerial moves under shear,
are still a matter of debate1–10. One difficulty is that grains can
behave11 like a solid (in a sand pile), a liquid (when poured from a
silo) or a gas (when strongly agitated). For the two extreme
regimes, constitutive equations have been proposed based on
kinetic theory for collisional rapid flows12, and soil mechanics
for slow plastic flows13. However, the intermediate dense regime,
where the granular material flows like a liquid, still lacks a unified
view and has motivated many studies over the past decade14. The
main characteristics of granular liquids are: a yield criterion
(a critical shear stress below which flow is not possible) and a
complex dependence on shear rate when flowing. In this sense,
granular matter shares similarities with classical visco-plastic
fluids such as Bingham fluids. Here we propose a new constitutive
relation for dense granular flows, inspired by this analogy and
recent numerical15,16 and experimental work17–19. We then test our
three-dimensional (3D) model through experiments on granular
flows on a pile between rough sidewalls, in which a complex 3D
flow pattern develops. We show that, without any fitting param-
eter, the model gives quantitative predictions for the flow shape
and velocity profiles. Our results support the idea that a simple
visco-plastic approach can quantitatively capture granular flow
properties, and could serve as a basic tool for modelling more
complex flows in geophysical or industrial applications.
Advances in our understanding of dense granular flows have

recently been made by comparing different flow configurations14.
The simplest configuration from a rheological point of view is the
one sketched in the inset to Fig. 1. A granular material confined
under a normal stress P in between two rough planes is sheared at a

given shear rate _g by applying a shear stress t. In refs 15 and 16, for
stiff particles the shear stress is shown, using dimensional arguments
and numerical simulations, to be proportional to the normal stress,
with a coefficient of proportionality that is a function of a single
dimensionless number, called the inertial number I:

t¼ mðIÞP with I ¼ _gd=ðP=rsÞ0:5 ð1Þ
where r(I) is the friction coefficient, d is the particle diameter and m s

is the particle density. They found that the volume fraction F of the
sample is also a function of I but varies only slightly in the dense
regime. The inertial number, which is the square root of the Savage
number20 or of the Coulomb number21 introduced previously in the
literature, can be interpreted as the ratio between two timescales, a
macroscopic deformation timescale (1/_g) and an inertial timescale
(d2r s/P)

0.5. By confronting results from the simple shear test with
experimental measurements of granular flows on rough inclined
planes17,22, it can be shown that the friction coefficient m(I) has the
shape given inFig. 1. It starts froma critical value ofm s at zero shear rate
and converges to a limiting value of m2 at high I. The following friction
law can then be proposed, compatible with the experiments19:

mðIÞ ¼ ms þ ðm2 2msÞ=ðI0=Iþ 1Þ ð2Þ
where I0 is a constant. Very recently, this simple description of granular
flows has been successful in predicting two-dimensional configur-
ations, capturing velocity profiles on inclined planes14,23 and important
features of flows on a pile19. However, the simple scalar law (equation
(1)) cannot be applied in more complex flows where shear in different

LETTERS

Figure 1 | Friction coefficient m as a function of the dimensionless
parameter I (ms 5 tan(20.9), m2 5 tan(32.76) and I0 5 0.279). Inset,
definition of the pressure P, the shear stress t, and the shear rate _g in the
simple plane shear configuration.

Figure 2 | Experimental set-up of granular flows on a pile between rough
sidewalls. The channel is partially closed at the bottom end to create a static
pile on top of which the grains flow19. The sidewalls are made rough by
gluing one layer of beads on them. The channel is 120 cm long and the width
W varies from 0.9 cm (16.5d) up to 28.9 cm (546d).

1IUSTI, CNRS UMR 6595, Université de Provence, 5 rue Enrico Fermi, 13453 Marseille cedex 13, France.

Vol 441|8 June 2006|doi:10.1038/nature04801

727

granular friction: an empirical law

© 2006 Nature Publishing Group 

 

A constitutive law for dense granular flows
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directions is present and where a full three-dimensional rheology is
needed.
We therefore propose the following 3D generalization of the friction

law for a granularmaterial. The basic assumption consists in neglecting
the small variation of the volume fraction observed in the dense
regime. The granular material is then described as an incompressible
fluid with the internal stress tensor given by the following relations:

jij ¼2 Pdij þ tij and tij ¼ hðj_gj;PÞ_gij

with hðj_gj;PÞ ¼mðIÞP=j_gj and I ¼ j_gjd=ðP=rsÞ0:5
ð3Þ

where _gij ¼ ›ui=›xj þ ›uj=›xi is the strain rate tensor and j_gj¼
ð0:5_gij _gijÞ0:5 is the second invariant of _gij: In this rheology, P
represents an isotropic pressure, and hðj_gj;PÞ is an effective viscosity,
which definition is related to the friction coefficient m(I) (equation
(2)). An important property of the proposed constitutive law is that
the effective viscosity diverges to infinity when the shear rate goes to
zero. This divergence ensures that a yield criterion exists. Looking at
equation (3) in the limit of j_gj going to zero, we can show that the
material flows only if the following condition is satisfied:

jtj. msP where jtj¼ ð0:5tijtijÞ0:5 ð4Þ
The yield criterion then takes the form of a Drucker–Prager-like
criterion24. Below the threshold, the medium behaves locally as a
rigid body. It is interesting to note that within this framework, the
granular media can be viewed as a visco-plastic fluid25. The specificity
compared to classical Bingham or Herschel–Bulkley fluids is that the
effective viscosity depends both on the shear rate and on the local
pressure. This property is linked to the frictional nature of stresses in
granular media.
To test this rheology we performed experiments of granular flows

on a heap as sketched in Fig. 2. This set-up is similar to our previous
study19 except that here sidewalls are made rough by gluing one layer
of beads on them. This imposes a well-defined no-slip boundary
condition at the walls. This configuration represents a severe test for
the model, since it gathers in a single configuration several specifi-
cities of granular flows. First, when grains are released from the
hopper, a steady regime is reached with a strongly sheared layer
flowing on top of a static zone. The slope and the thickness of the
flowing layer are selected by the system. Second, owing to the rough
sidewalls used here, a significant shear exists also in the transverse
direction, the flow pattern being thus fully three-dimensional. The
experiments are carried out using glass beads 0.53mm in diameter

and the two control parameters are the width W of the channel and
the flow rate per unit of width Q. The present study focuses on the
steady and uniform regime characterized by a constant slope and a
velocity aligned along the x direction and invariant along the flow
(a tiny y component can be observed close to the wall, which remains
20 times smaller than the stream-wise velocity). We performed
systematic measurements of the free-surface inclination v, of the
free-surface-velocity profile V surf(y) using particle-imaging veloci-
metry, and we get estimates of the thickness of the flowing layer h(y)
using an erosion method19.
To compare the experimental results with the predictions of the

local rheology, we perform numerical simulations of a granular fluid
described by the constitutive law equation (3) and flowing in an
inclined U-shaped channel with a no-slip boundary condition at the
three walls. The velocity u(y,z) is assumed to be aligned with x and to
depend only on y and z. To get the 3D steady velocity profile, we solve
the incompressible Navier–Stockes equations with the internal stress
being given by equation (3) using a finite difference scheme. For the
rheological parameters m s, m2 and I0 coming into play in equation
(2), we choose the values given by the experimental data of flows on
the inclined planes18 where the same particles were used (see ref. 19
for how to compute these parameters): ms ¼ tanð20:9Þ, m2 ¼
tanð32:76Þ and I0 ¼ 0.279. This choice means that no fitting par-
ameter will exist when we compare results from the simulations to
the experimental data. A typical velocity profile obtained by the
model is shown in Fig. 3. We first observe that a static zone develops
at the base of the channel. The limit of the static zone varies across the
channel, the flowing layer being larger in the centre than close to the
walls. The second observation is that the velocity profile is truly 3D
and sheared in both y and z directions.
We then tried to quantitatively compare the velocity profiles

predicted by the simulations with the ones measured experimentally.
In the simulation we impose the inclination and compute the flow

Figure 3 | Typical 3D velocity profile predicted by the rheology (W 5 142d,
v 5 22.68, Q/d3/2g 1/2 5 15.2). For clarity only one quarter of the lines of
the 71 £ 80 computational grid is plotted.

Figure 4 | Comparison of 3D simulations (lines) and experimental results
(symbols) for different flow rates (Q* 5 Q/d3/2g 1/2). a, b, c, Free-surface
velocity profiles for channel width W ¼ 16.5d (a), W ¼ 140d (b) and
W ¼ 546d (c). d, Depths of the flowing layer across the channel for
W ¼ 140d. The experimental and computational flow rates are equal within
2.5%. The error bars represent the dispersion of the measurements for
different experiments.
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rate a posteriori, whereas in the experiments, the flow rate is
controlled and the inclination is measured. Figures 4a-c show the
free-surface velocity profiles obtained in the experiments and simu-
lations for different widths and different flow rates. The experimental
data are the symbols and the continuous lines are the prediction of
the 3D rheology. The agreement is good and quantitative. A slight
deviation between experiment andmodel is observed in the narrower
channel, 16.5 particle-diameters wide. In Fig. 4d, we also compare the
prediction of the theory for the thickness of the flowing layer. In both
theory and experiments, the flowing layer is thicker in the centre than
at the walls. A quantitative agreement is again observed, although the
simulation systematically overestimates the flowing layer thickness.
This could be due to the not-very-precise erosion method used for
estimating the thickness. All these results show that the proposed
rheology gives quantitative predictions for this complex 3D flow, a
striking success for a model that has been entirely calibrated based on
a different flow configuration.
We have systematically carried out experiments for a wide range of

flow rates and channel widths, and within 15% a quantitative
agreement is always observed. To compare experiments and simu-
lations in a systematic way, it is interesting to notice that simple
scalings can be predicted from the rheology proposed. It is easy to
show analytically that one can get rid of the width of the channel in the
equations of motion by using the following dimensionless variables:
z 0 ¼ z/W, y 0 ¼ y/W, V 0 ¼ Vd/g0.5W1.5 and Q 0 ¼ Qd/g0.5W2.5 (see
Supplementary Information). It follows that the inclination of the
pile v, the maximum velocity in the centreline of the channel V 0

max,
and themaximumflowing thickness h 0

max should all depend only on
Q 0 . In Fig. 5, we show that the experimental measurements follow the
predicted scaling and that the numerical simulations (continuous
lines in Fig. 5) give quantitative predictions. One interesting result of
this scaling analysis is that the thickness h scales with the width W,
meaning that neither the thickness of the flowing layer nor the shear
rate are intrinsic properties of the granular media but are controlled
by the width of the channel and the flow rate.
We conclude that the simple visco-plastic constitutive law pro-

posed seems to describe dense granular flows very well. Once
calibrated on the inclined plane configuration, the model quantitat-
ively captures the complex 3D sheared flow observed when grains
flow in between two rough walls. Limits of the approach exist that
mainly concern the yield criterion. Within the proposed constitutive
law, the flow threshold is simply described by a Coulomb criterion.
However, the transition between solid-like and liquid-like behaviour
in granular matter seems much more complex, involving shear
bands26,27, intermittent flows28 and hysteretic phenomena29,30. Such

features should be included in a more comprehensive rheology.
However, we believe that the simple visco-plastic rheology presented
here represents a minimal model that quantitatively captures the
basic features of granular flows important in many applications. We
think this model could help to take into account more accurately the
complex yield features specific to granular matter.
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positive slope

... works well for large inertial number; I=O(1)
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granular friction: numerical experiment

da Cruz et al. Phys. Rev. E (2005)
TH, Phys. Rev. E (2007)
Peyneau & Roux, Phys. Rev. E (2008)
Koval et al. Phys. Rev. E (2009)

the inertial regime !Figs. 11 and 12", and ! tends to a maxi-
mum value !max, which identifies to the solid fraction in the
critical state. We can then write the dynamic dilatancy law

!!I" # !max − aI , !7"

with !max#0.82 and a#0.37. The agreement with the dy-
namic dilatancy law measured in the homogeneous plane
shear geometry is excellent $4,48%. However, far from the
walls, in the region where the material is less deformed and
so remains in its initial dense state, higher values of ! are
observed. Figure 12 also indicates that the inner wall induces
further dilation.

3. Frictionless grains

As shown in Figs. 8!a" and 11, the microscopic friction
coefficient " has a significant influence on the constitutive
law parameters. Those figures also reveal good agreement
with homogeneous shear simulations $4%. The solid fraction
remains a linearly decreasing function of I !with a fast

change in the quasistatic limit". The slope a is not affected,
while !max increases to #0.85. The dynamic friction law
keeps the same tendency but is shifted toward smaller values
of friction. The linear approximation with "min

* #0.11 $Eq.
!5"% fails for I#0.01. We notice that the range of validity of
the dynamic friction law is much larger than for frictional
grains, and that it does not seem to depend on the geometry.

Those differences are likely related to some peculiarities
of assemblies of frictionless grains $9%. The quasistatic limit,
in such materials, is only approached for much smaller val-
ues of I than in the frictional case, and "min

* is itself consid-
erably lower. As a consequence on may expect a wider iner-
tial zone. Moreover, as the critical solid fraction coincides
with the random close packing value $9%, no solidlike region
of the system can be prevented from flowing because of its
density.

4. Comparison with previous studies

The validity of the constitutive law, once suitably gener-
alized to three dimensions, was successfully tested in flows

FIG. 8. !Color online" Dy-
namic friction law !a" in linear
scale !the solid line indicates a
slope &1" for particle coefficient
of friction "=0 and "=0.4. Dy-
namic friction law in semiloga-
rithmic scale for !b" "=0.4 and
!c" "=0. Different geometries:
!!" R25, !!" R50, !"" R100, !#"
R200. V$=2.5. Comparison with
plane shear $4% !$".

FIG. 9. !a" Width of the iner-
tial zone %in as a function of V$, as
deduced from Eq. !6" and Fig.
3!a". The solid line represents the
function %in=50!'1+0.5V$

0.57−1".
!b" Width of the localization zone
%loc as a function of V$. Geometry
R50.

ANNULAR SHEAR OF COHESIONLESS GRANULAR… PHYSICAL REVIEW E 79, 021306 !2009"

021306-7

Koval et al. 2009

positive slopes only

A. Dilatancy law

We call the variations of the average solid fraction ! as a
function of the inertial number I the dilatancy law !Fig. 2".
We observe that ! decreases approximately linearly with in-
creasing I, starting from a maximum value !max:

!!I" # !max − aI , !7"

with !max#0.81 and a#0.3 !for "=0.4". The error bar !in-
dependent of I" corresponds to the statistical dispersion in-
side the layer. This averaged measurement can be comple-
mented by the measurement of the spatial heterogeneity
!distribution of local solid fraction" within the sheared layer,
which increases with I $56%.

B. Friction law

The effective friction coefficient has been defined as the
ratio of the shear stress to the pressure inside the material
"*=S / P. It could also be defined as the ratio of the !total"
tangential and normal forces on the wall "w

* =T /N. We have
observed $36% that "w

* is slightly larger than "*. Some simu-
lations have been carried out to test the influence of the
roughness, by taking glued grain on the wall twice as small
!R=0.5" or twice as large !R=2" as the flowing grains, for
the same Ig. This size ratio has an influence on the sliding
velocity at the wall: it becomes noticeable for R=0.5 and
decreases when R increases, since the grains close to the
walls are trapped by the roughness. However, at a distance
from the walls, the flow remains uniform, but the shear rate,
and hence I, decreases when R decreases. Furthermore, the
effective friction at the wall decreases when R decreases. All
in all, "w

* !I" seems independent of R. For a more detailed
discussion of the influence of the roughness on the flow !in-
clined plane and vertical chute", we refer to $18,45,57%. In the
following we shall only discuss the effective friction coeffi-
cient in the volume of the flowing layer.

We call the variations of the effective friction coefficient
"* !averaged over the width in the central part of the flowing
layer" as a function of I the friction law !Fig. 3". We observe
that "* increases approximately linearly with I, starting from
a minimum value "min

* :

"* # "min
* + bI , !8"

with "min
* #0.25 and b#1.1 !for "=0.4", and saturates for

I#0.2. The error bars !independent of I" correspond to the
statistical dispersion inside the layer. We also observe that "*

tends to saturate for I#0.2. Within the error bars, it is diffi-
cult to be more precise about those dependencies. A more
careful measurement is deferred for future work.

We now compare this friction law with other works. We
first notice that the increase of "* with I is contrary to the
well-documented decrease of the friction coefficient with the
velocity in the quasistatic regime $58%. However, in those
studies, this softening is interpreted as a consequence of the
renewal of the population of asperities at a microscopic
scale, or as an effect of humidity $59%. Those effects do not
come into play in our study. As a matter of fact, this friction
law was already observed in previous discrete simulations
$23%, and partial observations !experimental or numerical" of
the variation of "* with the shear rate, the pressure or the
solid fraction, consistent with our observations, may be
found in $21,27,59–64%. Interestingly, the inclined plane ge-
ometry allows one to prescribe both the effective friction and
the pressure, through the inclination $ of the plane and the
height H of the flowing layer. Consequently, the measure of
the superficial velocity V as a function of these two param-
eters provides a measure of the friction coefficient at the base
as a function of Ig !which is proportional to V /H3/2" $65,66%.
Those observations are in good agreement with the previous
friction law $36,67%.

C. Comments

The classification of the flow regimes strongly depends on
the single dimensionless number I. In the quasistatic regime
!I%10−2", the granular material is very dense, close to the
maximum solid fraction !max, and the effective friction coef-
ficient is close to its minimum value "min

* . In the collisional
regime !I#0.2", the dilatancy becomes strong and the effec-
tive friction coefficient seems to saturate. The transition be-
tween those two regimes is progressive. In the dense flow
regime !10−2% I%0.2", we observe approximately linear
variations of the solid fraction and of the effective friction
coefficient as a function of I $Eqs. !7" and !8"%. The dilatancy

FIG. 2. Dilatancy law !"=0.4, various e and &".
FIG. 3. Friction law !"=0.4, e=0.1 !!", e=0.9 !"",

various &".

da CRUZ et al. PHYSICAL REVIEW E 72, 021309 !2005"

021309-6

da Cruz et al. 2005

I � 10�4
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Figure 8. Friction coefficient µ as a function of the dimensionless parameter I
(µs = tan(20.9◦), µ2 = tan(32.76◦), I0 = 0.279).

The interesting result arises when comparing this relation with the one obtained
on the inclined plane for the basal friction law (4.1). If we assume that the material
is everywhere defined by the local constitutive law given by (4.2), predictions can
be made for flows on inclined planes (see Appendix A). We can then show that the
predictions are compatible with the basal friction law (4.1) issued from experimental
measurements only if we choose for the function µ(I ) the following form:

µ(I ) = µs +
µ2 − µs

I0/I + 1
with I =

|γ̇ |d√
P/ρs

. (4.3)

The coefficients µs and µ2 are the same as in (4.1) and the constant I0 is related to
the coefficient L0 and β in (4.1) (see Appendix A). According to this law, the friction
coefficient goes from a minimum value µs for very low I up to an asymptotical value
µ2 when I increases, as sketched in figure 8.

By interpreting the basal friction law found in inclined-plane experiments in the
framework of the constitutive law found in plane shear, we are then able to propose
a simple local rheology. The next step is to ask whether this rheology, which correctly
describes plane shear and flows on inclined planes, can also predict surface flows on
heaps. In the following, we apply (4.2) and (4.3) to heap flows taking into account
the friction with sidewalls, and we compare the predictions with the experimental
results presented in the previous section. In order to do so, we must quantitatively
determine the coefficients of the constitutive law (4.3). The glass beads used in our
study being the same as those used by Forterre & Pouliquen (2003) in an inclined-
plane experiment, we can easily compute the coefficients of the relation µ(I ) from
the coefficients that have been measured for the basal friction law. We found that
µs = tan(20.9◦), µ2 = tan(32.76◦) and I0 = 0.279 (see Appendix A). This choice implies
that there is no fit parameter in our constitutive law. In other words, the idea adopted
here is to calibrate the constitutive law on previous experiments on an inclined plane,
and check if quantitative predictions can be made for surface flows on heaps.

µ(I) � µs +
µ2 � µs

I0
I

consistent with Pouliquen’s law

I � 1

size-dependence <-- nonlocal effect

(Kamrin’s talk)

linear
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granular friction: physical experiments

see also:
Lu et al. J. Fluid Mech. 2007
Petri et al. EPJB 2008

The simplest mechanism to account for these qualitative
features is a confined Brownian process:

dFf
d!
! ""!# $ aFf; (3)

where " is an uncorrelated noise term extracted from a
Gaussian distribution, i.e., h""!#""!0#i ! D#"!$ !0#,
where D is the noise variance. It is important to note that
the independent variable here is the angular position !
instead of the time t, as always the case for quenched
athermal disordered systems.

The parameter a determines the inverse correlation
length and can be estimated by the power spectrum S"!#
of the process. In fact the latter is related to the correlation
function by the Wiener-Kintchine theorem. For the process
above the power spectrum is given by

S"k# !
!""""""""

Z
d!Ff"!# exp"$i!k#

""""""""
2
#
! 2D
a2 % k2 : (4)

The power spectrum measured in the experiment is shown
in Fig. 5(b). It is seen that despite the simplicity of Eq. (3),

the related Lorentzian spectrum of Eq. (4) compares quite
well with the actual spectrum and allows estimation of the
inverse correlation length a. Once the parameters a,D, F0,
$, and v0 have been extracted from the data, the equation
of motion (1) is integrated numerically, and a stochastic
velocity signal is obtained, to be compared with the experi-
ments. It should be emphasized that the fitted parameters
display quite stable values upon repeating the experiments
and varying the driving rate. Typical values at low V are
a & 15 rad$1, D & 0:01 "N2=rad#, F0 & 0:55 N m, $ &
0:20 N m s=rad, v0 & 0:03 rad=s. At high velocities (V >
0:1 rad=s) we observe a significant variation of these val-
ues, indicating the onset of the fluidization transition [28].

The model reproduces the complex phenomenology of
the granular dynamics, despite being based on few mean-
value parameters whose values are directly measured from
the system under study. The only unknown parameter here
is the moment of inertia of the system I. In fact, consider-
ing I as the bare moment of inertia of the disk I0, one
neglects the possibility that a number of grains could move
together with the plate, increasing the actual moment of
inertia of the system. On the contrary, this behavior is
expected for the granular system, due to formation of shear
bands [29]. Accordingly, a best quantitative agreement
between model and experiments is obtained considering
I ! 1:5I0, where I0 ! 0:02 Kg m2, corresponding to few
granular layers moving together with the disk.

Examples of the distributions resulting from the model
are compared to experimental data in Figs. 2– 4. We notice
that the best agreement is found at low driving. Possible
reasons for the discrepancies observed at high drives are
related to the presence of the fluidization transition and the
intrinsic approximations of our model. In particular, the
power spectrum is not exactly Lorentzian and the model
does not account for dilatancy effects and complex shear
band dynamics. Nevertheless, the simplicity of the pro-
posed approach is quite attractive and suggests the tanta-
lizing idea that phenomena observed in different contexts
could be effectively described by similar general
processes.
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PRL 96, 118002 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
24 MARCH 2006

118002-3

Bardassarri et al.
PRL 2006

negative slope --> positive slope

532 The European Physical Journal B

Motor turns
this axle

Direction
of motion

Torsion Spring

Annular Plate

Granular medium Force Chains

Fig. 1. The experiment consists of an annular top plate shear-
ing over a granular material in a Couette geometry.

spring force. Two optical encoders measure the angular
difference (ωDt−φ) between the motor and the plate, and
this signal is stored in a pc as a function of time. The res-
olution on the angle is 3× 10−5 rad, and up to 2× 10−5 s
in time (though signals are typically smoothed and inter-
polated to 10 ms or 1 mrad, in order to reduce instrumen-
tal noise). The bed of glass beads is combed before each
series of experiments in order to minimize ageing effects
and also to remove any possible crystal structures present.
This preparation procedure allows for an acceptable repro-
ducibility of the results. More details on the experimental
set-up can be found in [2].

3 Statistics of the reaction torque

By measuring the instantaneous angle, several quantities
can be derived. For instance, a sample of the resulting
angular velocity time series of the plate φ̇(t) and driving
motor ωD is given in Figure 2. The two curves with clearly
distinct features correspond to the stick slip and to the
sliding regimes.

The reaction torque τ of the granular medium can be
derived as a function of time:

τ(t) = κ(ωDt − φ(t)) + Iφ̈(t) (1)

where κ is the spring constant and I the total inertia of the
plate and annexes. The torque may also be more usefully
expressed as a function of the angle: τ(φ). Experiments
were performed at various driving velocities and springs
constants, the variation range of which is illustrated in
Table 1. The time series exemplified in Figure 2 have
been exploited to extract important information on the
statistical properties of the torque τ . In particular we have
constructed the Probability Density Function (PDF) P (τ)
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Fig. 2. Shear velocity as a function of time in the stick-slip
(solid) and sliding (dotted) regimes. The respective driving ve-
locities are shown by the dashed lines.

Table 1. Range of values over which the spring constant, κ,
and motor angular velocity, ω can be varied; in parenthesis
values typically used in experiments.

κ (Nm/rad) ω (rad/s)

0.12 (0.36) 10−5 (0.005)
0.99 60 (1)

and the Auto-Correlation Function (ACF). For each of the
experiments, we have considered the following values of τ :
i) at the detachment (static), ii) at stationary points of
velocity (when φ̈ = 0), and iii) globally. The resulting
PDF’s are shown in [2] and are virtually identical. Their
most notable feature, the asymmetry, is clearly evident.
Different functional forms can be used to reasonably fit
the curves (e.g. Gumbel, Lognormal, Gamma etc.) but
none seem to offer any insight into any possible underlying
physical process [2].

The ACF is calculated on the torque signal as a func-
tion of angular displacement, and in shown in Figure 3 for
a single experiment. The straight line is an exponential
decay of angular constant φc = 1 radian (corresponding
to 30,000 times the system’s angular resolution, or roughly
100 particle diameters). This observation suggests that a
model for the granular friction force should take explic-
itly into account the correlations present in the granular
medium.

4 Stability and universality

Non-symmetric distributions appear in many natural phe-
nomena, and are usually deemed to be an indication of the
presence of correlations. In recent years some authors [7]
have suggested the idea that in many cases most, if not
all, of these distributions pertain to a simple universal
kind of PDF, which would take the place of the Gaussian
distribution when the variables are strongly correlated.
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constant α is generally negative!

µ(V ) = µ(V�) + � log
V

V�

(up to ~ mm/sec)

(e.g. Marone, Ann. Rev. Earth Planet. Sci. 1998)

in earthquake physics....

� � �10�2 to � 10�3

negative slope is rather ubiquitous!

normal pressure ~ 100 MPa

Dieterich 1979



At very low shear rates, constitutive law is still not established

µ(V ) = µ(V�) + � log
V

V�
µ(I) � µs +

µ2 � µs

I0
I

? numerical experimentphysical experiment

and an example is ...

current status
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FIG. 2. The geometry of the experiment. We used a transpar-
ent material (acrylic plate) for the front plate (400 mm wide) to
allow observation of particle motion and aluminum for the back
plate to reduce the static electricity effect. The bottom and the
left side of the gap were completely bounded by plates, whereas
the right side was bounded only in its lower region (a region of
height 20 mm).

side using a “double hopper,” in which the lower hopper
was continuously filled with particles by the upper one.
The mouth of the lower hopper was placed in such a man-
ner that it always contacted the top of the pile. This con-
figuration allowed us not only to minimize the effect of
the impact on the pile exerted by newly added particles
but also to control the feeding rate by changing the height
of the mouth of the lower hopper. With this configuration,
the feeding rate was essentially controlled by the flow on
the pile, and it could thus be closely matched to the outflux
from the system. In this way a steady-state system could
be established. The flow rate Q for each experimental run
was determined by measuring the weight of the particles
that poured from the right side of the gap per unit time.
Particle velocities were extracted from sequential images
taken with a charge-coupled device (CCD) camera at vari-
ous time intervals dt. In order to measure particle veloc-
ities over several orders of magnitude, the time intervals
dt were chosen from the range of 1!500 30 sec [7] de-
pending on the velocities. The spatial resolution of the
images is 0.015a 0.03a for dt , 1!30 and 0.05a 0.07a
for dt $ 1!30. With this system, the important control
parameters are the particle diameter a, the flow rate Q,
and the width of the gap W . In the present study, we
report the results obtained for three different diameters,
a ! 1.1 6 0.1, 2.1 6 0.1, and 3.1 6 0.1 mm, and the
gap width, W ! 10a. We confirmed that qualitatively the
same results are obtained for W!a ! 5 40.

As is seen in Fig. 1, the surface of the pile is flat in
the steady flow state, and its angle f with respect to the
horizontal direction is close to that after the flow stops
when the supply of particles is cut off, i.e., the angle of
repose. In this state, the mean velocity is approximately
parallel to the surface, and its functional dependence on
the depth h (measured perpendicularly to the surface; see
Fig. 2) is the same everywhere, except in the vicinity of

left and right boundaries. The mean velocity is determined
from an ensemble average of particle displacement per unit
time for each depth. Figure 3 displays the velocity profiles
as functions of the depth h on a semilog scale, while the
inset displays the same data on a normal scale. From
the graph in the inset, the mean velocity "y#h$% appears
to decay as the distance from the surface increases, and
it appears to vanish at some finite depth. Although in
previous studies [1,5,6] it has been assumed that these deep
layers are frozen, we found that the mean velocity is finite
at all depths. We call the slow motion of particles in such
a deep region creep motion.

As is clearly shown in Fig. 3, for deep layers (large h)
exhibiting creep motion, the velocity profile assumes the
form of simple exponential decay:

"y#h$% ! y0 exp#2h!hc$ , (1)

where hc is a characteristic length. While y0 increases with
the flow rate Q, hc is approximately equal to the particle
diameter a for all values of Q. The value of hc suggests
that the creep motion is driven by events occurring on a
particle-size scale. The exponential form Eq. (1) is not
specific to the system of spherical particles. Qualitatively,
the same results are obtained for particles with different
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FIG. 3. Mean velocity profiles "y% as functions of the depth h
from the pile’s surface on a semilog scale. The inset presents the
same data on a normal scale. The horizontal axes represent the
depth from h0 normalized by the particle diameter a, where h0
is the distance from the top of the fixed wall existing at the right
side of the system to the surface of the particles flowing over it.
(See Fig. 5.) The vertical axes represent velocity normalized
by the value at h0. The values of the particle diameter a #mm$
and the flow rate Q #g!sec$ for the experiments are 1 and 12
(squares), 1 and 43 (solid squares), 2 and 20 (circles), 2 and 50
(solid circles), 2 and 100 (triangles), 3 and 34 (plus signs), and 3
and 58 (crosses). The broken line corresponds to exp#20.72x$.
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Gas

Liquid

Solid

Figure 1
An illustration of the solid,
liquid, and gas flow regimes
obtained by pouring steel
beads on a pile.

regimes: a solid region under the pile in which grains do not move or creep very
slowly, a liquid region in which a dense layer flows, and a gaseous region in which the
beads bounce in all directions creating a dilute chaotic medium. In the following, we
discuss the boundaries between the different flow regimes.

2.1. Transition Between Solid and Liquid Behaviors
Our daily experience tells us that a pile of sand has to be inclined above a critical
angle in order to flow. This is because the onset of the flow of granular materials
is given by a friction criterion: The ratio of shear stress to normal stress, which is
simply the tangent of the slope of the pile, has to reach a critical value called the
friction coefficient in order for the material to deform. The reason why the solid-
liquid transition for a granular material is a friction criterion is that, for rigid grains,
no internal stress scale exists. This contrasts with other complex fluids exhibiting flow
threshold such as Bingham fluids, in which an internal stress scale exists that is linked
to the breakage of a microscopic structure. From a microscopic point of view, the
strength of a granular material comes not only from the friction between grains, but
also from the entanglement of the particles: Packed frictionless particles still exhibit
a macroscopic friction coefficient.

Although a friction criterion is the zero-order description of the solid-liquid tran-
sition, the details are more complex. First, the initiation of the flow is sensitive to
the initial preparation of the sample and depends on both the initial volume frac-
tion and the history of previous deformations (Daerr & Douady 1999a). Modeling
the initial deformation and the coupling between strain, stress, volume fraction, and
possibly other texture fields, such as contact orientation, is the domain of soils me-
chanics (Roux & Radjai 1998, Schofield & Wroth 1968, Wood 1990). Researchers
have proposed plastic constitutive laws, and attempts to connect the microstructure to
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what kind of constitutive law can explain this?

exponential velocity profile in inclined plane flow



questions

1. At very low shear rates, constitutive law is still not established

A. nonlocal effect

B. physics of negative slope?

2. If negative slope is true, how is it compatible with Pouliquen’s law?

(e.g. Kamrin & Koval 2012)

(Dieterich 1979)

µ(V ) = µ(V�) + � log
V

V�
µ(I) � µs +

µ2 � µs

I0
I
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OUR GOAL

1. Negative slope for glass beads?

I = Ic

µ(Ic) minimum

3. What if fault gouge?

The simplest mechanism to account for these qualitative
features is a confined Brownian process:

dFf
d!
! ""!# $ aFf; (3)

where " is an uncorrelated noise term extracted from a
Gaussian distribution, i.e., h""!#""!0#i ! D#"!$ !0#,
where D is the noise variance. It is important to note that
the independent variable here is the angular position !
instead of the time t, as always the case for quenched
athermal disordered systems.

The parameter a determines the inverse correlation
length and can be estimated by the power spectrum S"!#
of the process. In fact the latter is related to the correlation
function by the Wiener-Kintchine theorem. For the process
above the power spectrum is given by

S"k# !
!""""""""

Z
d!Ff"!# exp"$i!k#

""""""""
2
#
! 2D
a2 % k2 : (4)

The power spectrum measured in the experiment is shown
in Fig. 5(b). It is seen that despite the simplicity of Eq. (3),

the related Lorentzian spectrum of Eq. (4) compares quite
well with the actual spectrum and allows estimation of the
inverse correlation length a. Once the parameters a,D, F0,
$, and v0 have been extracted from the data, the equation
of motion (1) is integrated numerically, and a stochastic
velocity signal is obtained, to be compared with the experi-
ments. It should be emphasized that the fitted parameters
display quite stable values upon repeating the experiments
and varying the driving rate. Typical values at low V are
a & 15 rad$1, D & 0:01 "N2=rad#, F0 & 0:55 N m, $ &
0:20 N m s=rad, v0 & 0:03 rad=s. At high velocities (V >
0:1 rad=s) we observe a significant variation of these val-
ues, indicating the onset of the fluidization transition [28].

The model reproduces the complex phenomenology of
the granular dynamics, despite being based on few mean-
value parameters whose values are directly measured from
the system under study. The only unknown parameter here
is the moment of inertia of the system I. In fact, consider-
ing I as the bare moment of inertia of the disk I0, one
neglects the possibility that a number of grains could move
together with the plate, increasing the actual moment of
inertia of the system. On the contrary, this behavior is
expected for the granular system, due to formation of shear
bands [29]. Accordingly, a best quantitative agreement
between model and experiments is obtained considering
I ! 1:5I0, where I0 ! 0:02 Kg m2, corresponding to few
granular layers moving together with the disk.

Examples of the distributions resulting from the model
are compared to experimental data in Figs. 2– 4. We notice
that the best agreement is found at low driving. Possible
reasons for the discrepancies observed at high drives are
related to the presence of the fluidization transition and the
intrinsic approximations of our model. In particular, the
power spectrum is not exactly Lorentzian and the model
does not account for dilatancy effects and complex shear
band dynamics. Nevertheless, the simplicity of the pro-
posed approach is quite attractive and suggests the tanta-
lizing idea that phenomena observed in different contexts
could be effectively described by similar general
processes.
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Figure 1. (a) Schematic diagram of the apparatus. (b)
Grain sample used in experiment.

Figure 2. The flow velocity profiles v(x) normalized by
Vo ≡ ΩD2/2. The horizontal axis is the distance from the
upper plate, x, normalized by a mean diameter d. The
lower plate is located at x/d " 7.4. The data were taken
under the normal stress of 30 kPa.

could optically observe the internal structure of the granular
layer; the side wall was fixed to the lower plate. The gaps
between the upper plate and the side wall are smaller than
50µm, which is four times smaller than the grain diameter.
These gaps are so narrow that grains could not escape from
the holder. The temperature beneath the lower plate was
set to 25 ◦C and was kept constant with Peltier Plate. The
experiment was conducted at room humidity (∼ 50%).

Because sliding velocity varies with the radial position
of the upper plate, we defined the effective sliding velocity
defined as V ≡ (Ω/3) × (D3

2 − D3
1)/(D

2
2 − D2

1). With this
definition, σV gives the rate of total frictional work per unit
area, where the shear stress, σ, is assumed to be uniform on
a sliding surface. Hereafter, the effective sliding velocity is
referred to simply as sliding velocity.

To obtain the velocity profile in the sheared granular lay-
ers, images of the glass-bead layer were captured by a high-
speed video camera (Photron Fastcam APX RS) through the
transparent side wall. We used particle tracking velocimetry
(PTV) to obtain the instantaneous velocity of each grain.
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Figure 3. Behaviors of the friction coefficient plotted
against the sliding velocity. Symbols show the different
normal stress (blue circles: 30 kPa, purple triangles 20
kPa, light blue squares: 10 kPa).

We found that the shapes of the velocity profiles are an
identical shape over the wide range of sliding velocities (Fig-
ure 2). We defined the effective flow width Ws such that the
velocity decreased to 1/10. The resultant rate-independent
flow-width yields Ws ∼ 5d, where d is the mean diameter of
the particle. A more detailed study of the velocity profile
and particle motion will be reported elsewhere.

3. Results

In Figure 3, the steady-state friction coefficient is shown
as a function of the sliding velocity. Plotted symbols and
error bars show the mean and standard deviation between 6
experimental runs, respectively. At lower velocities (V ≤ 10
cm/s), we observe logarithmic velocity weakening. The ex-
tent of weakening is characterized by the slope ∂µ/∂ lnV .
For example, the slope is approximately −0.003 for 30 kPa.
This value is comparable to that typically observed for glass
or rocks [Dieterich, 1979; Scholz , 1998; Chambon et al.,
2002; Marone, 2003].

At higher velocities (V ≥ 10 cm/s), the friction coeffi-
cient substantially increases. Importantly, it appears that
the amount of strengthening is common to all of the data.
Thus, we can expect a universal description of this velocity-
strengthening behavior. To seek such a description, it is
more convenient to use the inertial number instead of the
sliding velocity. The graph is shown in Figure S1, in which
the shear rate is defined as γ̇ = V/Ws. The data indicate
the characteristic inertial number above which the friction
coefficient increases. We refer to this characteristic inertial
number as the crossover inertial number, and it is denoted
by Ic. Although the crossover inertial number for each run
varies slightly, its value is apparently on the order of 10−2

to 10−3. We then defined the amount of strengthening as
∆µ(I) = µ(I) − µ(I∗). We chose I∗ = 0.032 because the
strengthening is significant in all of the data for I > 0.032.
We found that ∆µ(I) collapses in the high I regime (I ≥ Ic)
(as shown in Figure 4a). This collapse obeys

∆µ(I) ∝ c1I, (2)

with c1 " 0.6.
It is also important to note that this strengthening be-

havior is accompanied by dilation. To compare the data
with different layer thicknesses, it is convenient to define
the nondimensional dilation as ∆H∗ = (H(I)−H(I∗))/Ws.
As shown in Figure 4b, ∆H∗ also collapses in the high I
regime.

∆H∗ ∝ c2I, (3)

2. Negative to positive crossover? How?
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FIG. 1. (a) Schematic diagram of the apparatus. (b) Grain
samples: (upper) glass beads, (lower) chromite sand. (c) The
flow velocity profiles v(x) normalized by Vo ≡ ΩD2/2. The
horizontal axis is the distance from the upper plate, x, normal-
ized by a mean diameter d. The solid line is 10−x/Ws , where
Ws = 5.0d. The lower plate is located at x/d " 7.4. The data
were taken using glass beads under the normal stress of 30
kPa. (d) The normal-stress dependence of the shear stress.

rate.

The shear stress σ and the layer thickness H were mea-
sured at each steady state of the sliding velocity V under
a constant normal stress P . Figure 1 d shows an exam-
ple of the normal-stress dependence of the steady-state
shear stress. The intercept of the best-fit line is quite
close to the origin and this means that the friction be-
tween the upper plate and the side wall is negligible. We
then define the friction coefficient µ as σ/P at each given
normal stress. In FIG. 2, the friction coefficient is shown
as a function of the inertial number.

At lower inertial numbers (I ≤ 10−2), the friction co-
efficient is weakly dependent of the sliding velocity. As
apparent in FIG. 2 b, the dependence is negative and log-
arithmic. The extent of weakening is characterized by the
slope ∂µ/∂ ln I. For example, the slope is approximately
−0.003 for spherical glass beads at 30 kPa. The negative
dependence on the sliding velocity is indeed well known
in earthquake physics [15] and in tribology [16] and the
extent of weakening in the present study is comparable
to those typically observed for glass or rocks, although
the slope may be sensitive to the experimental details,

a b

c d

FIG. 2. Behaviors of the friction coefficient plotted against
the inertial number. Symbols are common to each panel and
show the different normal stress. (light blue circles: glass
beads 20 kPa, blue circles/triangles/squares: glass beads 30
kPa, purple triangles: glass beads 50 kPa, green triangles:
chromite sand 30 kPa). Three data sets at 30 kPa represent
three independent data obtained for different initial packings.
(a) Semi-log plot in the entire I region. (b) Blow-up of the
low I region. (c) Fitting the data to Eq. (4). (d) linear plot
of the high I region. Black squares and circles are the data
obtained in inclined plane flows [18].

such as humidity.

Although the negative slope is the common feature of
the present data, the absolute value of the friction co-
efficient differs significantly from sample to sample. An
apparent ingredient that affects the absolute value is the
grain shape [17]. The friction coefficient of the angular
grains (µ # 0.55) is significantly higher than that of the
spherical grains (µ # 0.4). It is also noteworthy that
the spherical glass beads may exhibit anomalously low
friction (µ # 0.3) despite the same experimental condi-
tions (e.g., the blue squares in FIG. 2a). This effect may
be due to the structural ordering induced by the shear,
although that hypothesis has not been verified.

At higher inertial numbers (I ≥ 10−2), the friction co-
efficient substantially increases and quantitatively agrees
with those obtained in inclined plane flows [18] as shown
in FIG. 2 d. Importantly, the data indicate the charac-
teristic inertial number above which the friction coeffi-
cient increases. We refer to this as the crossover inertial
number, and it is denoted by Ic. Although Ic for each
sample varies slightly, its value is apparently on the order
of 10−2. Thus, for simplicity, we chose Ic = 0.032 assum-
ing that Ic is common to all of the data. We then defined
the amount of strengthening as ∆µ(I) ≡ µ(I)−µ(Ic) and
found that ∆µ(I) collapses in the high I regime (I ≥ Ic)

annular channel (D1=15mm, D2=25mm)

sliding velocity [m/sec]�D2/2 = 10�4 to 3
normal stress 10 to 30 kPa (constant pressure)
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Figure 1. (a) Schematic diagram of the apparatus. (b)
Grain sample used in experiment.

Figure 2. The flow velocity profiles v(x) normalized by
Vo ≡ ΩD2/2. The horizontal axis is the distance from the
upper plate, x, normalized by a mean diameter d. The
lower plate is located at x/d " 7.4. The data were taken
under the normal stress of 30 kPa.

could optically observe the internal structure of the granular
layer; the side wall was fixed to the lower plate. The gaps
between the upper plate and the side wall are smaller than
50µm, which is four times smaller than the grain diameter.
These gaps are so narrow that grains could not escape from
the holder. The temperature beneath the lower plate was
set to 25 ◦C and was kept constant with Peltier Plate. The
experiment was conducted at room humidity (∼ 50%).

Because sliding velocity varies with the radial position
of the upper plate, we defined the effective sliding velocity
defined as V ≡ (Ω/3) × (D3

2 − D3
1)/(D

2
2 − D2

1). With this
definition, σV gives the rate of total frictional work per unit
area, where the shear stress, σ, is assumed to be uniform on
a sliding surface. Hereafter, the effective sliding velocity is
referred to simply as sliding velocity.

To obtain the velocity profile in the sheared granular lay-
ers, images of the glass-bead layer were captured by a high-
speed video camera (Photron Fastcam APX RS) through the
transparent side wall. We used particle tracking velocimetry
(PTV) to obtain the instantaneous velocity of each grain.
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Figure 3. Behaviors of the friction coefficient plotted
against the sliding velocity. Symbols show the different
normal stress (blue circles: 30 kPa, purple triangles 20
kPa, light blue squares: 10 kPa).

We found that the shapes of the velocity profiles are an
identical shape over the wide range of sliding velocities (Fig-
ure 2). We defined the effective flow width Ws such that the
velocity decreased to 1/10. The resultant rate-independent
flow-width yields Ws ∼ 5d, where d is the mean diameter of
the particle. A more detailed study of the velocity profile
and particle motion will be reported elsewhere.

3. Results

In Figure 3, the steady-state friction coefficient is shown
as a function of the sliding velocity. Plotted symbols and
error bars show the mean and standard deviation between 6
experimental runs, respectively. At lower velocities (V ≤ 10
cm/s), we observe logarithmic velocity weakening. The ex-
tent of weakening is characterized by the slope ∂µ/∂ lnV .
For example, the slope is approximately −0.003 for 30 kPa.
This value is comparable to that typically observed for glass
or rocks [Dieterich, 1979; Scholz , 1998; Chambon et al.,
2002; Marone, 2003].

At higher velocities (V ≥ 10 cm/s), the friction coeffi-
cient substantially increases. Importantly, it appears that
the amount of strengthening is common to all of the data.
Thus, we can expect a universal description of this velocity-
strengthening behavior. To seek such a description, it is
more convenient to use the inertial number instead of the
sliding velocity. The graph is shown in Figure S1, in which
the shear rate is defined as γ̇ = V/Ws. The data indicate
the characteristic inertial number above which the friction
coefficient increases. We refer to this characteristic inertial
number as the crossover inertial number, and it is denoted
by Ic. Although the crossover inertial number for each run
varies slightly, its value is apparently on the order of 10−2

to 10−3. We then defined the amount of strengthening as
∆µ(I) = µ(I) − µ(I∗). We chose I∗ = 0.032 because the
strengthening is significant in all of the data for I > 0.032.
We found that ∆µ(I) collapses in the high I regime (I ≥ Ic)
(as shown in Figure 4a). This collapse obeys

∆µ(I) ∝ c1I, (2)

with c1 " 0.6.
It is also important to note that this strengthening be-

havior is accompanied by dilation. To compare the data
with different layer thicknesses, it is convenient to define
the nondimensional dilation as ∆H∗ = (H(I)−H(I∗))/Ws.
As shown in Figure 4b, ∆H∗ also collapses in the high I
regime.

∆H∗ ∝ c2I, (3)

glass beads
mean diameter 270 μm

(dispersity ~ 10 %)

transparent sidewall
room humidity ~ 50%

A commercial rheometer (AR2000ex, TA Instruments) 
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FIG. 1. (a) Schematic diagram of the apparatus. (b) Grain
samples: (upper) glass beads, (lower) chromite sand. (c) The
flow velocity profiles v(x) normalized by Vo ≡ ΩD2/2. The
horizontal axis is the distance from the upper plate, x, normal-
ized by a mean diameter d. The solid line is 10−x/Ws , where
Ws = 5.0d. The lower plate is located at x/d " 7.4. The data
were taken using glass beads under the normal stress of 30
kPa. (d) The normal-stress dependence of the shear stress.

rate.

The shear stress σ and the layer thickness H were mea-
sured at each steady state of the sliding velocity V under
a constant normal stress P . Figure 1 d shows an exam-
ple of the normal-stress dependence of the steady-state
shear stress. The intercept of the best-fit line is quite
close to the origin and this means that the friction be-
tween the upper plate and the side wall is negligible. We
then define the friction coefficient µ as σ/P at each given
normal stress. In FIG. 2, the friction coefficient is shown
as a function of the inertial number.

At lower inertial numbers (I ≤ 10−2), the friction co-
efficient is weakly dependent of the sliding velocity. As
apparent in FIG. 2 b, the dependence is negative and log-
arithmic. The extent of weakening is characterized by the
slope ∂µ/∂ ln I. For example, the slope is approximately
−0.003 for spherical glass beads at 30 kPa. The negative
dependence on the sliding velocity is indeed well known
in earthquake physics [15] and in tribology [16] and the
extent of weakening in the present study is comparable
to those typically observed for glass or rocks, although
the slope may be sensitive to the experimental details,

a b

c d

FIG. 2. Behaviors of the friction coefficient plotted against
the inertial number. Symbols are common to each panel and
show the different normal stress. (light blue circles: glass
beads 20 kPa, blue circles/triangles/squares: glass beads 30
kPa, purple triangles: glass beads 50 kPa, green triangles:
chromite sand 30 kPa). Three data sets at 30 kPa represent
three independent data obtained for different initial packings.
(a) Semi-log plot in the entire I region. (b) Blow-up of the
low I region. (c) Fitting the data to Eq. (4). (d) linear plot
of the high I region. Black squares and circles are the data
obtained in inclined plane flows [18].

such as humidity.

Although the negative slope is the common feature of
the present data, the absolute value of the friction co-
efficient differs significantly from sample to sample. An
apparent ingredient that affects the absolute value is the
grain shape [17]. The friction coefficient of the angular
grains (µ # 0.55) is significantly higher than that of the
spherical grains (µ # 0.4). It is also noteworthy that
the spherical glass beads may exhibit anomalously low
friction (µ # 0.3) despite the same experimental condi-
tions (e.g., the blue squares in FIG. 2a). This effect may
be due to the structural ordering induced by the shear,
although that hypothesis has not been verified.

At higher inertial numbers (I ≥ 10−2), the friction co-
efficient substantially increases and quantitatively agrees
with those obtained in inclined plane flows [18] as shown
in FIG. 2 d. Importantly, the data indicate the charac-
teristic inertial number above which the friction coeffi-
cient increases. We refer to this as the crossover inertial
number, and it is denoted by Ic. Although Ic for each
sample varies slightly, its value is apparently on the order
of 10−2. Thus, for simplicity, we chose Ic = 0.032 assum-
ing that Ic is common to all of the data. We then defined
the amount of strengthening as ∆µ(I) ≡ µ(I)−µ(Ic) and
found that ∆µ(I) collapses in the high I regime (I ≥ Ic)
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Figure 1. (a) Schematic diagram of the apparatus. (b)
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Figure 2. The flow velocity profiles v(x) normalized by
Vo ≡ ΩD2/2. The horizontal axis is the distance from the
upper plate, x, normalized by a mean diameter d. The
lower plate is located at x/d " 7.4. The data were taken
under the normal stress of 30 kPa.

could optically observe the internal structure of the granular
layer; the side wall was fixed to the lower plate. The gaps
between the upper plate and the side wall are smaller than
50µm, which is four times smaller than the grain diameter.
These gaps are so narrow that grains could not escape from
the holder. The temperature beneath the lower plate was
set to 25 ◦C and was kept constant with Peltier Plate. The
experiment was conducted at room humidity (∼ 50%).

Because sliding velocity varies with the radial position
of the upper plate, we defined the effective sliding velocity
defined as V ≡ (Ω/3) × (D3

2 − D3
1)/(D

2
2 − D2

1). With this
definition, σV gives the rate of total frictional work per unit
area, where the shear stress, σ, is assumed to be uniform on
a sliding surface. Hereafter, the effective sliding velocity is
referred to simply as sliding velocity.

To obtain the velocity profile in the sheared granular lay-
ers, images of the glass-bead layer were captured by a high-
speed video camera (Photron Fastcam APX RS) through the
transparent side wall. We used particle tracking velocimetry
(PTV) to obtain the instantaneous velocity of each grain.
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Figure 3. Behaviors of the friction coefficient plotted
against the sliding velocity. Symbols show the different
normal stress (blue circles: 30 kPa, purple triangles 20
kPa, light blue squares: 10 kPa).

We found that the shapes of the velocity profiles are an
identical shape over the wide range of sliding velocities (Fig-
ure 2). We defined the effective flow width Ws such that the
velocity decreased to 1/10. The resultant rate-independent
flow-width yields Ws ∼ 5d, where d is the mean diameter of
the particle. A more detailed study of the velocity profile
and particle motion will be reported elsewhere.

3. Results

In Figure 3, the steady-state friction coefficient is shown
as a function of the sliding velocity. Plotted symbols and
error bars show the mean and standard deviation between 6
experimental runs, respectively. At lower velocities (V ≤ 10
cm/s), we observe logarithmic velocity weakening. The ex-
tent of weakening is characterized by the slope ∂µ/∂ lnV .
For example, the slope is approximately −0.003 for 30 kPa.
This value is comparable to that typically observed for glass
or rocks [Dieterich, 1979; Scholz , 1998; Chambon et al.,
2002; Marone, 2003].

At higher velocities (V ≥ 10 cm/s), the friction coeffi-
cient substantially increases. Importantly, it appears that
the amount of strengthening is common to all of the data.
Thus, we can expect a universal description of this velocity-
strengthening behavior. To seek such a description, it is
more convenient to use the inertial number instead of the
sliding velocity. The graph is shown in Figure S1, in which
the shear rate is defined as γ̇ = V/Ws. The data indicate
the characteristic inertial number above which the friction
coefficient increases. We refer to this characteristic inertial
number as the crossover inertial number, and it is denoted
by Ic. Although the crossover inertial number for each run
varies slightly, its value is apparently on the order of 10−2

to 10−3. We then defined the amount of strengthening as
∆µ(I) = µ(I) − µ(I∗). We chose I∗ = 0.032 because the
strengthening is significant in all of the data for I > 0.032.
We found that ∆µ(I) collapses in the high I regime (I ≥ Ic)
(as shown in Figure 4a). This collapse obeys

∆µ(I) ∝ c1I, (2)

with c1 " 0.6.
It is also important to note that this strengthening be-

havior is accompanied by dilation. To compare the data
with different layer thicknesses, it is convenient to define
the nondimensional dilation as ∆H∗ = (H(I)−H(I∗))/Ws.
As shown in Figure 4b, ∆H∗ also collapses in the high I
regime.

∆H∗ ∝ c2I, (3)
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Figure 2. The flow velocity profiles v(x) normalized by
Vo ≡ ΩD2/2. The horizontal axis is the distance from the
upper plate, x, normalized by a mean diameter d. The
lower plate is located at x/d " 7.4. The data were taken
under the normal stress of 30 kPa.

could optically observe the internal structure of the granular
layer; the side wall was fixed to the lower plate. The gaps
between the upper plate and the side wall are smaller than
50µm, which is four times smaller than the grain diameter.
These gaps are so narrow that grains could not escape from
the holder. The temperature beneath the lower plate was
set to 25 ◦C and was kept constant with Peltier Plate. The
experiment was conducted at room humidity (∼ 50%).

Because sliding velocity varies with the radial position
of the upper plate, we defined the effective sliding velocity
defined as V ≡ (Ω/3) × (D3

2 − D3
1)/(D

2
2 − D2

1). With this
definition, σV gives the rate of total frictional work per unit
area, where the shear stress, σ, is assumed to be uniform on
a sliding surface. Hereafter, the effective sliding velocity is
referred to simply as sliding velocity.

To obtain the velocity profile in the sheared granular lay-
ers, images of the glass-bead layer were captured by a high-
speed video camera (Photron Fastcam APX RS) through the
transparent side wall. We used particle tracking velocimetry
(PTV) to obtain the instantaneous velocity of each grain.
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Figure 3. Behaviors of the friction coefficient plotted
against the sliding velocity. Symbols show the different
normal stress (blue circles: 30 kPa, purple triangles 20
kPa, light blue squares: 10 kPa).

We found that the shapes of the velocity profiles are an
identical shape over the wide range of sliding velocities (Fig-
ure 2). We defined the effective flow width Ws such that the
velocity decreased to 1/10. The resultant rate-independent
flow-width yields Ws ∼ 5d, where d is the mean diameter of
the particle. A more detailed study of the velocity profile
and particle motion will be reported elsewhere.

3. Results

In Figure 3, the steady-state friction coefficient is shown
as a function of the sliding velocity. Plotted symbols and
error bars show the mean and standard deviation between 6
experimental runs, respectively. At lower velocities (V ≤ 10
cm/s), we observe logarithmic velocity weakening. The ex-
tent of weakening is characterized by the slope ∂µ/∂ lnV .
For example, the slope is approximately −0.003 for 30 kPa.
This value is comparable to that typically observed for glass
or rocks [Dieterich, 1979; Scholz , 1998; Chambon et al.,
2002; Marone, 2003].

At higher velocities (V ≥ 10 cm/s), the friction coeffi-
cient substantially increases. Importantly, it appears that
the amount of strengthening is common to all of the data.
Thus, we can expect a universal description of this velocity-
strengthening behavior. To seek such a description, it is
more convenient to use the inertial number instead of the
sliding velocity. The graph is shown in Figure S1, in which
the shear rate is defined as γ̇ = V/Ws. The data indicate
the characteristic inertial number above which the friction
coefficient increases. We refer to this characteristic inertial
number as the crossover inertial number, and it is denoted
by Ic. Although the crossover inertial number for each run
varies slightly, its value is apparently on the order of 10−2

to 10−3. We then defined the amount of strengthening as
∆µ(I) = µ(I) − µ(I∗). We chose I∗ = 0.032 because the
strengthening is significant in all of the data for I > 0.032.
We found that ∆µ(I) collapses in the high I regime (I ≥ Ic)
(as shown in Figure 4a). This collapse obeys

∆µ(I) ∝ c1I, (2)

with c1 " 0.6.
It is also important to note that this strengthening be-

havior is accompanied by dilation. To compare the data
with different layer thicknesses, it is convenient to define
the nondimensional dilation as ∆H∗ = (H(I)−H(I∗))/Ws.
As shown in Figure 4b, ∆H∗ also collapses in the high I
regime.

∆H∗ ∝ c2I, (3)
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Figure 1. (a) Schematic diagram of the apparatus. (b)
Grain sample used in experiment.

Figure 2. The flow velocity profiles v(x) normalized by
Vo ≡ ΩD2/2. The horizontal axis is the distance from the
upper plate, x, normalized by a mean diameter d. The
lower plate is located at x/d " 7.4. The data were taken
under the normal stress of 30 kPa.

could optically observe the internal structure of the granular
layer; the side wall was fixed to the lower plate. The gaps
between the upper plate and the side wall are smaller than
50µm, which is four times smaller than the grain diameter.
These gaps are so narrow that grains could not escape from
the holder. The temperature beneath the lower plate was
set to 25 ◦C and was kept constant with Peltier Plate. The
experiment was conducted at room humidity (∼ 50%).

Because sliding velocity varies with the radial position
of the upper plate, we defined the effective sliding velocity
defined as V ≡ (Ω/3) × (D3

2 − D3
1)/(D

2
2 − D2

1). With this
definition, σV gives the rate of total frictional work per unit
area, where the shear stress, σ, is assumed to be uniform on
a sliding surface. Hereafter, the effective sliding velocity is
referred to simply as sliding velocity.

To obtain the velocity profile in the sheared granular lay-
ers, images of the glass-bead layer were captured by a high-
speed video camera (Photron Fastcam APX RS) through the
transparent side wall. We used particle tracking velocimetry
(PTV) to obtain the instantaneous velocity of each grain.
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Figure 3. Behaviors of the friction coefficient plotted
against the sliding velocity. Symbols show the different
normal stress (blue circles: 30 kPa, purple triangles 20
kPa, light blue squares: 10 kPa).

We found that the shapes of the velocity profiles are an
identical shape over the wide range of sliding velocities (Fig-
ure 2). We defined the effective flow width Ws such that the
velocity decreased to 1/10. The resultant rate-independent
flow-width yields Ws ∼ 5d, where d is the mean diameter of
the particle. A more detailed study of the velocity profile
and particle motion will be reported elsewhere.

3. Results

In Figure 3, the steady-state friction coefficient is shown
as a function of the sliding velocity. Plotted symbols and
error bars show the mean and standard deviation between 6
experimental runs, respectively. At lower velocities (V ≤ 10
cm/s), we observe logarithmic velocity weakening. The ex-
tent of weakening is characterized by the slope ∂µ/∂ lnV .
For example, the slope is approximately −0.003 for 30 kPa.
This value is comparable to that typically observed for glass
or rocks [Dieterich, 1979; Scholz , 1998; Chambon et al.,
2002; Marone, 2003].

At higher velocities (V ≥ 10 cm/s), the friction coeffi-
cient substantially increases. Importantly, it appears that
the amount of strengthening is common to all of the data.
Thus, we can expect a universal description of this velocity-
strengthening behavior. To seek such a description, it is
more convenient to use the inertial number instead of the
sliding velocity. The graph is shown in Figure S1, in which
the shear rate is defined as γ̇ = V/Ws. The data indicate
the characteristic inertial number above which the friction
coefficient increases. We refer to this characteristic inertial
number as the crossover inertial number, and it is denoted
by Ic. Although the crossover inertial number for each run
varies slightly, its value is apparently on the order of 10−2

to 10−3. We then defined the amount of strengthening as
∆µ(I) = µ(I) − µ(I∗). We chose I∗ = 0.032 because the
strengthening is significant in all of the data for I > 0.032.
We found that ∆µ(I) collapses in the high I regime (I ≥ Ic)
(as shown in Figure 4a). This collapse obeys

∆µ(I) ∝ c1I, (2)

with c1 " 0.6.
It is also important to note that this strengthening be-

havior is accompanied by dilation. To compare the data
with different layer thicknesses, it is convenient to define
the nondimensional dilation as ∆H∗ = (H(I)−H(I∗))/Ws.
As shown in Figure 4b, ∆H∗ also collapses in the high I
regime.

∆H∗ ∝ c2I, (3)

20kPa
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Figure 1. (a) Schematic diagram of the apparatus. (b)
Grain sample used in experiment.

Figure 2. The flow velocity profiles v(x) normalized by
Vo ≡ ΩD2/2. The horizontal axis is the distance from the
upper plate, x, normalized by a mean diameter d. The
lower plate is located at x/d " 7.4. The data were taken
under the normal stress of 30 kPa.

could optically observe the internal structure of the granular
layer; the side wall was fixed to the lower plate. The gaps
between the upper plate and the side wall are smaller than
50µm, which is four times smaller than the grain diameter.
These gaps are so narrow that grains could not escape from
the holder. The temperature beneath the lower plate was
set to 25 ◦C and was kept constant with Peltier Plate. The
experiment was conducted at room humidity (∼ 50%).

Because sliding velocity varies with the radial position
of the upper plate, we defined the effective sliding velocity
defined as V ≡ (Ω/3) × (D3

2 − D3
1)/(D

2
2 − D2

1). With this
definition, σV gives the rate of total frictional work per unit
area, where the shear stress, σ, is assumed to be uniform on
a sliding surface. Hereafter, the effective sliding velocity is
referred to simply as sliding velocity.

To obtain the velocity profile in the sheared granular lay-
ers, images of the glass-bead layer were captured by a high-
speed video camera (Photron Fastcam APX RS) through the
transparent side wall. We used particle tracking velocimetry
(PTV) to obtain the instantaneous velocity of each grain.
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Figure 3. Behaviors of the friction coefficient plotted
against the sliding velocity. Symbols show the different
normal stress (blue circles: 30 kPa, purple triangles 20
kPa, light blue squares: 10 kPa).

We found that the shapes of the velocity profiles are an
identical shape over the wide range of sliding velocities (Fig-
ure 2). We defined the effective flow width Ws such that the
velocity decreased to 1/10. The resultant rate-independent
flow-width yields Ws ∼ 5d, where d is the mean diameter of
the particle. A more detailed study of the velocity profile
and particle motion will be reported elsewhere.

3. Results

In Figure 3, the steady-state friction coefficient is shown
as a function of the sliding velocity. Plotted symbols and
error bars show the mean and standard deviation between 6
experimental runs, respectively. At lower velocities (V ≤ 10
cm/s), we observe logarithmic velocity weakening. The ex-
tent of weakening is characterized by the slope ∂µ/∂ lnV .
For example, the slope is approximately −0.003 for 30 kPa.
This value is comparable to that typically observed for glass
or rocks [Dieterich, 1979; Scholz , 1998; Chambon et al.,
2002; Marone, 2003].

At higher velocities (V ≥ 10 cm/s), the friction coeffi-
cient substantially increases. Importantly, it appears that
the amount of strengthening is common to all of the data.
Thus, we can expect a universal description of this velocity-
strengthening behavior. To seek such a description, it is
more convenient to use the inertial number instead of the
sliding velocity. The graph is shown in Figure S1, in which
the shear rate is defined as γ̇ = V/Ws. The data indicate
the characteristic inertial number above which the friction
coefficient increases. We refer to this characteristic inertial
number as the crossover inertial number, and it is denoted
by Ic. Although the crossover inertial number for each run
varies slightly, its value is apparently on the order of 10−2

to 10−3. We then defined the amount of strengthening as
∆µ(I) = µ(I) − µ(I∗). We chose I∗ = 0.032 because the
strengthening is significant in all of the data for I > 0.032.
We found that ∆µ(I) collapses in the high I regime (I ≥ Ic)
(as shown in Figure 4a). This collapse obeys

∆µ(I) ∝ c1I, (2)

with c1 " 0.6.
It is also important to note that this strengthening be-

havior is accompanied by dilation. To compare the data
with different layer thicknesses, it is convenient to define
the nondimensional dilation as ∆H∗ = (H(I)−H(I∗))/Ws.
As shown in Figure 4b, ∆H∗ also collapses in the high I
regime.

∆H∗ ∝ c2I, (3)
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FIGURE 2. Behaviors of the friction coefficient plotted against the inertial number. The blue and the red symbols corresponds
to glass beads and chromite sand, respectively. The different shapes represent different normal stresses: squares (10kPa), triangles
(20kPa), and circles (30kPa). Each point is an averaged value over six measurements (see Procedure), except for chromite sand
under the normal pressure of 30 kPa (red circles), which was determined from a single measurement. (a) Semi-log plot in the
entire I region. (b) Blow-up of the low I region. (c) Linear plot of the high I region. Black symbols are taken from [19], which are
measured in inclined plane flows.

Fast Flow Regime

At higher inertial numbers (I ≥ 10−2), the friction co-
efficient substantially increases and quantitatively agrees
with those obtained in inclined plane flows [19] as shown
in FIG. 2 c. Importantly, the data indicate the character-
istic inertial number above which the friction coefficient
increases. We refer to this as the crossover inertial num-
ber, and it is denoted by Ic. Although Ic for each sample
varies slightly, its value is apparently on the order of 10−3

to 10−2. Thus, for simplicity, we defined a reference iner-
tial number as I∗ = 0.032 for all the sample and defined
the amount of strengthening as ∆µ(I) ≡ µ(I)− µ(I∗).
As a result, we found that ∆µ(I) collapses in the high I
regime (I ≥ Ic) as shown in FIG. 3 a. This collapse obeys

∆µ(I) ∝ c1I, (1)

with c1 % 0.6.
This strengthening behavior for I ≥ Ic is accompanied

by dilation. To compare the data with different layer
thicknesses, it is convenient to define the nondimensional

dilation as ∆H∗(I) = (H(I)−H(I∗))/Ws. As shown in
FIG. 3 b, ∆H∗ also collapses in the high I regime.

∆H∗ ∝ c2I, (2)

where c2 % 0.2. Equations (1) and (2) immediately lead
to another important relation.

∆µ = c3∆H∗, (3)

where c3 = c1/c2 % 3. Figure 3 c shows that Eq. (3)
explains the data in the high velocity regime.

In the previous work by the present authors [14],
Eqs. (1), (2), and (3) are verified only for spherical
glass beads. We stress that, in this paper, these relations
are verified for both spherical glass beads and angular
chromite sand. In addition, we noticed that these rela-
tions explain the inclined-plane flow data [19] with the
same values of the proportional coefficients, although the
shapes and the materials of the grains are different. We
thus conclude that these relations are independent of the
details of granular matter such as the grain shape and the
coefficient of restitution.
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FIGURE 1. (a) Schematic diagram of the apparatus. (b) Grain samples: (lower) glass beads, (upper) chromite sand. (c) The flow
velocity profiles v(x) normalized by Vo ≡ ΩD2/2. The horizontal axis is the distance from the upper plate, x, normalized by a mean
diameter d. The solid line is 10−x/Ws , where Ws = 5.0d. The lower plate is located at x/d # 7.4. The data were taken using glass
beads under the normal stress of 30 kPa.

EXPERIMENTAL RESULTS

In FIG. 2, the friction coefficient is shown as a func-
tion of the inertial number. Apparently, there exist two
regimes. At lower inertial numbers, the friction coeffi-
cient exhibits weak negative dependence on the inertial
number (FIG. 2 b). Contrastingly, at higher inertial num-
bers, the friction coefficient increases remarkably. (See
FIG. 2 c). This behavior is common to the both samples:
glass beads and chromite sand. In the following, we ana-
lyze each regime more quantitatively.

Quasistatic Flow Regime

At lower inertial numbers (I ≤ 10−2), the friction co-
efficient is weakly dependent of the sliding velocity. As
apparent in FIG. 2 b, the dependence is negative and log-
arithmic. The extent of weakening is characterized by the

slope ∂ µ/∂ ln I. For example, the slope is approximately
−0.003 for spherical glass beads at 30 kPa. The negative
dependence on the sliding velocity is indeed well known
in earthquake physics [16] and in tribology [17] and the
extent of weakening in the present study is comparable to
those typically observed for glass or rocks, although the
slope may be sensitive to the experimental details, such
as humidity.

Although the negative slope is the common feature
of the present data, the absolute value of the friction
coefficient differs significantly from sample to sample.
An apparent ingredient that affects the absolute value
is the grain shape [18]. The friction coefficient of the
angular grains under the normal stress of 30 kPa (µ #
0.55) is significantly higher than that of the spherical
grains (µ # 0.4).
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FIGURE 1. (a) Schematic diagram of the apparatus. (b) Grain samples: (lower) glass beads, (upper) chromite sand. (c) The flow
velocity profiles v(x) normalized by Vo ≡ ΩD2/2. The horizontal axis is the distance from the upper plate, x, normalized by a mean
diameter d. The solid line is 10−x/Ws , where Ws = 5.0d. The lower plate is located at x/d # 7.4. The data were taken using glass
beads under the normal stress of 30 kPa.

EXPERIMENTAL RESULTS

In FIG. 2, the friction coefficient is shown as a func-
tion of the inertial number. Apparently, there exist two
regimes. At lower inertial numbers, the friction coeffi-
cient exhibits weak negative dependence on the inertial
number (FIG. 2 b). Contrastingly, at higher inertial num-
bers, the friction coefficient increases remarkably. (See
FIG. 2 c). This behavior is common to the both samples:
glass beads and chromite sand. In the following, we ana-
lyze each regime more quantitatively.

Quasistatic Flow Regime

At lower inertial numbers (I ≤ 10−2), the friction co-
efficient is weakly dependent of the sliding velocity. As
apparent in FIG. 2 b, the dependence is negative and log-
arithmic. The extent of weakening is characterized by the

slope ∂ µ/∂ ln I. For example, the slope is approximately
−0.003 for spherical glass beads at 30 kPa. The negative
dependence on the sliding velocity is indeed well known
in earthquake physics [16] and in tribology [17] and the
extent of weakening in the present study is comparable to
those typically observed for glass or rocks, although the
slope may be sensitive to the experimental details, such
as humidity.

Although the negative slope is the common feature
of the present data, the absolute value of the friction
coefficient differs significantly from sample to sample.
An apparent ingredient that affects the absolute value
is the grain shape [18]. The friction coefficient of the
angular grains under the normal stress of 30 kPa (µ #
0.55) is significantly higher than that of the spherical
grains (µ # 0.4).
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FIGURE 3. The symbols are common to FIG. 2. The black diamonds are the data of the DEM simulation [9] with the inter-
granular friction coefficient of 0.6 and the restitution coefficient of 0.8. (a) The increase of the friction coefficient, ∆µ(I)(=
µ(I)− µ(I∗)), where I∗ = 0.032. The inset is the linear plot. (b) The normalized thickness change ∆H∗(I).The inset is the linear
plot. (c) Friction coefficient difference ∆µ versus normalized thickness change ∆H∗. The dashed straight line indicates a slope of 3.

DISCUSSIONS AND CONCLUSIONS

Comparison With Numerical Simulation

It should be remarked that relations (1), (2), and (3) are
quantitatively the same as those seen in numerical simu-
lations [1, 2, 5, 9, 10, 11]. The data obtained from the nu-
merical simulations [9] are also shown in FIG. 3, which
shows that the simulations quantitatively agree with the
experiments in the high I regime. It is believed that the
velocity strengthening seen in numerical simulations is
caused by the anelasticity of the grains [20], which is
usually modeled by a "dashpot". The quantitative agree-
ment between the simulation and the experiment in the
high I regime implies that anelasticity plays an essential
role in the velocity-strengthening behavior seen in the
experiments.

In contrast, in the low I regime, the numerical simula-
tion no longer agrees with the experiments (as shown in
FIG. 3 c.) This indicates that a physical process comes
into play that is not modeled in the simulations. It is
known that the negative shear-rate dependence is due to
the healing of the contact between grains [21, 22]. Note
that this process is not implemented in the numerical
simulations, and this must be the reason for the disagree-
ment. Thus, the frictional healing process must be prop-
erly incorporated into numerical models that involve the
low I regime.

Crossover Inertial Number

Taking the above points into account, the following
constitutive law [14] can describe the experimental data
in both the high and the low I regimes.

µ = c1I −α ln γ̇τ + µ0, (4)

where τ is the characteristic time for frictional healing.
The first term on the right-hand side originates from
the dissipation due to anelasticity, and the remaining
terms are due to the dissipation caused by intergranular
friction. The linear combination of these two effects may
be justified if the intergranular friction force and the
viscous force (due to anelasticity) are orthogonal [20].
From Eq. (4), the crossover inertial number Ic is given
by

Ic =
α
c1

. (5)

The constitutive law (Eq. (4)) and the crossover inertial
number (Eq. (5)) describe the experimental data well
(FIG. 2 c). The crossover is caused by the switch of the
dominant physical processes; the anelasticity is dominant
over the healing for I ≥ Ic, whereas the frictional healing
is essential for I ≤ Ic. As Ic is on the order of 10−2, it is
not surprising that the crossover has not been identified
in previous experiments on either inclined-plane flow
(I ≥ 10−2) [19] or simulated fault gouge (I % 10−2) [16,
23, 24], whereas the present experiment covers 10−5 ≤
I ≤ 10−1.

We stress that the crossover cannot be explained
within the framework of a phenomenological constitu-
tive law known in earthquake physics [16]. A similar
crossover may occur if the shear rate exceeds the char-
acteristic rate of frictional healing, 1/τ [23, 24]; in this
case, the steady-state friction coefficient is written as
µ = µ0 + β lnV with β > 0. If we were to adopt this
relation to explain the present data in the high I regime,
the parameter β would be much larger (0.06) than the
typical values (0.005−0.015) that are reported for rocks
and soda-lime glass [16].

constitutive law at high velocities
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Figure 4. (a) The increase of the friction coefficient, ∆µ(I)(= µ(I) − µ(I∗)). The inset is the linear plot. (b) The
normalized thickness change ∆H∗(I). Symbols are the same as those in the previous figure. The inset is the linear plot.
Results of the DEM simulation with an inter-granular friction coefficient of 0.6 and a restitution coefficient of 0.8 are
also shown (black diamonds). (c) Friction coefficient difference ∆µ versus normalized thickness change ∆H∗. The dashed
straight line indicates a slope of 3. Symbols are the same as those in the previous figures.

where c2 " 0.2. Then, from equations (2) and (3), it follows
that

∆µ = c3∆H∗, (4)

where c3 = c1/c2 " 3. Figure 4c shows that the relationship
(4) explains the experimental data well.

Relations (2), (3), and (4) are quantitatively the same
as those seen in numerical simulations [GDRMiDi , 2004;
da Cruz et al., 2005; Jop et al., 2006; Hatano, 2007; Koval
et al., 2009]. The data obtained from the numerical simula-
tions Hatano [2007] are also shown in Figure 4, which shows
that the simulations quantitatively agree with the experi-
ments in the high I regime. It is believed that the velocity
strengthening seen in numerical simulations is caused by the
anelasticity of the grains Hatano and Kuwano [2011], which
is usually modeled by a ”dashpot”. The quantitative agree-
ment between the simulation and the experiment in the high
I regime implies that anelasticity plays an essential role in
the velocity-strengthening behavior seen in the experiments.

In contrast, in the low I regime, the numerical simulation
no longer agrees with the experiments (as shown in Fig-
ure 4 c). This indicates that a physical process comes into
play that is not modeled in the simulations. It is known that
the negative shear-rate dependence is due to the healing of
the contact between grains Brechet and Estrin [1994]; Boc-
quet et al. [1998]. Note that this process is not implemented
in the numerical simulations, and this must be the reason
for the disagreement. Thus, the frictional healing process
must be properly incorporated into numerical models that
involve the low I regime.

As is discussed above, the data shown here indicate a
switch of the dominant physical processes at I " Ic. The
anelasticity is dominant over the healing for I ≥ Ic, whereas
the frictional healing is essential for I ≤ Ic. We now con-
sider how the crossover inertial number Ic is determined.
We assume a linear combination of the linear strengthening
term and the logarithmic weakening term.

µ = c1I + α ln I + µ0. (5)

The first term on the right-hand side originates from the
dissipation due to anelasticity, and the remaining terms are
due to the dissipation caused by intergranular friction. The
linear combination may be justified if the intergranular fric-
tion force and the dissipative force (due to anelasticity) are
orthogonal [Hatano and Kuwano, 2011]. From equation (5),
the crossover inertial number Ic is given by

Ic =
α
c1

. (6)

The constitutive law (5) and the crossover inertial number
(6) describe the experimental data well (Figure S2) with
best-fit parameters of α = 0.0026 and c1 = 0.6 (Namely,
Ic = 0.004). We wish to remark that a constitutive law sim-
ilar to equation (5) is proposed by Baldassarri et al. [2006].
Here we generalize their result to describe the normal pres-
sure dependence.

4. Discussion and Conclusions

The crossover from velocity weakening to velocity
strengthening, which is due to the switch between the dom-
inant physical processes, constitutes the main conclusion of
this paper. As the crossover is located at I " 10−3, it is
not surprising that it has not been identified in previous ex-
periments on either inclined-plane flow (I ≥ 10−2) [Forterre
and Pouliquen, 2008] or simulated fault gouge (I % 10−3)
[Dieterich, 1979; Scholz , 1998; Marone, 2003], whereas the
present experiment covers 10−5 ≤ I ≤ 10−1. In the follow-
ing, we discuss four important points that are peripherally
related to this main conclusion.

First, we remark that the crossover cannot be explained
within the framework of RSF. It is known that a similar
crossover may occur if the shear rate exceeds the character-
istic rate of frictional healing [Blanpied et al., 1987; Kilgore
et al., 1993]; in this case, the steady-state friction coefficient
is written as µ = µ0+a lnV with a > 0. If we were to adopt
this relationship to explain the present data in the high I
regime, the parameter a would be much larger (0.06) than
the typical values (0.005−0.015) that are reported for rocks
and soda-lime glass [Dieterich and Kilgore, 1994; Nakatani ,
2001].

Second, we remark that the relationship (4) is different
from the well-known relationship µ = µ∗+dH/dx, where µ∗
is a constant and x is the shear displacement of a boundary.
The latter states that the increase in the friction coefficient
is due to the additional work required for dilation [Marone
et al., 1990]. However, it does not state anything about the
steady-state friction coefficient because dH/dx = 0 at steady
states (except for fluctuations), whereas the relationship (4)
involves two different steady states.

The third point we wish to discuss is with regard to the
mechano-chemical reactions caused by frictional heat, which
generally reduce friction to a considerable degree [Goldsby
and Tullis, 2002; Di Toro et al., 2004; Rice, 2006; Tullis,
2007]. Kuwano and Hatano [2011] showed that anelasticity-
induced strengthening is also relevant to such systems be-
cause mechano-chemical reactions affect the nature of inter-
granular friction, which is orthogonal to, and independent
of, anelasticity; see equation (5).
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FIGURE 3. The symbols are common to FIG. 2. The black diamonds are the data of the DEM simulation [9] with the inter-
granular friction coefficient of 0.6 and the restitution coefficient of 0.8. (a) The increase of the friction coefficient, ∆µ(I)(=
µ(I)− µ(I∗)), where I∗ = 0.032. The inset is the linear plot. (b) The normalized thickness change ∆H∗(I).The inset is the linear
plot. (c) Friction coefficient difference ∆µ versus normalized thickness change ∆H∗. The dashed straight line indicates a slope of 3.

DISCUSSIONS AND CONCLUSIONS

Comparison With Numerical Simulation

It should be remarked that relations (1), (2), and (3) are
quantitatively the same as those seen in numerical simu-
lations [1, 2, 5, 9, 10, 11]. The data obtained from the nu-
merical simulations [9] are also shown in FIG. 3, which
shows that the simulations quantitatively agree with the
experiments in the high I regime. It is believed that the
velocity strengthening seen in numerical simulations is
caused by the anelasticity of the grains [20], which is
usually modeled by a "dashpot". The quantitative agree-
ment between the simulation and the experiment in the
high I regime implies that anelasticity plays an essential
role in the velocity-strengthening behavior seen in the
experiments.

In contrast, in the low I regime, the numerical simula-
tion no longer agrees with the experiments (as shown in
FIG. 3 c.) This indicates that a physical process comes
into play that is not modeled in the simulations. It is
known that the negative shear-rate dependence is due to
the healing of the contact between grains [21, 22]. Note
that this process is not implemented in the numerical
simulations, and this must be the reason for the disagree-
ment. Thus, the frictional healing process must be prop-
erly incorporated into numerical models that involve the
low I regime.

Crossover Inertial Number

Taking the above points into account, the following
constitutive law [14] can describe the experimental data
in both the high and the low I regimes.

µ = c1I −α ln γ̇τ + µ0, (4)

where τ is the characteristic time for frictional healing.
The first term on the right-hand side originates from
the dissipation due to anelasticity, and the remaining
terms are due to the dissipation caused by intergranular
friction. The linear combination of these two effects may
be justified if the intergranular friction force and the
viscous force (due to anelasticity) are orthogonal [20].
From Eq. (4), the crossover inertial number Ic is given
by

Ic =
α
c1

. (5)

The constitutive law (Eq. (4)) and the crossover inertial
number (Eq. (5)) describe the experimental data well
(FIG. 2 c). The crossover is caused by the switch of the
dominant physical processes; the anelasticity is dominant
over the healing for I ≥ Ic, whereas the frictional healing
is essential for I ≤ Ic. As Ic is on the order of 10−2, it is
not surprising that the crossover has not been identified
in previous experiments on either inclined-plane flow
(I ≥ 10−2) [19] or simulated fault gouge (I % 10−2) [16,
23, 24], whereas the present experiment covers 10−5 ≤
I ≤ 10−1.

We stress that the crossover cannot be explained
within the framework of a phenomenological constitu-
tive law known in earthquake physics [16]. A similar
crossover may occur if the shear rate exceeds the char-
acteristic rate of frictional healing, 1/τ [23, 24]; in this
case, the steady-state friction coefficient is written as
µ = µ0 + β lnV with β > 0. If we were to adopt this
relation to explain the present data in the high I regime,
the parameter β would be much larger (0.06) than the
typical values (0.005−0.015) that are reported for rocks
and soda-lime glass [16].
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FIG. 2. The geometry of the experiment. We used a transpar-
ent material (acrylic plate) for the front plate (400 mm wide) to
allow observation of particle motion and aluminum for the back
plate to reduce the static electricity effect. The bottom and the
left side of the gap were completely bounded by plates, whereas
the right side was bounded only in its lower region (a region of
height 20 mm).

side using a “double hopper,” in which the lower hopper
was continuously filled with particles by the upper one.
The mouth of the lower hopper was placed in such a man-
ner that it always contacted the top of the pile. This con-
figuration allowed us not only to minimize the effect of
the impact on the pile exerted by newly added particles
but also to control the feeding rate by changing the height
of the mouth of the lower hopper. With this configuration,
the feeding rate was essentially controlled by the flow on
the pile, and it could thus be closely matched to the outflux
from the system. In this way a steady-state system could
be established. The flow rate Q for each experimental run
was determined by measuring the weight of the particles
that poured from the right side of the gap per unit time.
Particle velocities were extracted from sequential images
taken with a charge-coupled device (CCD) camera at vari-
ous time intervals dt. In order to measure particle veloc-
ities over several orders of magnitude, the time intervals
dt were chosen from the range of 1!500 30 sec [7] de-
pending on the velocities. The spatial resolution of the
images is 0.015a 0.03a for dt , 1!30 and 0.05a 0.07a
for dt $ 1!30. With this system, the important control
parameters are the particle diameter a, the flow rate Q,
and the width of the gap W . In the present study, we
report the results obtained for three different diameters,
a ! 1.1 6 0.1, 2.1 6 0.1, and 3.1 6 0.1 mm, and the
gap width, W ! 10a. We confirmed that qualitatively the
same results are obtained for W!a ! 5 40.

As is seen in Fig. 1, the surface of the pile is flat in
the steady flow state, and its angle f with respect to the
horizontal direction is close to that after the flow stops
when the supply of particles is cut off, i.e., the angle of
repose. In this state, the mean velocity is approximately
parallel to the surface, and its functional dependence on
the depth h (measured perpendicularly to the surface; see
Fig. 2) is the same everywhere, except in the vicinity of

left and right boundaries. The mean velocity is determined
from an ensemble average of particle displacement per unit
time for each depth. Figure 3 displays the velocity profiles
as functions of the depth h on a semilog scale, while the
inset displays the same data on a normal scale. From
the graph in the inset, the mean velocity "y#h$% appears
to decay as the distance from the surface increases, and
it appears to vanish at some finite depth. Although in
previous studies [1,5,6] it has been assumed that these deep
layers are frozen, we found that the mean velocity is finite
at all depths. We call the slow motion of particles in such
a deep region creep motion.

As is clearly shown in Fig. 3, for deep layers (large h)
exhibiting creep motion, the velocity profile assumes the
form of simple exponential decay:

"y#h$% ! y0 exp#2h!hc$ , (1)

where hc is a characteristic length. While y0 increases with
the flow rate Q, hc is approximately equal to the particle
diameter a for all values of Q. The value of hc suggests
that the creep motion is driven by events occurring on a
particle-size scale. The exponential form Eq. (1) is not
specific to the system of spherical particles. Qualitatively,
the same results are obtained for particles with different
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FIG. 3. Mean velocity profiles "y% as functions of the depth h
from the pile’s surface on a semilog scale. The inset presents the
same data on a normal scale. The horizontal axes represent the
depth from h0 normalized by the particle diameter a, where h0
is the distance from the top of the fixed wall existing at the right
side of the system to the surface of the particles flowing over it.
(See Fig. 5.) The vertical axes represent velocity normalized
by the value at h0. The values of the particle diameter a #mm$
and the flow rate Q #g!sec$ for the experiments are 1 and 12
(squares), 1 and 43 (solid squares), 2 and 20 (circles), 2 and 50
(solid circles), 2 and 100 (triangles), 3 and 34 (plus signs), and 3
and 58 (crosses). The broken line corresponds to exp#20.72x$.
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Gas

Liquid

Solid

Figure 1
An illustration of the solid,
liquid, and gas flow regimes
obtained by pouring steel
beads on a pile.

regimes: a solid region under the pile in which grains do not move or creep very
slowly, a liquid region in which a dense layer flows, and a gaseous region in which the
beads bounce in all directions creating a dilute chaotic medium. In the following, we
discuss the boundaries between the different flow regimes.

2.1. Transition Between Solid and Liquid Behaviors
Our daily experience tells us that a pile of sand has to be inclined above a critical
angle in order to flow. This is because the onset of the flow of granular materials
is given by a friction criterion: The ratio of shear stress to normal stress, which is
simply the tangent of the slope of the pile, has to reach a critical value called the
friction coefficient in order for the material to deform. The reason why the solid-
liquid transition for a granular material is a friction criterion is that, for rigid grains,
no internal stress scale exists. This contrasts with other complex fluids exhibiting flow
threshold such as Bingham fluids, in which an internal stress scale exists that is linked
to the breakage of a microscopic structure. From a microscopic point of view, the
strength of a granular material comes not only from the friction between grains, but
also from the entanglement of the particles: Packed frictionless particles still exhibit
a macroscopic friction coefficient.

Although a friction criterion is the zero-order description of the solid-liquid tran-
sition, the details are more complex. First, the initiation of the flow is sensitive to
the initial preparation of the sample and depends on both the initial volume frac-
tion and the history of previous deformations (Daerr & Douady 1999a). Modeling
the initial deformation and the coupling between strain, stress, volume fraction, and
possibly other texture fields, such as contact orientation, is the domain of soils me-
chanics (Roux & Radjai 1998, Schofield & Wroth 1968, Wood 1990). Researchers
have proposed plastic constitutive laws, and attempts to connect the microstructure to
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Forterre and Pouliquen, Ann. Rev. Fluid. Mech. 2008

Komatsu et al. PRL 2001

Pouliquen’s law cannot reproduce this.
--> Other laws may come into play

velocity profile in inclined plane flow



can reproduce exponential flow profile

µ = µ0 � � log(V/V0) + c�̇
�

m/Pd

4

which generally reduce friction to a considerable degree
[32]. We believe that anelasticity-induced strengthen-
ing is also relevant to such systems because mechano-
chemical reactions affect the nature of intergranular fric-
tion, which is orthogonal to and independent of anelas-
ticity. A more detailed study on this issue is in progress.
The fourth point of interest is the application of the

present result to other flow geometries. Among them,
here we derive the exponential velocity profile that is
ubiquitously seen in heap flow experiments [12, 13]. We
begin with the force balance equation in the flow direc-
tion.

dσ

dh
= ρg sin θ, (6)

where ρ is the mass density, g is the gravitational ac-
celeration, θ is the angle between the flow direction and
the horizontal plane, σ is the shear stress, and h is the
depth. The existence of the body force in the flow direc-
tion distinguishes the heap flow from the annular channel
flow. In deriving the exponential velocity profile, it is es-
sential to assume Janssen’s law; i.e., the pressure within
the heap, P , is independent of the depth due to the fric-
tional force of a container. Then Eq. (6) together with
Janssen’s law leads to

dγ̇

dh

dµ

dγ̇
=

ρg sin θ

P
. (7)

Inserting Eq. (4) into Eq. (7), we obtain γ̇ ! γ̇0e−Ah,
where A = ρg sin θ/αP . If Janssen’s law does not hold,
the friction coefficient is tan θ and independent of the
depth. Then Eq. (4) leads to a linear velocity profile,
which is also observed in some experiments [33, 34].
This research was partially supported by JSPS KAK-

ENHI (21840022) and Fukada Geological Institute.
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which generally reduce friction to a considerable degree
[32]. We believe that anelasticity-induced strengthen-
ing is also relevant to such systems because mechano-
chemical reactions affect the nature of intergranular fric-
tion, which is orthogonal to and independent of anelas-
ticity. A more detailed study on this issue is in progress.
The fourth point of interest is the application of the

present result to other flow geometries. Among them,
here we derive the exponential velocity profile that is
ubiquitously seen in heap flow experiments [12, 13]. We
begin with the force balance equation in the flow direc-
tion.

dσ

dh
= ρg sin θ, (6)

where ρ is the mass density, g is the gravitational ac-
celeration, θ is the angle between the flow direction and
the horizontal plane, σ is the shear stress, and h is the
depth. The existence of the body force in the flow direc-
tion distinguishes the heap flow from the annular channel
flow. In deriving the exponential velocity profile, it is es-
sential to assume Janssen’s law; i.e., the pressure within
the heap, P , is independent of the depth due to the fric-
tional force of a container. Then Eq. (6) together with
Janssen’s law leads to
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dγ̇
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P
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Inserting Eq. (4) into Eq. (7), we obtain γ̇ ! γ̇0e−Ah,
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if P is independent of h (Janssen’s law),
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Figure 1
An illustration of the solid,
liquid, and gas flow regimes
obtained by pouring steel
beads on a pile.

regimes: a solid region under the pile in which grains do not move or creep very
slowly, a liquid region in which a dense layer flows, and a gaseous region in which the
beads bounce in all directions creating a dilute chaotic medium. In the following, we
discuss the boundaries between the different flow regimes.

2.1. Transition Between Solid and Liquid Behaviors
Our daily experience tells us that a pile of sand has to be inclined above a critical
angle in order to flow. This is because the onset of the flow of granular materials
is given by a friction criterion: The ratio of shear stress to normal stress, which is
simply the tangent of the slope of the pile, has to reach a critical value called the
friction coefficient in order for the material to deform. The reason why the solid-
liquid transition for a granular material is a friction criterion is that, for rigid grains,
no internal stress scale exists. This contrasts with other complex fluids exhibiting flow
threshold such as Bingham fluids, in which an internal stress scale exists that is linked
to the breakage of a microscopic structure. From a microscopic point of view, the
strength of a granular material comes not only from the friction between grains, but
also from the entanglement of the particles: Packed frictionless particles still exhibit
a macroscopic friction coefficient.

Although a friction criterion is the zero-order description of the solid-liquid tran-
sition, the details are more complex. First, the initiation of the flow is sensitive to
the initial preparation of the sample and depends on both the initial volume frac-
tion and the history of previous deformations (Daerr & Douady 1999a). Modeling
the initial deformation and the coupling between strain, stress, volume fraction, and
possibly other texture fields, such as contact orientation, is the domain of soils me-
chanics (Roux & Radjai 1998, Schofield & Wroth 1968, Wood 1990). Researchers
have proposed plastic constitutive laws, and attempts to connect the microstructure to
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underlying physics of weakening?

µ = µ0 + � log(�̇/�̇0) + c�̇
�

m/Pd



underlying physics?

�̇� = D (power input) = (energy dissipation rate)

D = Fdis
ij · vij

i

j

1. friction

2. damping

F1

F2

Fdis
ij = F1 + F2

F1 · F2 = 0

|F1| � µp

D = (F1 + F2) · v

frictional normal

non-conservative force

= |F1|v(t) + |F2|v(n)

first term is particle-level friction

µ =
D

�̇P
= · · · � µp + cI



aging of grain contact

increase of contact area due to plasticity

A(t) = A0(1 + a log
t

t0
)

in sheared systems, 

A(t) = A0(1� a log(�̇t0))

(Brechet & Estrin 1994)

µp(�̇) = µ0(1� a� log(�̇t0))

particle-level friction is not a constant (but time-dependent)

t: duration of contact

a, t0: constants

t � �̇�1



µp(�̇) = µ0(1� a� log(�̇t0))

particle-level friction is time-dependent!

(in DEM, it is constant)

µp(t) = µ0(1� a log(�̇t/t0))

aging of grain contact

cf.  Bocquet et al. Nature 1998

Nature © Macmillan Publishers Ltd 1998
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Ageing is said to occur in systems for which the relaxation time
becomes so long that it may not reach equilibrium on a laboratory
timescale (typically hours). The measured properties of such a
system therefore depend on the time at which the measurement is
made. This is the case for solid friction: the friction coefÆcient
depends on the time elapsed after the surfaces have come into
contact3±5. This dependence of ms on waiting time is observed with
almost all materials (from paper to rocks) and is found universally
to be logarithmic. Although solid friction is related to the properties
of granular media, as emphasized by Coulomb's analogy, ageing in
granular media has previously received little attention.
We have studied the effect of waiting time on the angle of Ærst

avalanche vw of a granular system of small (typically 200-mm)
spherical glass beads contained in a rotating drum (Fig. 1a). We
observe logarithmic ageing of the maximum static angle vw (Fig. 2a).
This logarithmic behaviour spans more than three orders of magni-
tude in time, ranging from5 seconds tomore than 2 hours. Ageingwas

not observed for beads with a diameter larger than 0.5mm, except at
very large humidities. It is known that humidity can exert an
important inØuence on granular media2. Addition of small quantities
of wetting liquid has been shown to change enormously the repose
angle of a pile6,7; a brief discussion of moisture effects can even be
found in Coulomb's treatise1. We repeated our experiments at various
humidities Pv/Psat (Pv and Psat being respectively the vapour pressure
and saturated water pressure), and found humidity to be the crucial
parameter controlling the ageing of vw: no ageing is observed at low
humidity, and the magnitude of the ageing effect increases dramati-
cally with humidity (Fig. 2b).
This humidity dependence leads to the intuitive idea that the

ageing effect originates from the condensation of small liquid
bridges between the beads. Liquid bridges induce a signiÆcant
cohesion between the beads, which can increase the friction
between different layers of the granular system and result in a
higher value of vw. However, the physical justiÆcation for such

wθ

g

a

Figure 1 Experimental set-up. a, Principle of the experimental setup. Glass beads

Æll 25% of the volume of a cylinder (diameter 100nm, length 13mm) which can

rotate around its axis. Two systems were studied; a `polydisperse' system with

140mm, d, 260mm, and a `monodisperse' system with 200mm, d, 250mm,

where d is the diameter of the beads. The walls of the cylinder are glass, and the

shape of the pile of beads is recorded with a video camera. Experiments are

performed at room temperature, under controlled humidity (deÆned as the ratio

between the vapour pressure and saturated pressure of water, Pv/Psat). Before

starting experiments, the system is prepared by rotating the drum for,12h. Then
the ageing properties are investigated for various values of Pv/Psat using the

following protocol: Ærst, the system is put inmotion for a few turns (typically three);

second, the end of this `motion period' deÆnes the origin of waiting time tw à 0,

after which the system is left at rest; third, after a given time (ranging from 10 to

104 s), a slow rotational motion (,1 turn per min) is transmitted to the cylindrical

drum. The angle vw at which the Ærst avalanche takes place is measured from the

slope of the beads just before the avalanche. The same procedure is repeated for

different waiting times tw and a curve of vw versus waiting time tw is constructed.

b, Schematic drawing of the contact at the nanometre scale between two

micrometre-size asperities on the beads. Inside most of the contact region, the

solid surfaces do not touch each other at the molecular scale, and capillary

condensation occurs in the gap left between the surfaces.
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Figure 2Dependence of ageing on humidity.a, Logarithmic ageing of the angle of

Ærst avalanche. The ageing property is analysedbyplotting tan vw(tw) as a function

of log10(tw)/cos vw(tw), for different values of the water vapour pressure Pv (see

equation (3)). The time is in units of seconds. From bottom to top, humidity is: 15%

(triangles), 27% (pentagons), 36.1% (squares) and 45.5% (circles). In these

measurements, times range typically over nearly four orders of magnitude. The

dotted lines are least-square Æts of the experimental data, whose slope is a(Pv).

b, Variation of the slope a(Pv) characterizing the ageing behaviour of the

Ærst avalanche angle (see equation (3)) with humidity Pv/Psat. Open symbols, the

polydisperse system; Ælled symbols, the monodisperse system. The dashed

line is the theoretical prediction a à a0=lnÖP
p
sat=PvÜ, where a0 à 0:079 and

Pp
sat à 0:68Psat . The validity of the previous theoretical prediction is best con-

Ærmed by the measured linear dependence of 1/a as a function of ln(Psat/Pv)

(see inset): in this plot, a linear least-squares Æt thus provides unambiguously

values of a0 and P*
sat. The lowering observed in the saturating pressure P*

sat might

be an effect of the long-range attractive forces exerted by the walls, and/or of

dissolved species in the condensed water.
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aging due to moisture
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OUR GOAL

1. How does this crossover occur?

I = Icidentify µ(Ic) minimum

2. Inertial-number description valid for gouge?

versus

X - 2 KUWANO ET AL.: CROSSOVER IN GRANULAR FRICTION

Camera

Gaps < 50µm

Quartz glass

Angular velocityΩ

D1

D2

Normal force sensor

Upper plate

Lower plate

Torque motor

a b

Figure 1. (a) Schematic diagram of the apparatus. (b)
Grain sample used in experiment.

Figure 2. The flow velocity profiles v(x) normalized by
Vo ≡ ΩD2/2. The horizontal axis is the distance from the
upper plate, x, normalized by a mean diameter d. The
lower plate is located at x/d " 7.4. The data were taken
under the normal stress of 30 kPa.

could optically observe the internal structure of the granular
layer; the side wall was fixed to the lower plate. The gaps
between the upper plate and the side wall are smaller than
50µm, which is four times smaller than the grain diameter.
These gaps are so narrow that grains could not escape from
the holder. The temperature beneath the lower plate was
set to 25 ◦C and was kept constant with Peltier Plate. The
experiment was conducted at room humidity (∼ 50%).

Because sliding velocity varies with the radial position
of the upper plate, we defined the effective sliding velocity
defined as V ≡ (Ω/3) × (D3

2 − D3
1)/(D

2
2 − D2

1). With this
definition, σV gives the rate of total frictional work per unit
area, where the shear stress, σ, is assumed to be uniform on
a sliding surface. Hereafter, the effective sliding velocity is
referred to simply as sliding velocity.

To obtain the velocity profile in the sheared granular lay-
ers, images of the glass-bead layer were captured by a high-
speed video camera (Photron Fastcam APX RS) through the
transparent side wall. We used particle tracking velocimetry
(PTV) to obtain the instantaneous velocity of each grain.

0.55

0.50

0.45

0.40

0.35

µ

10-4 10-3 10-2 10-1 100 101

V (m/s)

Figure 3. Behaviors of the friction coefficient plotted
against the sliding velocity. Symbols show the different
normal stress (blue circles: 30 kPa, purple triangles 20
kPa, light blue squares: 10 kPa).

We found that the shapes of the velocity profiles are an
identical shape over the wide range of sliding velocities (Fig-
ure 2). We defined the effective flow width Ws such that the
velocity decreased to 1/10. The resultant rate-independent
flow-width yields Ws ∼ 5d, where d is the mean diameter of
the particle. A more detailed study of the velocity profile
and particle motion will be reported elsewhere.

3. Results

In Figure 3, the steady-state friction coefficient is shown
as a function of the sliding velocity. Plotted symbols and
error bars show the mean and standard deviation between 6
experimental runs, respectively. At lower velocities (V ≤ 10
cm/s), we observe logarithmic velocity weakening. The ex-
tent of weakening is characterized by the slope ∂µ/∂ lnV .
For example, the slope is approximately −0.003 for 30 kPa.
This value is comparable to that typically observed for glass
or rocks [Dieterich, 1979; Scholz , 1998; Chambon et al.,
2002; Marone, 2003].

At higher velocities (V ≥ 10 cm/s), the friction coeffi-
cient substantially increases. Importantly, it appears that
the amount of strengthening is common to all of the data.
Thus, we can expect a universal description of this velocity-
strengthening behavior. To seek such a description, it is
more convenient to use the inertial number instead of the
sliding velocity. The graph is shown in Figure S1, in which
the shear rate is defined as γ̇ = V/Ws. The data indicate
the characteristic inertial number above which the friction
coefficient increases. We refer to this characteristic inertial
number as the crossover inertial number, and it is denoted
by Ic. Although the crossover inertial number for each run
varies slightly, its value is apparently on the order of 10−2

to 10−3. We then defined the amount of strengthening as
∆µ(I) = µ(I) − µ(I∗). We chose I∗ = 0.032 because the
strengthening is significant in all of the data for I > 0.032.
We found that ∆µ(I) collapses in the high I regime (I ≥ Ic)
(as shown in Figure 4a). This collapse obeys

∆µ(I) ∝ c1I, (2)

with c1 " 0.6.
It is also important to note that this strengthening be-

havior is accompanied by dilation. To compare the data
with different layer thicknesses, it is convenient to define
the nondimensional dilation as ∆H∗ = (H(I)−H(I∗))/Ws.
As shown in Figure 4b, ∆H∗ also collapses in the high I
regime.

∆H∗ ∝ c2I, (3)

done



experimental

• Slip rate : 100µm/s to 0.3m/s
• Normal stress: 0.1-0.9 MPa
• Room temperature and humidity
• Cylindrical Specimen
•Westerly granite
• Inner/outer diameters : 6mm/10mm.
• Temperature measurement with an IR sensor
• Gouge layer formed by preshearing.

30

(sample not sealed; an open system)



experimental

• A commercial rheometer (AR2000ex, TA Instruments) 
• Normal stress: 0.1-0.9 MPa
• Slip rate : 100µm/s to 0.3m/s

• Cylindrical Specimen
•Westerly granite
• Inner/outer diameters : 6mm/10mm.
• Temperature measurement with an IR sensor
• Presheared. Gouge layer formed.

31

power law distribution
 slope -2.2

Cumulative particle-size distribution

Mean particle size: 2.4 µm
Gouge layer thickness : ~10µm (4-5 particles)



velocity dependence of friction coefficient

Intermediate-V

Weakening

remarkable weakening in intermediate regime

µ = µ� + � log
V

V�

High-V

Strengthening

too large!? � � �0.2

e.g. Goldsby & Tullis 2002; di Toro et al. 2004, etc...
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Inertial numberVelocity

Inertial number description verified for gouge!

µ = µ� + cI

★ data do not collapse completely due to fluctuation in gouge layer thickness

c � 20

★ constant c is much larger than glass beads (wide size dispersity?)

inertial number description?



conclusions

1. Negative to positive rate dependence of friction

µ = µ0 + � log(�̇/�̇0) + c�̇
�

m/Pd

Ic = �/c Ic = O(10�3)

2. Inertial-number description valid for gouge

3. Anomalous weakening in intermediate regime?

in this system

(with power-law size distribution)
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