Physics of Granular flows, YITP, Kyoto, 26 June 2013

Memory of plastic fluid and its application to control pattern formation of desiccation cracks

A. Nakahara (Nihon Univ.)

Nihon Univ. **Tottori Univ.** Shimane Univ. Nara Women's Univ. S. Kitsunezaki

Y. Matsuo, H. Nakayama **Ooshida Takeshi** M. Otsuki

Nihon Univ.

Tottori Univ. Shimane Univ. Nara Women's Univ.

S. Kitsunezaki

Desiccation crack patterns produced by memory effect

Uncharged Pastes remember vibration and flow !

Magnesium Carbonate Hydroxide, Carbon, Kaolin, etc.

Memory of vibration Memory of flow

No memory

Difference between two memories

Water-poor paste

Lamellar cracks (perpendicular to vibration) Memory of <u>vibration</u>

Water-rich & uncharged paste

Lamellar cracks (parallel to flow) Memory of <u>flow</u>

all perpendicular to vibration

parallel to local flow direction movie

Quantitative difference between vibration and flow

Water-poor paste

(b) under vibration

(a) before vibration

before vibration under vibration

Water-rich paste

(a) before flow

before flow

(b) under flow under flow

Check deformation of letter M (written by carbon powder)

Faint plastic deformation under vibration

Large scale deformation (elongation) under flow and shear

We need to control Strain and Shear rate in future experiments **Only flow** experiment (without vibration)

Memory of flow (cracks parallel to flow)

Initial external vibration

for 60 sec, amplitude 15 mm, frequency 30~150 rpm

Controlling parameter in experiments

Morphological Phase Diagram of uncharged paste

- A <u>no movement</u> \rightarrow no experience \rightarrow cellular cracks (no movement)
- **B** <u>vibration</u> \rightarrow remember
 - → remember
 - <u>turbulence</u> \rightarrow forget

flow

- → Lamellar cracks (perpendicular)
 - → Lamellar cracks (parallel)
 - → Cellular cracks (no memory)

Why does CaCO₃ paste have no memory of flow?

Shape of particles magnesium carbonate hydroxide kaolin, carbon, ... CaCO₃ paste has who have only memory of memory of vibration vibration + memory of **flow** Rough **Plate**like isotropic 1µm

For memory of **flow**

Shape dependence ?

1µm

Coulombic repulsion between CaCO₃ particles

Add NaCl and CaCO₃ paste can remember flow direction

Mechanism for memory of flow...Attractive interaction

Spiral crack patterns made by memory of flow

Mechanism for memory of vibration...Residual tension

Two Residual Tension Theories

Model A: horizontal stretching mechanism Non-uniform horizontal stretching, global model M. Otsuki, PRE 72 (2005) 046114.

Model B: shear deformation mechanism Longitudinal tension due to nonlinear elasticity, local model Ooshida T., PRE77 (2008) 061501, JPSJ 78 (2009) 104801.

Model A: Otsuki Model on memory of vibration

Model A: Otsuki Model on memory of vibration

FIG. 6. The average normal stress $\langle \sigma_{xx}(x,t) \rangle$ in the case $\alpha_M = 0.08$ as a function of x.

Model B: Ooshida model

shear deformation mechanism

Longitudinal tension due to nonlinear elasticity

Model B: Ooshida Model on memory of vibration

Continuum model of a paste

Ooshida (2008) PRE 77; Ooshida (2009) JPSJ 78

a kind of nonlinear Maxwell model of viscoelasticity

• formulation with label variable $\boldsymbol{\xi} = (\xi, \zeta)$ and natural metric $\mathbf{g}^{\natural} = (g_{ij}^{\natural}) = (g_{\natural}^{ij})^{-1}$ (cf. $T = \kappa (x - x^{\natural})$)

$$P = P^{ij}(\partial_i \mathbf{r}) \otimes (\partial_j \mathbf{r}), \quad P^{ij} = \tilde{p}g^{ij} + S\left(g^{ij} - g^{ij}_{\natural}\right) \quad (1)$$
stress convected basis $\partial_t g^{ij}_{\natural} = -\nu g^{ij}_{\natural} + \nu_* g^{ij} \quad (2)$

 $\mathbf{r} = \mathbf{r}(\boldsymbol{\xi}, t), \quad g_{\natural}^{ij} = g_{\natural}^{ij}(\boldsymbol{\xi}, t); \quad g_{\xi\zeta} = (\partial_{\xi}\mathbf{r}) \cdot (\partial_{\zeta}\mathbf{r}) \text{ etc.}; \quad (g^{ij}) = (g_{ij})^{-1}$

• plasticity: relaxation time τ can diverge depending on $\varepsilon = g_{ij}g_{\natural}^{ij} - n_{d}$ elastic energy

Model B: Ooshida Model on memory of vibration

Equation of motion

For momentum $\rho \mathbf{v}$ $(i = \xi, \eta; \mathbf{F} = F_x(t)\mathbf{e}_x - G\mathbf{e}_z)$

$$\rho \left(\partial_t v^i + v^j \nabla_j v^i \right) = -\nabla_j P^{ij} + F^i$$
stress forcing
(3)

All vectors/tensors in convected coordinate system

 $\mathbf{v} = \sum v^i \partial_i \mathbf{r} = \sum v_i \nabla \xi^i$ etc. $\nabla_j v^i = \partial_j v^i + \Gamma^i_{jk} v^k$ contravariant covariant

covariant derivative

Boundary conditions

- free surface at $\zeta = \zeta_{max}$
- no-slip condition at $\zeta = 0$

Model B: Ooshida Model on memory of vibration

 $\alpha = (\xi$ -directional contraction of natural metric) > 0

• memory written $(0 < t < T_*, flowing state)$

Where will cracks appear in Residual tension models?

Experimental verification of two residual tension models

Overwriting	Where do the perpendicular cracks appear?
½ shake	Stretched part (Model A by Otsuki)
2 shakes	Sheared part (Model B by Ooshida)

Conclusion 1

<u>Memory of flow = elongation of dilute network under flow</u>

_By horizontal vibration... Only Direction!

Direction: imprinted by memory effect Position : stochastically formed

Memories are formed not by macroscopic hydrodynamic structure like convection.

Position control of cracks using Faraday waves Experimental setup for vertical vibration

Paste: Water-poor CaCO₃ paste (only memory of vibration)

vertical vibration

Circular container diameter *d* = 200 mm

Square container 150mm side

Stripe and ring cracks produced by vertical vibration

Vertical vibration \rightarrow Faraday waves

Stop vibration & dry

desiccation crack patterns

Spatial correlation between Faraday waves and cracks

Where do cracks appear?

At Anti-Node regions or at Node regions?

Faraday waves

Desiccation crack pattern

Structure of Faraday waves of CaCO₃ paste

t

 $t + T_{v}$

Faraday waves at each snapshot

Period of Faraday waves T_F

= 2 × Period of vertical vibration T_V

Side view : Square waves

Prediction of Horizontal oscillation in node regions

Experimental observation of horizontal oscillation in node regions ANANANANANANAN

Faraday waves at each snapshot

 $t + T_v$

Time

Black carbon powder on CaCO₃ paste Horizontal vibration

Visualization of node regions (N) of Faraday waves

Faraday waves at each snapshot

A : Anti-node regions (Regions where anti-nodes) stand up alternatively N : Node regions (Always flat regions)

Superposition of successive Faraday waves

Superposition of successive Faraday waves and desiccation cracks

t

Statistical analysis

Ratio of observing cracks at node regions to that of anti-node regions

Square lattice cracks produced by vertical vibration

Vertical vibration

 \rightarrow Faraday waves

desiccation crack patterns

Experimental check: superposition of successive Faraday waves

Faraday waves at one snapshot t

Snapshot Tilt by 45°! (a) (b) **Faraday waves** at next snapshot $t + T_{v}$ **Node lines** are regarded as a direction of lattice structure that the superposition of successive Faraday waves make **Superposition** of successive Faraday waves 20 mm t and $t+T_v$ (e)

Top of excited anti-nodes are marked as circles

Node lines

Experimental check: Spatial correlation between Faraday waves at one snapshot and desiccation cracks

Structures : Tilt by 45° !

Conclusion 2

- Using vertical vibration, we can control not only the direction but also the position of cracks.
- Cracks with lattice structure can be created !

Square lattice

H. Nakayama, Y. Matsuo, Ooshida Takeshi and A. Nakahara European Physical Journal E **36** (2013) 1.

Further applications

- 1. What will happen in future (Technology)
 - → Control microstructure of materials,

anisotropy in conductivity and elastic moduli,

and macroscopic crack patterns

- 2. What happened before (Geoscience)
 - \rightarrow Know past by memories and cracks in rocks

Future plans

Flow ••• large deformation

- Definition and quantification of Memories in pastes including Memory of flow
- Theoretical model which explains Memory of flow
- Transition from Memory of vibration to Memory of flow

Future plans 2

Combine various external fields to control crack patterns

Mechanical method (vibration, flow) A. Nakahara & Y. Matsuo JPSJ (2005), PRE (2006)

Electrical method

D. Mal et. al., Physica A (2007)

Magnetic method

- L. Pauchard et. al., PRE, (2008)
- A. T. Ngo et. el., Nano Letters (2008)

Desiccation cracks

Physics Today

xx September 2007

Desiccation cracks

Crack patterns in layers of mud in dried river n the glaze on old porcelain crockery pical characteristics ive topic of resear ey cover, the angles at which the the number of sides and the size tic crack patterns can be computer simulation using models nto account the details of the physics y of the process. Numerous studies way to better understand the process and, in some cases, how to t, since crack patterns are sometimes ally produced as an artistic effect for ects. Shown above are the spira rack patterns produced when a clay sample is in a circular path before drying, and crack patterns formed when a synt dried in a radially symmetric static tric field. More about desiccation crack patterns can be found in D. Mal et al., J. Phys Soc. Jpn. 76, 014801 (2007); D. Mal et al. Appl. Clay Sci. doi:10.1016/j.clay.2007 05.005 (in press); A Nakahara, Y. Matsuo, Phys. Rev. E 74, 045102 (2006)

To submit candidate images for Back Scatter, visit http://www.physicstoday.org/backscatter.html

www.physicstoday.org

Physics Today, September (2007) 116