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What is Dilatant Fluid?

A typical example:
Dense mixture of starch and water.

(starch particles) ~ 10um size




Peculiar features of Dilatant Fluid

Persistent or expanding hall

Ebata, Tatsumi and Sano, PRE(2009)



Peculiar features of Dilatant Fluid

Jamming Transition
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©
=
>
=
R0
7 SRS
=
oS
0.01 0.1 1

Shear rate (s™)
A. Fall, N. Huang, F. Bertrand, G. Ovarlez, D Bonn, PRL(2008)



Why it shear thickens?

A possible explanation

+Densely packed sand dilate upon deformation

+Coffee beans in vacuum bag is rigid
because it cannot dilate due to the pressure.

+In the mixture, interstitial water surface
could have particle size curvature.
Pressure decreases due to the surface tension.




. thickening is severe and instantaneous

. relaxation after removal of the external
stress is fast but not instantaneous.

. thickened state Is almost rigid and does
not allow much elastic deformation

. viscosity shows hysteresis

. spontaneous oscillation due to shear
thickening is observed.



Outline

o Fluid dynamics model ot dilatant fluid

o Simulation of stmple shear flows

The present model reproduce basic nature of dilatant
fluid and predicts shear thickening oscillation

o Experiment of Taylor-Couette flow

We observed clear oscillations.



Fluid dynamics model
for dilatant fluid



Modeling the dynamics of dilatant Fluid

1) Phenomenological description for shear thickening

Introduce a state variable: ¢ (7, t)
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Modeling the dynamics of dilatant Fluid

2) Viscosity is strongly increase func. of gb('r', t)

We assume Vogel-Fulcher type divergence:
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Modeling the dynamics of dilatant Fluid

3) State variable (7, t), in turn, depends on stress
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Model Equations

Relaxation is driven by deformation (athermal) ;

3l = /3 Tr(34)
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Length and time scale
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Parameters and scales

Thickening stress: So ~ 50Pa

Relaxed state viscosity: 7o ~ 10Pa - sec.

Density:  p ~ 10°kg/m”
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Simple Shear Flow of Dilatant Fluid




Simple Shear Flow of Dilatant Fluid

Steady State Solution of the Model Equation
Se = U(gb*(se))%k




Shear flow in the unstable branch

Flow oscillates spontaneously under constant stress

émr =1.0,h =3.0,5, =1.0,7 = 0.1
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Shear flow in the unstable branch

Saw-tooth like wave
--- Y moderately increases and suddenly drops
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Shear flow in the unstable branch

a State Diagram for steady and oscillatory region
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Experiment with starch-water mixture



Parameters and scales

Thickening stress: So ~ 50Pa

Relaxed state viscosity: 7o ~ 10Pa - sec.

Density:  p ~ 10°kg/m”

0)
Time Scale 79 = 77— Length Scale /j = @T 0
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For 41wt% cornstarch suspension
70 ~ 0.2sec. (Uor = Sl
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Experimental Setup




Oscillation: 1000fps movie




Angular speed of the center rod
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flow width h [cm]
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Stress dependence of freq. and amplitude

density=42.5wt%
35 T I

- nln
x

20
15
10
3
0 | |

| I D O I
XKL
¥ o4
¥
* [

DX

frequency[Hz]

) “Frequency stays almost

15 constant near threshold

10

amplitude[rad/sec.]

0.0 0.5 1.0
external stress [kPa]



Frequency vs flow thickness

® No systematic dependence either on the thickness and shear stress
® Frequencies are always around 20Hz (twice the predicted value)
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Experimental observation

eAbout 20Hz frequency.
eOscillation starts with Hopf bifurcation.

°Frequency does not depend on both Se and h



2D Simulations
— Maker and Cell (IMAC) method
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Inhomogeneous Oscillation

Small noise is given to initial ¢ dM=0.85, Se=1.0
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Jamming caused by instability
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Inhomogeneous Oscillation
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Inhomogeneous Oscillation
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summary and remarks

e We proposed phenomenological model
e the model predicts spontaneous oscillation

e the oscillation is also observed experimentally

and next...

e We'd like to confirm if the thickening band governs the
oscillation.

e measure pressure of the fluid (?)

e measure off-center force acts on the rod (?)



