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Reminder: What we have

Mean Square Displacement shows a
plateau for increasing density

Plateaus are a signature of caging

Caging is seen as either the cause or
a signature of a glass transition

» No Static Order Parameter is iy
known
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Reminder: What we want

n < ne

» A theory for the Coherent Scattering g
Function log t

o Edwards-Anderson Order U

Parameter fy = ¢(q, t — o0) _
e Bifurcation from f; =0to f; > 0 3 \

» Hydrodynamics works well for the

-

. . . I t
fluid but is linear n > e ”
¢ Interactions of Modes give
Nonlinearities S| S—
<
logt
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Interacting Sound Waves

Dyson Equation for Coherent Scattering Function ¢(q, t)

¢ T 9o +¢o%¢—1

Hydrodynamic (Free) Solution ¢g(q, t) = cos(cqt) exp(—Tg?t)
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Equation of Motion

Density Field p(r,t) =), 6(r — ri(t))
Coherent Scattering Function ¢(q, t) = {pqlpq(t))

0 = (07 + vq0r + Q5)8(q. 1)

Speed of Sound Q4/q

Sound Damping vq4

Open Problems
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Equation of Motion

Density Field p(r,t) =), 6(r — ri(t))
Coherent Scattering Function ¢(q, t) = {pqlpq(t))

t
0= (0F + vadr+ 9)0(q. 1)+ [ drM(a.t = tr)2,0(q.)

Speed of Sound Q4/q

Sound Damping vq4
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Equation of Motion

Density Field p(r,t) =), 6(r — ri(t))
Coherent Scattering Function ¢(q, t) = {pq|pq(t))

t
0 = (02 + vgdt + Qg)gb(q, )+ / drM(qg,t — tr)o-¢(q, )
0

t
+ [Laria.t-r)oa.n)
0
Speed of Sound Q4/q

Sound Damping vq

Memory Kernels M(q,t) and L(q, t)
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Mode-Coupling Approximation

» Take into account Splitting/Merging of sound waves
)

Mucr[4] :O

¢

M(q,t) =~ Z VakpWakpo(k, t)o(p, t)
a=k+p

Momentum Conservation demands q = k + p

Transition Rates Vgkp, Wqkp Will be expressed as expectation
values

L(q,t)=0

» or at least short-lived w
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Why it helps: A schematic Model

t
OB(1) + (1) + 4 /0 dro?(t — 7)0,(r)

EA Order Parameter f = ¢(t — oo) follows from
f

A\ f2
- 4\f

» Bifurcation at critical Ao = 1

Open Problems



Microscopic Dynamics
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Inelastic Hard Spheres

Hard Spheres completely characterized by

» Mass m
» Radius a
» Coefficient of restitution e € [0, 1]

Collision law

12
V;.' = —€Vp, ‘

Vi =v;

Energy Loss on average per
collision AE o< 1 — €2

Open Problems
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Random Driving Force

Random Force &;(t), gaussian distributed
» Average (¢;) =0

» Driving power Pp = (£2)
Stationary State as a balance between driving & dissipation
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The Liouville Operator

Observables A(I'(t)) are functions of phase space I' = (x, p)
Liouville Operator £ = 9F-2 controls rate of change, 9;A = LA.

Propagator U(t) = exp(tL), i.e., A(t) = U(t)A(0)
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The Liouville Operator

Observables A(I'(t)) are functions of phase space I' = (x, p)
Liouville Operator £ = 9F-2 controls rate of change, 9;A = LA.
Propagator U(t) = exp(tL£), i.e., A(t) = U(t)A(0)

Fun Fact £ pq = igjg
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Our Liouville Operator

Free Streaming iLo =3, V;- a%

Collisions I7t|_ = Zj<k(i‘jk . ij)@(_i‘jk . ij)(S(I’]'k — 23)(bj—; — 1)

» Operator bjﬁ implements inelastic collision rule

Driving iZ2(t) = ¥, ¢(1) - -
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Our Liouville Operator

Free Streaming iLo =3, V;- a%

Collisions I7t|_ = Zj<k(i‘jk . ij)@(_i‘jk . ij)(S(I’]'k — 23)(bj—; — 1)

» Operator b;,; implements inelastic collision rule
Driving iLR(t) = 37, €i(1) - 5,

Propagator U(t) = exp_ (t£4(t))



Averages & Averaged
Quantities
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Averages

(A) = (A=)r = /drf(r)/D[E]A(rE)

» Average over all Trajectories of the Driving Force (for a
specific initial condition)

» Average over initial conditions

Open Problems
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Effective Dynamics

» For two-point correlation functions

(AU(1)B) = (A(U(1))= B), = (AU(1)B);

Averaged Dynamics

Lo = <££(t)>E - Py >

—~ V2
] 1

U(t) = exp,, (t£4(1))
U(t) = exp(tL+)
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More Adjoints than you'd like

Direction of Time L4, L_
Quantum Scalar Product (A, B) = [ dIr'A(I)B*(I')
Statistical Scalar Product (A|B) = [ dI'f(F)A(I')B*(I")
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More Adjoints than you'd like

Direction of Time L4, L_

Quantum Scalar Product (A, B) = [ dIr'A(I)B*(I')
Statistical Scalar Product (A|B) = [ dI'f(F)A(I')B*(I")
The f-Liouvillian (LA, B) = (A, LLB)

The adjoint Liouvillian <c;A|B> = (AlL4B)
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More Adjoints than you'd like

Direction of Time L4, L_

Quantum Scalar Product (A, B) = [ dIr'A(I)B*(I')
Statistical Scalar Product (A|B) = [ dI'f(F)A(I')B*(I")
The f-Liouvillian (£+A, B) = (A, L+B)

The adjoint Liouvillian <c;A|B> = (AlL4B)

Detailed Balance (U(—t)A|B) = (A,U(t)B)

In Equilibrium £+ = £} = £+
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Slow Variables

Conserved Quantities are

Density pq and

Current Density jgq = >4 Vkd(r — rg) = flfé +i¢;
State Vector |pq, jg)

Open Problems
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The Mori-Zwanzig Decomposition

Mori-Projectors P = 3" |pq. Jq) (pq.jgl and @ =1 — P

P(s— L) "P=[s—PL,P-PL,OS—QL,Q) QL P
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The Mori-Zwanzig Decomposition

Mori-Projectors P = 3" |pq. Jq) (pq.jgl and @ =1 — P
Laplace Transform §(s) = LT[g(t)] =i [;~ e "S'g(t)at

Propagator U(s) = (s—£,)""

P(s— L) "P=[s—PL,P-PL,OS—QL,Q)'QL, P’
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Equations of Motion

t
0= (07 + vads + B)o(q,1) + /O drM(q.t — tr)o.6(q,7)

t
—i—/o drL(qg,t—7)o(q, 1)
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Equations of Motion

t
0= (07 + vads + B)o(q,1) + /O drM(q. t — tr)0.6(q,7)

t
—i—/o drL(qg,t—7)o(q, 1)

> QF o (pqlL+ig) (gl L+rq)
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Equations of Motion

t
0= (07 + vads + B)o(q,1) + /O drM(q. t — tr)0.6(q,7)

t
—i—/o drL(qg,t—7)o(q, 1)

> Q2 o (pglC1)§) (1L+pq)

> Vg = <jld’£+fld>
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Equations of Motion

t
0= (07 + vads + B)o(q,1) + / drM(q.t - tr)d,6(q.7)
0
t
+ / drl(q,t — 7)é(q,7)
0
> Q2 o (pqlLig) (UglLirq)

> Vg = <jld’£+fld>
> M(q,t) o (jg|L+ Qexp(tQL, Q)OL )
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Equations of Motion

t
0= (07 + vads + B)o(q,1) + /O drM(q. t — tr)0.6(q,7)

t
—i—/o drL(qg,t—7)o(q, 1)

v

Q2 o {pqlL1j§) (51L+ pq)

Vg = <jld’£+fld>

M(q,t) o (j5| £+ Qexp(tQL, Q) QL jL)
L(q,t) o (pql|L+Qexp(tQL Q)QLj5)

v

v

v



Outline

Microscopic Dynamics Averages Equation of Motion The Mode-Coupling Approximation

The Mode Coupling Approximation

exp(tQL4 Q) ~ |pkpp) (Pkppl €XP(tQL L Q)pkpp) (PkPp]
= |pipp) d(K, )d(p, 1) {pkppl

Open Problems
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The Mode Coupling Approximation

exp(tQL4 Q) ~ |pkpp) (Pkppl €XP(tQL L Q)pkpp) (PkPp]
= |pipp) d(K, )d(p, 1) {pkppl

> M(q,t) o< (Jgl L+ Qoxrp) (ke QL+ lig) $(K, D6(p, 1)
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The Mode Coupling Approximation

exp(tQL4 Q) ~ |pkpp) (Pkppl €XP(tQL L Q)pkpp) (PkPp]
= |pipp) d(K, )d(p, 1) {pkppl

> M(q, ) o< (jg| L+ Qpkpp) {prpp QL+ jg) (k. )e(p, )
> L(q,t) o (pqlL+ Qpkpp) (pkppQlL+ik) ¢(k, Do(p, t)
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Simplifying Assumptions

» Positions and (precollisional) Velocities are uncorrelated
(Molecular Chaos)

» The velocity distribution factorizes
» The second moment of the one particle velocity pdf exists
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Result

> v = %wEﬂ + 35 (qd)]
> Qj,=qT

> Q= qT (13 7)
> Ve =13 (12j %S )

M(q,1) 1

X {[q ' k]Ck +18-(q - K)lcgk 2ok, )é(|q — k| 1)

Direct Correlation Function ¢ :=1— S,



Open Problems

Open Problems
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Better Distribution Function

» Avoid Factorization of velocities
» Avoid Factorization between Positions and Velocities
» Non Gaussian Velocity PDF not so important

Open Problems
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Integration through Transients

» Start from Elastic Hard Spheres
» Switch on Inelasticity & Driving
» Treat as Pertubation in ITT formalism

Open Problems
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Integration through Transients

v

Start from Elastic Hard Spheres
Switch on Inelasticity & Driving

Treat as Pertubation in ITT formalism
Does not work

v

v

v
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Other Models

Easy (I think)

» Other Interactions
» (Additional) overall viscous damping

Open Problems
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Other Models

Easy (I think)

» Other Interactions
» (Additional) overall viscous damping

Hard (I am afraid)

» Nonrandom Driving Force
» Boundary Driving



Open Problems

Other Models

Easy (I think)

» Other Interactions
» (Additional) overall viscous damping

Hard (I am afraid)

» Nonrandom Driving Force
» Boundary Driving

Shearing via ITT
» What reference state to use?
» Include more Correlation Functions?
» Interpretation of nonlinear equations



v

v

v

v

Summary

MCT can be generlized to NESS

Predicts a Glass Transition for a values of ¢
Loss of Detailed Balance is clearly visible
There is room for improvement

Open Problems
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Thank you for your attention

v

MCT can be generlized to NESS
Predicts a Glass Transition for a values of ¢

v

v

Loss of Detailed Balance is clearly visible

v

There is room for improvement
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