The effect of elastic vibrations on collisions of fine powder with walls

Ryo Murakami and Hisao Hayakawa

Yukawa Institute for Theoretical Physics

Kyoto University

Physics of Granular Flows

Yukawa Institute for Theoretical Physics, Kyoto, June 23-July 6, 2013

Contents

Introduction

Recent experiments and simulations of collisions of granular particles

<u>Model</u>

The elastic wave equation and the wall potential

<u>Results</u>

The energy stored in the vibration is transformed into translational energy.

Discussion

Perturbation theory

Conclusion

Introduction

Collisions of Granular Particles

Restitution Coefficient

 $e \equiv -\frac{v_{\rm f}}{v_{\rm i}}$ e = const. \blacklozenge e = e(v)

Nonlinear function

Vibration : store and release

Collisions of Granular Particles

Restitution Coefficient

$$e \equiv -\frac{v_{\rm f}}{v_{\rm i}}$$

e = const.

Nonlinear function

Vibration : store and release

Experiment

Phys. Rev. Lett. 110, 254301 (2013).

Super Rebounds

Molecular Dynamics

H. Kuninaka and H. Hayakawa, Phys. Rev. E 79, 031309 (2009). Super Rebounds

Breaking the second law?

Two Approaches

Molecular Dynamics

Continuum Model

System

Many-Particle

Continuum

Focus on Microscopic structures

Macroscopic motions

Computational Cost

Depending on the size

Independent of the size

H. Kuninaka and H. Hayakawa, PRE 86, 051302 (2012)

Previous Studies

	Previous Studies F. Gerl and A. Zippelius, Phys. Rev. E 59, 2361 (1999). H. Hayakawa and H. Kuninaka, Chem. Eng. Sci. 57, 239 (2002).	<u>Our Study</u>
Dimension	2D	3D
Impact Velocity	Fast ~ Sound velocity / 10	Ultra-slow ~ Thermal velocity
Attraction	×	\bigcirc
Viscosity	×	\bigcirc
Collision with	Wall	Wall, ball

Model

Elastic Wave Equation

Elastic Wave Equation

$$\ddot{\mathbf{u}} = \left(c^{(1)}\right)^2 \nabla \nabla \cdot \mathbf{u} - \left(c^{(t)}\right)^2 \nabla \times (\nabla \times \mathbf{u})$$

Divergence term Rotation term

 $c^{(\mathrm{l})}$: Vertical sound velocity $c^{(\mathrm{t})}$: Horizontal sound velocity

Elastic Wave Equation

 $c^{(1)}$: Vertical sound velocity

 $c^{(t)}$: Horizontal sound velocity

m: Magnetic quantum number

Elastic Wave Equation

$$\ddot{\mathbf{u}} = \left(c^{(1)}\right)^2 \nabla \nabla \cdot \mathbf{u} - \left(c^{(t)}\right)^2 \nabla \times (\nabla \times \mathbf{u})$$

Divergence term Rotation term

Stress Free Solutions

Spheroidal modes

$$\tilde{\mathbf{u}}_{nlm}^{(\mathrm{S})}(\mathbf{x}) = \begin{bmatrix} A_{nlm} \frac{\mathrm{d}j_l(k_{nl}^{(1)}r)}{\mathrm{d}r} + C_{nlm}l(l+1)\frac{j_l(k_{nl}^{(1)}r)}{r} \end{bmatrix} Y_{lm}(\Omega)\mathbf{e}_r \\ + \begin{bmatrix} A_{nlm}j_l(k_{nl}^{(1)}r) + C_{nlm} \frac{\mathrm{d}\left\{rj_l(k_{nl}^{(1)}r)\right\}}{\mathrm{d}r} \end{bmatrix} \nabla Y_{lm}(\Omega) \\ k_{nl}^{(\mathrm{t})}c^{(\mathrm{t})} = \omega_{nl} \qquad n : \text{Principal quantum number} \\ k_{nl}^{(1)}c^{(1)} = \omega_{nl} \qquad l : \text{Azimuthal quantum number} \end{cases}$$

Breathing Quadrupole

Elastic Wave Equation

 $c^{(1)}$: Vertical sound velocity

 $c^{(t)}$: Horizontal sound velocity

m: Magnetic quantum number

Elastic Wave Equation

$$\ddot{\mathbf{u}} = \left(c^{(1)}\right)^2 \nabla \nabla \cdot \mathbf{u} - \left(c^{(t)}\right)^2 \nabla \times (\nabla \times \mathbf{u})$$

Divergence term Rotation term

Stress Free Solutions

Spheroidal modes

$$\tilde{\mathbf{u}}_{nlm}^{(\mathrm{S})}(\mathbf{x}) = \begin{bmatrix} A_{nlm} \frac{\mathrm{d}j_l(k_{nl}^{(1)}r)}{\mathrm{d}r} + C_{nlm}l(l+1)\frac{j_l(k_{nl}^{(t)}r)}{r} \end{bmatrix} Y_{lm}(\Omega)\mathbf{e}_r \\ + \begin{bmatrix} A_{nlm}j_l(k_{nl}^{(1)}r) + C_{nlm}\frac{\mathrm{d}\left\{rj_l(k_{nl}^{(t)}r)\right\}}{\mathrm{d}r} \end{bmatrix} \nabla Y_{lm}(\Omega) \\ k_{nl}^{(t)}c^{(t)} = \omega_{nl} \quad n : \text{Principal quantum number} \\ k_{nl}^{(1)}c^{(1)} = \omega_{nl} \quad l : \text{Azimuthal quantum number} \end{bmatrix}$$

Breathing Quadrupole

Torsional modes

$$\tilde{\mathbf{u}}_{nlm}^{(\mathrm{T})}(\mathbf{x}) = B_{nlm} j_l(k_{nl}^{(\mathrm{t})} r) \mathbf{x} \times \nabla Y_{lm}(\Omega) \quad \bot \mathbf{e}_r$$

No contribution in head-on collisions \rightarrow Neglected

l = 2

Wall Potential

- $\rho n \sigma \varepsilon$: borrow from copper
- P. M. Agrawal et al., Surf. Sci. 515, 21 (2002).

Wall Potential

Initial Conditions

Center of Mass

 $z_0(0)$ Fix : at the position V = 0 $\dot{z}_0(0) \equiv v_0$ Control : 0.0001 ~ 0.1 sound velocity

Distribution of vibrational modes

$$p_{\rm can}(Q_{nlm}(0)) = \sqrt{\frac{M\omega_{nl}^2}{2\pi k_{\rm B}T}} \exp\left[-\frac{1}{k_{\rm B}T}\frac{1}{2}M\omega_{nl}^2Q_{nlm}^2(0)\right]$$
$$p_{\rm can}\left(\dot{Q}_{nlm}(0)\right) = \sqrt{\frac{M}{2\pi k_{\rm B}T}} \exp\left[-\frac{1}{k_{\rm B}T}\frac{1}{2}M\dot{Q}_{nlm}^2(0)\right]$$

Using normal random number

Results

Excitation Energy

Excitation Energy

Restitution Coefficient vs Initial Phase

$$Q_{nlm}(0) = a_{nlm}(0) \sin \alpha_{nlm}(0)$$

$$\dot{Q}_{nlm}(0) = \omega_{nl}a_{nlm}(0) \cos \alpha_{nlm}(0)$$

 a_{nlm} : Amplitude α_{nlm} : Phase

Discussion

Perturbation Theory

<u>Unit</u>

$$M : \text{Mass} \qquad \tilde{z}_{0} \equiv z_{0}/R \qquad \frac{\mathrm{d}^{2}\tilde{Q}_{nlm}}{\mathrm{d}\tau^{2}} + \tilde{\omega}_{nl}^{2}\tilde{Q}_{nlm} = -\underline{\varepsilon}^{2}\frac{\partial\tilde{V}\left(\tilde{z}_{0},\tilde{Q}\right)}{\partial\tilde{Q}_{nlm}}$$

$$R : \text{Radius} \qquad \tilde{Q}_{nlm} \equiv Q_{nlm}/R \qquad \frac{\mathrm{d}^{2}\tilde{Q}_{nlm}}{\mathrm{d}\tau^{2}} + \tilde{\omega}_{nl}^{2}\tilde{Q}_{nlm} = -\underline{\varepsilon}^{2}\frac{\partial\tilde{V}\left(\tilde{z}_{0},\tilde{Q}\right)}{\partial\tilde{Q}_{nlm}}$$

$$\tilde{t} \equiv tv_{0}/R \qquad \qquad \frac{\mathrm{d}^{2}\tilde{z}_{0}}{\mathrm{d}\tilde{t}^{2}} = -\frac{\partial\tilde{V}\left(\tilde{z}_{0},\tilde{Q}\right)}{\partial\tilde{z}_{0}}$$

 $\varepsilon \equiv v_0/c^{(t)}$ $\tau \equiv \tilde{t}/\varepsilon$

Expansion

$$\tilde{Q}_{nlm} = \tilde{Q}_{nlm}^{(0)} + \varepsilon \tilde{Q}_{nlm}^{(1)} + \varepsilon^2 \tilde{Q}_{nlm}^{(2)} + \dots$$

$$\tilde{z}_0 = \tilde{z}_0^{(0)} + \varepsilon \tilde{z}_0^{(1)} + \varepsilon^2 \tilde{z}_0^{(2)} + \dots$$

Perturbation vs Simulation

 $\Delta H_{020} \, / \, H_0$

Phase Dependence

Two Ball Collisions

$$M\ddot{Q}_{nlm} = -M\omega_{nl}^2 \left(Q_{nlm} + \gamma \dot{Q}_{nlm} \right) - \frac{\partial V}{\partial Q_{nlm}}$$

force

Conclusion

Simulation

Super rebounds are found when the radius, the temperature and the velocity are 100 nm, 300 K and 10⁻⁴ sound velocity, respectively. The quadrupole mode is the most excited in this condition. Sinusoidal structure is found in the restitution coefficient as a function of the initial phase of the quadrupole mode. Perturbation theory

The perturbation theory is good agree with our simulation when the initial velocity is lower than 10⁻⁵ sound velocity.

The sinusoidal structure of the restitution coefficient is derived using this theory.

 $\Delta H_{020} \, / \, H_0$