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Introduction

When a system is driven by external forcing, it becomes unstable 

beyond some critical value of the control parameter

Spatio-temporal instabilities arises

Collective dynamics  of unstable system, far from equilibrium, 

yields patterned states (Cross & Hohenberg, 

Rev Mod Phys 1993)

Classification depending on external forcing

Vibration                     

Gravity              

Shear

Aranson & Tsimring, Rev Mod Phys. 2006



Patterns in vibration driven granular matter

Top view of a submonolayer of 

grains on a vibrated plate 
(Olafsen and Urbach, 1998)

Coexistence of 

dilute and dense region

Phenomena

*Clustering

*Surface wave

*Localized structure

*Convection

Freely cooling granular gas 
(Goldhirsch and Zanetti, 1993)

Clustering

Uniform configuration to



Pattern for various values of  frequency and 

acceleration: 

stripes, squares, hexagons, 

spiral, interfaces, and oscillons
(Umbanhower et al. 1996)

oscillon

Surface wave

Localized structure

Uniform granular layer to surface wave and localized structure



Convection

Convection

Leidenfrost (Eshuis et al 2005)
(Eshuis et al 2010)

Bouncing state (Hayakawa, Yue, & Hong, 1995) 

Density inversion (Khain & Meerson, 2003)

Leidenfrost state (Eshuis et al 2010)

convection

Non-uniform Configuration



Patterns in shear driven granular matter

Phenomena

*Shearbanding

*Segregation

*Density wave

*Clustering
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Shearbanding

Gradient Banding: 

Bands of different shear rates, along the gradient direction, coexist 



Fast particles (yellow) near the inner wall appear to

move smoothly while the orange and red particles

display more irregular and intermittent motion

Circular Couette geometry
M
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eth
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Shear-Banding in ‘Dense’ Granular Flow
(Savage &  Sayed 1984; Mueth et.al. 2000 )

Shear-bands are narrow and localized near 

moving boundary. 

Vorticity Banding: 

Bands of different shear stress, along the vorticity direction, coexist 

6.0,05.00  e

Conway & Glasser, (2004)

Three bands of particles along the

vorticity direction



Clustering & Density wave

Inelastic collisions

Conway & Glasser, (2004)

Fluctuations

Generate regions of high 

density

Instability

Dense cluster, plug..

Reason



Describe the slow modulation in space and time near the onset of 

instability

Gives a qualitative insight of pattern formation 

•Growth of the perturbation about the spatially uniform state

•Saturation of the growth by nonlinearity

•Dispersion and effect of spatial distortions   

Amplitude (order parameter) equation



Order Parameter model for Granular patterns 

Vibration

Patterns in vibrated bed can be predicted by the complex 

Ginzburg-Landau Eqn (‘çubic’) 

(Tsimring and Aranson 1997, PRL)

Phenomena

*Turbulance

*Nonlinear Waves, 

*Phase transitions, 

*Superconductivity,

*Superfluidity, etc.

Phenomenological 

model

Complex Ginzburg-Landau Equation
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Generalized Swift-Hohenberg equation describes primary pattern 

forming bifurcation: square, strips and oscillons (Crawford and Riecke 1999)  
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The magnitude of epsilon describes squares, strips, 

hexagons, oscillons, etc. patterns    

(Thual and Fauve, J. Phys. 1988)

Localized pulse solution, amplitude surface 

4.0,3.0,4,192.0 431  ccc

Generalized Swift Hohenberg Equation

Subcritical Complex Ginzburg-Landau Equation (‘quintic’)



Shukla P., Meer D. V., Lohse D. & Alam M., 2013, Preprint

Leidenfrost State leads to 

convection via a supercritical 

bifurcation

Nonlinear Stability Theory (supercritical)

Particle Simulation

)174(52
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Stuart-Landau Equation 

Experiment (Eshuis et al 2010)

(Eshuis et al 2010)



Shear Complex Ginzburg-Landau (CGL) Equation

Slow evolution of the spatial structure of shearband using two 

dimensional CGL (Saitoh K. & Hayakawa H., 2011)

Stuart-Landau (‘order parameter’) Equation

Instability Form of perturbation References

Shukla & Alam PRL 2009; 

Shukla & Alam, JFM, 2011a

Shukla & Alam, JFM, 2011b

Shukla & Alam, JFM, 2011b

Shukla & Alam, JFM, 2013

Alam & Shukla, JFM, 2013

Unbounded domain

Bounded domain



Problem Description

Schematic diagram of 3D plane Couette flow

The plane Couette flow is unsable due to various 

stationary and travelling wave instabilities 

Scaling: Gap between the walls, Average velcocity, 

and inverse of total shear rate



Navier-Stokes Order

Constitutive Model

Stress Tensor

Granular Heat Flux

Balance Equations

Granular Hydrodynamic Equations
(Savage, Jenkins, Goldhirsch, …)

…

Dissipation term or sink of energy



Uniform shear flow

 Steady 

 Fully developed

 Parallel

 Unidirectional 

No Slip & Zero heat flux B.C. 
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Perturbation
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Weakly Nonlinear Analysis

Slow/ Active/ Unslaved Fast/ Passive/ Slaved

Growing or neutrally stable Decaying mode

Amplitudes are 

independently determined

…dependent

Bounded

System 

Unbounded

System

Discrete 

spectrum 

Slow modes with positive, zero, 

or slightly negative growth rates

Continuous 

spectrum 

Slow modes:  slowly varying 

envelope of fast varying patterns.

Amplitude 

Eq. (ODE)  

Envelope 

Eq. (PDE) 

Newell & Whitehead, 1969
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Landau 1944, Stuart & Watson, 1960



Near the onset, the amplitudes of the passive modes in the set ‘F’

quickly relax to a manifold, called the center manifold ‘F = F(S)’.

Derivation of Amplitude Equation

Notation:   Slow mode: S ;  Fast Mode: F

Coordinate of ‘S’: amplitude of discrete modes of ‘S’

Amplitude Order Parameter

(gives degree of order/disorder, and structure of the system) 

On center manifold, the amplitudes will evolve on a time scale

proportional to inverse of linear growth rate.

Amplitude eqn.

Product of active amplitude

Coefficient contains relevant 

information about the system

Easier to solve than original 

microscopic eqns.



Separation of mode

Center manifold

Amplitude equation

Newell, Passot & Lega, Annu. Rev. Fluid Mech. 1993



Separation of mode

Center manifold

Amplitude equation

Inner product with adjoint

eigenfunction of the linear 

problem

Separating the like-power 

terms in amplitude, 

Yields an amplitude eqn

Center Manifold Reduction 
(Carr 1981;  Shukla & Alam, PRL 2009)

Step 1

Step 2

Step 3
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All fast modes are determined algebraically as a balance

between each linearly decaying fast mode and its regeneration

by nonlinear interactions involving members of S.

Determination of Landau Coefficients 

Enslaved Equation

represents all non-critical modes Regeneration of F mode by nonlinear 

interactions of members of S 



Amplitude Expansion Method 
(Stuart & Watson 1960;  Shukla & Alam, JFM 2010a )  
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Solvability Condition

Co-ordinate Transformation



Equilibrium Amplitude and Bifurcation
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Numerical Methods

Discretization

Chebyshev spectral collocation method with 

staggered grid (Canuto et al, 1988; Alam & Nott 1998, 

Shukla & Alam 2011b)
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GL point to G point

Lagrange Interpolation Matrices



Types of Matrix Problem 
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Analytical solution exists!

for shearbanding instability
(Shukla & Alam 2011a,

Shukla & Alam 2013)

Type 1

Generalized Eigenvalue problem

Order one in amplitude             QZ Algorithm

Type 2

Inhomogeneous Equation

Even order in amplitude  Singular Value Decomposition

Type 3

SL problem 

(Inhomogeneous equation with solvability condition) 

Odd order in amplitude

Gauss-Chebyshev Quadrature & Singular Value Decomposition



Results Moderate density

8.0,100,2.00  eH

The Growth rates of both dominant SW & TW Instabilities

reach maximum for 2D & decreases with increasing span-wise

wave number at any value of stream-wise wave number

Instability Contours 

55.0xk 95.0xk

0xk

Dominant ‘Stationary’ Peak

Dominant ‘Travelling’ Peak

At moderate density, GPCF admits

Dominant stationary instabilities

Dominant travelling instabilities

Long wave instabilities

Originate mainly from 2D instabilities

Effect of 3D perturbations 

on nonlinear saturation of 

these modes?   



579.0xk
Mean-Flow Resonance

Dominant Stationary Wave (SW) Instabilities
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Observation

•Saddle Nodes 

•Closed Orbit

•Star Nodes 

(Sources & Sinks)

•Imperfect Saddles 

(near the wall)
0x

All fixed points are 

dynamically attached

0x

1zk
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1,97.0  zx kk

Supercritical Hopf

Bifurcation
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1zk Nonlinear TW

solutions at

larger span-wise

wavenumber

Observation

For dominant SW &

TW instabilities , the

cross stream motion is

dominated by saddle

type motions with a

streamwise vortex

Dominant Travelling Wave (TW) Instabilities



Long Wave (LW) Instabilities

xk

zk

Effect of spanwise wavenumber on LW 5104 xk

Unstable

•to Gradient Banding mode

•to long-wave length 2D SW & TW

TW-LW

510xk

SW-LW
Supercritical Hopf Bifurcation

0,1  zkz 0,3.0  xkz



Instabilities & Patterns in dense flows

005.0xk

8.0,50,4.00  eH

Known to be unstable

•to 2D perturbation for small range of 

stream-wise wavenumber

•Originated from Gradient Banding mode

)0(a

For kx~0 mode the growth 

rate is maximum for 2D 

perturbation

Supercritical 

Hopf Bifurcation

TW

Observation

•Orientation & 

structure of  particle 

cluster originating 

from2D is differ from 3D

•Saddle node type motion

•patterns are differ from 

previous LW

•kz~0 origin: 2D

•kz~moderate: origin 3D

Small kx ~0.001 also gives

Supercritical & subcritical TW



Purely 3D instability in dilute flows
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Linearly Stable to 2D perturbation

SW

TW

Modal evolution of SW

instability with 

gives birth to new  3D

TW instability 

xk
Originated from 

‘pure span-wise’ 

perturbation 

10zk

Equilibrium solution does not exist for

small values of kz (=< 0.5)

Stationary Wave Instabilities (SW)

8.0,100,05.00  eH

Resposible for 

vorticity banding

Supercritical 

Pitchfork 

Bifurcation



Travelling Wave (TW) Instabilities 

Supercritical HopfSubcritical Hopf

273.1zk
1.0xk

2.0zk 12zkLarge scale 

vortices

Particle clusters are oriented 

at some oblique angle 

Particle clusters are oriented 

horizontally along z-direction



Subcritical TW patterns

Observation

Vortices are located around the 

local density maxima

Temperature pattern shows that 

vortices are born near the local 

minima of kinetic pressure      

3.1,0.1  zx kk

Correlation of a vortex core 

with a low-pressure region 

in classical fluid

Connection ! 

Vortices repeat along the periodic z-direction;

forming an array of vortices with saddle between them      



Anomalous 2D instability 50,01.00  H05.00 

99.0e

SW

8.0e

SW

Maximum growth 

rate occurs for kx=0

Instability survives at kz~0 

in the quasi-elastic limit

Origin must be 2D (kz =0 ) 

perturbations  

Observation

2D instability vanishes for large 

dissipation implies anomalous 

dependence on inelasticity

Supercritical 0.1,35.0  zx kk

Columnar Structures of density cluster

Different from type of patterns

Origin ????



Conclusions  
Using NS level hydrodynamics of rapid granular fluid, weakly

nonlinear stability of GPCF has been analyzed.

Dominant SW & TW, and LW instabilities are originated from 2D

perturbations for ‘moderately dense’ to ‘dense’ flows.

Purely 3D SW & TW has it origin in 3D perturbation in ‘dilute’ flows

Nonlinear flow patterns of cross stream velocity have been analyzed

in terms of the fixed point (saddle, source, sink, vortex……)

Local maximum of stream-wise vorticity gives the location of vortex

Responsible for more inhomogeneous particle clustering in 3D flow



Connection?

Order parameter approach

Outlook & future work  Three Dimensional Flow

Alam & Shukla (2013) J. Fluid Mech., 716, 349-413

Fixed point approach 

using velocity gradient tensor

Perry & Chong (1987), Annu. Rev Fluid Mech.

Chong, et. al. (1990), Phys. Fluids 

x
y

z 0x



Thank you

Wake

up

(Perry & Chong 1987)
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