Phase transition in peristaltic transport of granular particles

Naoki Yoshioka Hisao Hayakawa

Yukawa Institute for Theoretical Physics, Kyoto University

Physics of Granular Flows

Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
000	00	000000	000	0000000	
Outline					

- 1 Intdocution
 - Peristaltic transport
 - Objectives
- 2 Model (1)
 - Peristaltic flow of frictionless granular particles
- 3 Results (1)
 - Time evolution of mass flux
 - Transition time
 - Phase transition of peristaltic flow
- 4 Model (2)
 - Peristaltic flow of frictional granular particles

- Implementation of peristaltic motion
- 5 Results (2)
 - Time evolution of flow rate
 - Stationary flow rate
- 6 Summary

Progressive wave of area contraction/expansion.

- Biological systems
 - esophagus
 - small intensine
 - ureters
- Peristaltic Pump
 - blood, corrosive fluids, foods, …
 - preventing the transported fluid from their mechanical parts.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
●○○	00	000000	000	0000000	
Peristaltic	transpor	t			

- Progressive wave of area contraction/expansion.
- Biological systems
 - esophagus
 - small intensine
 - ureters
- Peristaltic Pump
 - blood, corrosive fluids, foods, …
 - preventing the transported fluid from their mechanical parts.

- Progressive wave of area contraction/expansion.
- Biological systems
 - esophagus
 - small intensine
 - ureters
- Peristaltic Pump
 - blood, corrosive fluids, foods, ...
 - preventing the transported fluid from their mechanical parts.

・ロト・「聞・ ・ヨト・ ヨー うべつ・

Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
○●○	00	000000	000	0000000	
Previous	studies				

Zien and Ostrach, J. Biomech. 3, 63 (1970)

Shapiro et al., JFM 37, 799 (1969)

- Newtonian fluids
 - Stokes approximation
 - assuming some of parameters are zero or small
 - reflux and trapping w/ pressure difference
 - width at bottlenecks v.s. flow rate
- Non-Newtonian fluids
 - many studies,
 e.g., Maxwell fluids,
 third-order fluids,
 power-law fluids, ...

Particles

- one particle in fluids
- dilute particles in fluids

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
○●○	00	000000	000	0000000	
Previous	studies				

Shapiro et al., JFM 37, 799 (1969)

- Newtonian fluids
 - Stokes approximation
 - assuming some of parameters are zero or small
 - reflux and trapping w/ pressure difference
 - width at bottlenecks v.s. flow rate
- Non-Newtonian fluids
 - many studies,
 e.g., Maxwell fluids,
 third-order fluids,
 power-law fluids, ...
- Particles
 - one particle in fluids

Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
OOO	00	000000	000	0000000	
Previous s	studies				

Shapiro et al., JFM 37, 799 (1969)

- Newtonian fluids
 - Stokes approximation
 - assuming some of parameters are zero or small
 - reflux and trapping w/ pressure difference
 - width at bottlenecks v.s. flow rate
- Non-Newtonian fluids
 - many studies,
 e.g., Maxwell fluids,
 third-order fluids,
 power-law fluids, ...

Particles

- one particle in fluids

Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
○●○	00	000000	000	0000000	
Previous s	studies				

Fauci, Computers Fluids 21, 583 (1992)

Jiménez-Lozano et al., PRE 79, 041901

- Newtonian fluids
 - Stokes approximation
 - assuming some of parameters are zero or small
 - reflux and trapping w/ pressure difference
 - width at bottlenecks v.s. flow rate
- Non-Newtonian fluids
 - many studies,
 e.g., Maxwell fluids,
 third-order fluids,
 power-law fluids, ...
- Particles
 - one particle in fluids
 - dilute particles in fluids

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Intdocution 000	Model (1) 00	Results (1) 000000	Model (2) 000	Results (2)	Summary
Objectives	5				

- For example,
 - boluses/chymes
 - in esophagus/intensine
 - blood cells in blood vessel
 - pumping corrosive sands, foods
- Efficiency of pumping?
- Particles might jam at bottleneck
 - granular flow in silo
- Minimum width w v.s. flux
 - large w—slow unjammed flow
 - small w—fast jammed flow
 - what's inbetween? phase transition?
- Role of friction?
- strain- v.s. stress-controlled

Intdocution 000	Model (1) 00	Results (1) 000000	Model (2) 000	Results (2)	Summary
Objectives	5				

- For example,
 - boluses/chymes
 - in esophagus/intensine
 - blood cells in blood vessel
 - pumping corrosive sands, foods
- Efficiency of pumping?
- Particles might jam at bottleneck
 - granular flow in silo
- Minimum width w v.s. flux
 - large w—slow unjammed flow
 - small w—fast jammed flow
 - what's inbetween? phase transition?
- Role of friction?
- strain- v.s. stress-controlled

Intdocution 000	Model (1) 00	Results (1) 000000	Model (2) 000	Results (2)	Summary
Objectives	5				

- For example,
 - boluses/chymes
 - in esophagus/intensine
 - blood cells in blood vessel
 - pumping corrosive sands, foods
- Efficiency of pumping?
- Particles might jam at bottleneck
 - granular flow in silo
- Minimum width w v.s. flux
 - large w—slow unjammed flow
 - small w—fast jammed flow
 - what's inbetween? phase transition?
- Role of friction?
- strain- v.s. stress-controlled

Intdocution 000	Model (1) 00	Results (1) 000000	Model (2) 000	Results (2)	Summary
Objectives	5				

- For example,
 - boluses/chymes
 - in esophagus/intensine
 - blood cells in blood vessel
 - pumping corrosive sands, foods
- Efficiency of pumping?
- Particles might jam at bottleneck
 - granular flow in silo
- Minimum width w v.s. flux
 - large *w*—slow unjammed flow
 - small *w*—fast jammed flow
 - what's inbetween? phase transition?

Role of friction?

strain- v.s. stress-controlled

Intdocution 000	Model (1) 00	Results (1) 000000	Model (2) 000	Results (2)	Summary
Objectives	5				

- For example,
 - boluses/chymes
 - in esophagus/intensine
 - blood cells in blood vessel
 - pumping corrosive sands, foods
- Efficiency of pumping?
- Particles might jam at bottleneck
 - granular flow in silo
- Minimum width w v.s. flux
 - \blacksquare large w---slow unjammed flow
 - small *w*—fast jammed flow
 - what's inbetween? phase transition?
- Role of friction?
- strain- v.s. stress-controlled

- Monodisperse dissipative particles $\Pi = \Pi_p \cup \Pi_w$, w/o gravity & fluid.
- $\begin{array}{l} \blacksquare \ \, \mbox{Spring and viscous force at contact;} \\ f^{\rm el}_{ij} = k\xi_{ij}\Theta(\xi_{ij})\boldsymbol{n}_{ij}, \\ f^{\rm vis}_{ij} = -\eta(\boldsymbol{v}_{ij}\cdot\boldsymbol{n}_{ij})\Theta(\xi_{ij})\boldsymbol{n}_{ij}, \end{array}$
- Particles in a tube, Π_p ;

$$m\frac{\mathrm{d}^2 \boldsymbol{r}_i}{\mathrm{d}t^2} = \sum_{j \in \Pi \setminus \{i\}} (\boldsymbol{f}_{ij}^{\mathrm{el}} + \boldsymbol{f}_{ij}^{\mathrm{vis}}).$$

Particles embedded on a tube, Π_w ; $r_i = (r_i(t) \cos \phi_i, r_i(t) \sin \phi_i, \zeta_i),$ $r_i(t) = a + b \sin\left(\frac{2\pi}{\lambda}(ct + \zeta_i)\right).$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- $\label{eq:monodisperse} \begin{tabular}{ll} \mbox{Monodisperse dissipative particles}\\ \Pi = \Pi_p \cup \Pi_w, \, \mbox{w/o gravity \& fluid.} \end{tabular}$
- $\begin{array}{l} \bullet \quad \mbox{Spring and viscous force at contact;} \\ f_{ij}^{\rm el} = k\xi_{ij}\Theta(\xi_{ij})\boldsymbol{n}_{ij}, \\ f_{ij}^{\rm vis} = -\eta(\boldsymbol{v}_{ij}\cdot\boldsymbol{n}_{ij})\Theta(\xi_{ij})\boldsymbol{n}_{ij}, \end{array}$

• Particles in a tube, Π_p ;

$$m\frac{\mathrm{d}^2 \boldsymbol{r}_i}{\mathrm{d}t^2} = \sum_{j \in \Pi \setminus \{i\}} (\boldsymbol{f}_{ij}^{\mathrm{el}} + \boldsymbol{f}_{ij}^{\mathrm{vis}}).$$

Particles embedded on a tube, Π_w ; $r_i = (r_i(t) \cos \phi_i, r_i(t) \sin \phi_i, \zeta_i),$ $r_i(t) = a + b \sin\left(\frac{2\pi}{\lambda}(ct + \zeta_i)\right).$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - 釣�?

- $\label{eq:monodisperse} \begin{tabular}{ll} \mbox{Monodisperse dissipative particles}\\ \Pi = \Pi_p \cup \Pi_w, \, \mbox{w/o gravity \& fluid.} \end{tabular}$
- Spring and viscous force at contact;
 $$\begin{split} \boldsymbol{f}_{ij}^{\text{el}} &= k\xi_{ij}\Theta(\xi_{ij})\boldsymbol{n}_{ij}, \\ \boldsymbol{f}_{ij}^{\text{vis}} &= -\eta(\boldsymbol{v}_{ij}\cdot\boldsymbol{n}_{ij})\Theta(\xi_{ij})\boldsymbol{n}_{ij}, \end{split}$$
- Particles in a tube, Π_p ;

$$m\frac{\mathrm{d}^{2}\boldsymbol{r}_{i}}{\mathrm{d}t^{2}} = \sum_{j\in\Pi\setminus\{i\}}(\boldsymbol{f}_{ij}^{\mathrm{el}} + \boldsymbol{f}_{ij}^{\mathrm{vis}}).$$

Particles embedded on a tube, Π_w ; $r_i = (r_i(t) \cos \phi_i, r_i(t) \sin \phi_i, \zeta_i),$ $r_i(t) = a + b \sin\left(\frac{2\pi}{\lambda}(ct + \zeta_i)\right).$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- $\label{eq:monodisperse} \begin{tabular}{ll} \mbox{Monodisperse dissipative particles}\\ \Pi = \Pi_p \cup \Pi_w, \, \mbox{w/o gravity \& fluid.} \end{tabular}$
- $\begin{array}{l} \bullet \quad \mbox{Spring and viscous force at contact;} \\ f^{\rm el}_{ij} = k\xi_{ij}\Theta(\xi_{ij})\boldsymbol{n}_{ij}, \\ f^{\rm vis}_{ij} = -\eta(\boldsymbol{v}_{ij}\cdot\boldsymbol{n}_{ij})\Theta(\xi_{ij})\boldsymbol{n}_{ij}, \end{array}$
- Particles in a tube, Π_p ;

$$m\frac{\mathrm{d}^{2}\boldsymbol{r}_{i}}{\mathrm{d}t^{2}} = \sum_{j\in\Pi\setminus\{i\}}(\boldsymbol{f}_{ij}^{\mathrm{el}} + \boldsymbol{f}_{ij}^{\mathrm{vis}}).$$

 $\begin{array}{l} \blacksquare \mbox{ Particles embedded on a tube, } \Pi_{\rm w}; \\ r_i = \left(r_i(t)\cos\phi_i, r_i(t)\sin\phi_i, \zeta_i\right), \\ r_i(t) = a + b\sin\biggl(\frac{2\pi}{\lambda}(ct+\zeta_i)\biggr). \end{array}$

イロト 不得 トイヨト イヨト

Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
000	○●	000000	000	0000000	
Paramet	ers				

Scaled by

mass m,

diameter d,
√k/m

• a = 1.5, $\lambda = 10$, $\eta = 5.48 \times 10^{-3}$

• restitution coefficient $e = \exp(-\pi\eta/\sqrt{2-\eta^2})$ $\simeq 9.88 \times 10^{-1}$

particles are almost elastic

Control parameters

- width at a bottleneck $w \equiv 2(a-b)$
- strain rate $\dot{\epsilon} \equiv c/\lambda$
- volume fraction at b = 0, $\bar{\rho} = N/6a^2L$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Intdocution 000	Model (1) ○●	Results (1) 000000	Model (2) 000	Results (2)	Summary
Paramet	ers				

Scaled by

- mass m,
- diameter d,
 √k/m
- a = 1.5, $\lambda = 10$, $\eta = 5.48 \times 10^{-3}$
- restitution coefficient $e = \exp(-\pi\eta/\sqrt{2-\eta^2})$ $\simeq 9.88 \times 10^{-1}$
 - particles are almost elastic
- Control parameters
 - width at a bottleneck $w \equiv 2(a-b)$
 - strain rate $\dot{\epsilon} \equiv c/\lambda$
 - volume fraction at b = 0, $\bar{a} = M/c a^2 I$

 $\bar{\rho} \equiv N/6a^2 L$

Intdocution 000	Model (1) ○●	Results (1) 000000	Model (2) 000	Results (2)	Summary
Paramet	ers				

Scaled by

- mass m,
- diameter d,
 √k/m
- a = 1.5, $\lambda = 10$, $\eta = 5.48 \times 10^{-3}$
- restitution coefficient $e = \exp(-\pi\eta/\sqrt{2-\eta^2})$ $\simeq 9.88 \times 10^{-1}$
 - particles are almost elastic
- Control parameters
 - width at a bottleneck $w \equiv 2(a-b)$
 - \blacksquare strain rate $\dot{\epsilon} \equiv c/\lambda$
 - volume fraction at b = 0, $\bar{a} = M/6 a^2 I$

$$\bar{\rho} \equiv N/6a^2L$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
000	00	●00000	000	0000000	
Snapshots					

 \blacksquare unjammed flow \rightarrow jammed flow

- Initial condition: J = 0.
- $\bullet J_{\max} \equiv Nc/L.$
- Large w
 - steady slow
 unjammed flow
- Small w
 - Transition
 - from unsteady unjammed flow
 - to steady fast jammed flow

Transition at $w = w_c$.

- Initial condition: J = 0.
- $\bullet J_{\max} \equiv Nc/L.$
- Large w
 - steady slow
 unjammed flow
- Small w
 - Transition
 - from unsteady unjammed flow
 - to steady fast jammed flow

Transition at $w = w_c$.

- Initial condition: J = 0.
- $\bullet J_{\max} \equiv Nc/L.$
- Large w
 - steady slow
 unjammed flow
- $\blacksquare \mathsf{Small} \ w$
 - Transition
 - from unsteady unjammed flow
 - to steady fast jammed flow

• Transition at $w = w_c$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- Initial condition: J = 0.
- $\bullet J_{\max} \equiv Nc/L.$
- Large w
 - steady slow
 unjammed flow
- Small w
 - Transition
 - from unsteady unjammed flow
 - to steady fast jammed flow

Transition at $w = w_c$.

- Time t = τ at which the transition occurs.
- τ depends on w.

Diverges at
$$w = w_{
m c}(\dot{\epsilon});$$

$$\bullet \tau \sim (w_{\rm c} - w)^{-1}$$

 $\blacksquare \text{ Transition time } \tau$

$$\begin{aligned} \tau &\sim \dot{\epsilon}^{-7/2} f\big((w_{\rm c} - w)/\dot{\epsilon}^{3/2}\big), \\ f(x) &\sim x^{-1} \text{ for } x \sim 1. \end{aligned}$$
$$\begin{aligned} \chi_{\tau} &\equiv \langle \tau^2 \rangle - \langle \tau \rangle^2 \\ \chi_{\tau} &\sim (w_{\rm c} - w)^{-3} \\ \chi_{\tau} &\sim \dot{\epsilon}^{-7} g\big((w_{\rm c} - w)/\dot{\epsilon}^{3/2}\big), \\ g(x) &\sim x^{-3} \text{ for } x \sim 1. \end{aligned}$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

- Time $t = \tau$ at which the transition occurs.
- τ depends on w.

Diverges at
$$w = w_{
m c}(\dot{\epsilon})$$
;

$$\bullet \ \tau \sim (w_{\rm c} - w)^{-1}$$

Transition time τ $\tau \sim \dot{\epsilon}^{-7/2} f((w_c - w)/\dot{\epsilon}^{3/2}),$ $f(x) \sim x^{-1}$ for $x \sim 1.$ $\chi_{\tau} \equiv \langle \tau^2 \rangle - \langle \tau \rangle^2$ $\chi_{\tau} \sim (w_c - w)^{-3}$ $\chi_{\tau} \sim \dot{\epsilon}^{-7} g((w_c - w)/\dot{\epsilon}^{3/2}),$ $g(x) \sim x^{-3}$ for $x \sim 1.$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへの

- Time $t = \tau$ at which the transition occurs.
- τ depends on w.

Diverges at
$$w = w_{\rm c}(\dot{\epsilon})$$
;

•
$$\tau \sim (w_{\rm c} - w)^{-1}$$

 \blacksquare Transition time τ

•
$$\tau \sim \dot{\epsilon}^{-7/2} f((w_c - w)/\dot{\epsilon}^{3/2}),$$

 $f(x) \sim x^{-1} \text{ for } x \sim 1.$

・ロト ・ 雪 ト ・ ヨ ト

э

$$\chi_{\tau} \equiv \langle \tau^2 \rangle - \langle \tau \rangle^2$$

$$\chi_{\tau} \sim (w_c - w)^{-3}$$

$$\chi_{\tau} \sim \dot{\epsilon}^{-7} g ((w_c - w)/\dot{\epsilon}^{3/2})$$

$$g(x) \sim x^{-3} \text{ for } x \sim 1.$$

- Time $t = \tau$ at which the transition occurs.
- τ depends on w.

Diverges at
$$w = w_{
m c}(\dot{\epsilon})$$
;

•
$$\tau \sim (w_{\rm c} - w)^{-1}$$

 \blacksquare Transition time τ

$$\tau \sim \dot{\epsilon}^{-7/2} f((w_{\rm c} - w)/\dot{\epsilon}^{3/2}),$$

$$f(x) \sim x^{-1} \text{ for } x \sim 1.$$

$$\chi_{\tau} \equiv \langle \tau^2 \rangle - \langle \tau \rangle^2$$

$$\chi_{\tau} \sim (w_{\rm c} - w)^{-3}$$

$$\chi_{\tau} \sim \dot{\epsilon}^{-7} g((w_{\rm c} - w)/\dot{\epsilon}^{3/2}),$$

$$g(x) \sim x^{-3} \text{ for } x \sim 1.$$

・ロト ・四ト ・ヨト ・ヨト

э

- Time *t* = *τ* at which the transition occurs.
- τ depends on w.

Diverges at
$$w = w_{
m c}(\dot{\epsilon})$$
;

•
$$\tau \sim (w_{\rm c} - w)^{-1}$$

 \blacksquare Transition time τ

$$\begin{aligned} \tau &\sim \dot{\epsilon}^{-7/2} f\big((w_{\rm c} - w)/\dot{\epsilon}^{3/2}\big), \\ f(x) &\sim x^{-1} \text{ for } x \sim 1. \end{aligned}$$
$$\begin{aligned} \chi_{\tau} &\equiv \langle \tau^2 \rangle - \langle \tau \rangle^2 \\ \chi_{\tau} &\sim (w_{\rm c} - w)^{-3} \\ \chi_{\tau} &\sim \dot{\epsilon}^{-7} g\big((w_{\rm c} - w)/\dot{\epsilon}^{3/2}\big), \\ g(x) &\sim x^{-3} \text{ for } x \sim 1. \end{aligned}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

- Estimating $w_{\rm c}$, using the relation $\tau \sim (w_{\rm c} w)^{-\alpha}$.
- Mass flux J/J_{max} , where $J_{\text{max}} \equiv Nc/L$.
 - fast jammed flow for w < w_c(ė).
 - slow unjammed flow for $w > w_{\rm c}(\dot{\epsilon}).$
 - jumps at $w = w_c$.
 - No such discontinuity has observed in previous studies (φ = 1 − w/2a)
- $w_{\rm c}$ linearly decreases as $\dot{\epsilon}$, $w_{\rm c} \simeq -3.75 \dot{\epsilon} + w_{\rm max}$.
 - **b**ut behavior for $\dot{\epsilon} \lesssim 1.0 \times 10^{-2}$ is not well understood

- Estimating $w_{\rm c}$, using the relation $\tau \sim (w_{\rm c} w)^{-\alpha}$.
- Mass flux J/J_{max} , where $J_{\text{max}} \equiv Nc/L$.
 - fast jammed flow for w < w_c(ė).
 - slow unjammed flow for $w > w_{\rm c}(\dot{\epsilon}).$
 - jumps at $w = w_c$.
 - No such discontinuity has observed in previous studies $(\phi = 1 - w/2a)$
- $w_{\rm c}$ linearly decreases as $\dot{\epsilon}$, $w_{\rm c} \simeq -3.75 \dot{\epsilon} + w_{\rm max}$.
 - but behavior for $\dot{\epsilon} \lesssim 1.0 \times 10^{-2}$ is not well understood

Shapiro et al., JFM 37, 799 (1969)

- Estimating $w_{\rm c}$, using the relation $\tau \sim (w_{\rm c} w)^{-\alpha}$.
- Mass flux J/J_{max} , where $J_{\text{max}} \equiv Nc/L$.
 - fast jammed flow for w < w_c(ċ).
 - Slow unjammed flow for $w > w_{\rm c}(\dot{\epsilon}).$
 - jumps at $w = w_c$.
 - No such discontinuity has observed in previous studies $(\phi = 1 w/2a)$
- $w_{\rm c}$ linearly decreases as $\dot{\epsilon}$, $w_{\rm c} \simeq -3.75 \dot{\epsilon} + w_{\rm max}$.
 - but behavior for $\dot{\epsilon} \lesssim 1.0 \times 10^{-2}$
 - is not well understood
 - ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Estimating $w_{\rm c}$, using the relation $\tau \sim (w_{\rm c} w)^{-\alpha}$.
- Mass flux J/J_{max} , where $J_{\text{max}} \equiv Nc/L$.
 - fast jammed flow for w < w_c(ė).
 - Slow unjammed flow for $w > w_{\rm c}(\dot{\epsilon})$.
 - jumps at $w = w_c$.
 - No such discontinuity has observed in previous studies (φ = 1 − w/2a)
- $w_{\rm c}$ linearly decreases as $\dot{\epsilon}$, $w_{\rm c} \simeq -3.75 \dot{\epsilon} + w_{\rm max}$.
 - but behavior for $\dot{\epsilon} \lesssim 1.0 \times 10^{-2}$ is not well understood

Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
000	00	○○○○●○	000	0000000	
Density of	dependence	e			

- \blacksquare Fixing $\dot{\epsilon}$ and changing $\bar{\rho}$
- Normalised flux J/J_{max} decreases as ρ.

• $w_{\rm c}(\dot{\epsilon})$ is almost constant for ρ .

• $\alpha \simeq 1 \ [\tau \sim (w_c - w)^{-\alpha}]$ for $0.15 \lesssim \rho \lesssim 0.60$.

• Changing density ρ affects only J/J_{max} .
Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
000	00	○○○○●○	000	0000000	
Density of	dependence	e			

- \blacksquare Fixing $\dot{\epsilon}$ and changing $\bar{\rho}$
- Normalised flux J/J_{max} decreases as ρ.
- $w_{\rm c}(\dot{\epsilon})$ is almost constant for ρ .
- $\alpha \simeq 1 \ [\tau \sim (w_c w)^{-\alpha}]$ for $0.15 \lesssim \rho \lesssim 0.60$.

• Changing density ρ affects only J/J_{max} .

- \blacksquare Fixing $\dot{\epsilon}$ and changing $\bar{\rho}$
- Normalised flux J/J_{max} decreases as ρ.

•
$$w_{\rm c}(\dot{\epsilon})$$
 is almost constant for ho .

•
$$\alpha \simeq 1 \ [\tau \sim (w_c - w)^{-\alpha}]$$

for $0.15 \lesssim \rho \lesssim 0.60$.

• Changing density ρ affects only J/J_{max} .

Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
000	00	○○○○○●	000	0000000	
Hysteresis					

• Initial condition: $J = J_{\text{max}}$.

Small w

- steady jammed flow
- Large w
 - Transition
 - from unsteady jammed flow

・ロト ・ 一下・ ・ モト ・ モト・

æ

- to steady unjammed flow
- Transition at $w = w_c' \neq w_c$.
 - First-order transition

Intdocution 000	Model (1) 00	Results (1)	Model (2) 000	Results (2) 0000000	Summary
Hysteresis	5				

• Initial condition: $J = J_{\text{max}}$.

Small w

steady jammed flow

Large w

Transition

from unsteady jammed flow

to steady unjammed flow

• Transition at $w = w_c' \neq w_c$.

First-order transition

Intdocution 000	Model (1) 00	Results (1)	Model (2) 000	Results (2) 0000000	Summary
Hysteresis	;				

Initial condition: $J = J_{\text{max}}$.

Small w

steady jammed flow

- Large w
 - Transition
 - from unsteady jammed flow

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

æ

■ to steady unjammed flow

Transition at $w = w_c' \neq w_c$.

First-order transition

Intdocution 000	Model (1) 00	Results (1)	Model (2) 000	Results (2) 0000000	Summary
Hysteresis	;				

Initial condition: $J = J_{\text{max}}$.

Small w

- steady jammed flow
- Large w
 - Transition
 - from unsteady jammed flow

- to steady unjammed flow
- Transition at $w = w_c' \neq w_c$.
 - First-order transition

diameter
$$d_i$$
, $0.8 \le d_i/d^* \le 1.0$

mass
$$m_i = m^* (d_i/d^*)^3$$

no gravity, no ambient fluid

$$\bullet \boldsymbol{f}_{ij} = (f_{ij}^{n} \boldsymbol{n}_{ij} + \boldsymbol{f}_{ij}^{t}) \Theta(\xi_{ij}) \Theta(f_{ij}^{n})$$

■ f_{ij}^{n} : Hertz force w/ damping term

$$f_{ij}^{\rm n} = \frac{2Y\sqrt{R_{ij}}}{3(1-\nu^2)} \left(\xi_{ij}^{3/2} - A\sqrt{\xi_{ij}}v_{ij}^{\rm n}\right)$$

$$oldsymbol{f}_{ij}^{ ext{t}} = egin{cases} ilde{oldsymbol{f}}_{ij}^{ ext{t}} & ext{if } \left| ilde{oldsymbol{f}}_{ij}^{ ext{t}}
ight| < \mu_{ ext{s}} f_{ij}^{ ext{t}} \ \mu_{ ext{k}} f_{ij}^{ ext{t}} oldsymbol{t}_{ij} & ext{otherwise} \end{cases}$$

Polydisperse granular particles

Polydisperse granular particles

- diameter d_i , $0.8 \le d_i/d^* \le 1.0$
- $\blacksquare \ {\rm mass} \ m_i = m^* (d_i/d^*)^3$
- no gravity, no ambient fluid

$$\boldsymbol{f}_{ij} = (f_{ij}^{n} \boldsymbol{n}_{ij} + \boldsymbol{f}_{ij}^{t}) \Theta(\xi_{ij}) \Theta(f_{ij}^{n})$$

• f_{ij}^{n} : Hertz force w/ damping term

$$f_{ij}^{n} = \frac{2Y\sqrt{R_{ij}}}{3(1-\nu^{2})} \left(\xi_{ij}^{3/2} - A\sqrt{\xi_{ij}}v_{ij}^{n}\right)$$

f_{ij}^{t}: tangential force

 $oldsymbol{f}_{ij}^{ ext{t}} = egin{cases} oldsymbol{ ilde{f}}_{ij}^{ ext{t}} & ext{if } ig|oldsymbol{ ilde{f}}_{ij}^{ ext{t}}ig| < \mu_{ ext{s}}f_{ij}^{ ext{n}}\ \mu_{ ext{k}}f_{ij}^{ ext{n}}oldsymbol{ ilde{t}}_{ij} & ext{otherwise} \end{cases}$

$$oldsymbol{ ilde{f}}_{ij}^{\mathrm{t}} = -k^{\mathrm{t}}oldsymbol{u}_{ij}^{\mathrm{t}} - \eta^{\mathrm{t}}oldsymbol{v}_{ij}^{\mathrm{t}}$$

 Linear spring and no tangential force in our previous model

Polydisperse granular particles

- diameter d_i , $0.8 \le d_i/d^* \le 1.0$
- mass $m_i = m^* (d_i/d^*)^3$
- no gravity, no ambient fluid

$$\boldsymbol{f}_{ij} = (f_{ij}^{n} \boldsymbol{n}_{ij} + \boldsymbol{f}_{ij}^{t}) \Theta(\xi_{ij}) \Theta(f_{ij}^{n})$$

• f_{ij}^{n} : Hertz force w/ damping term

$$f_{ij}^{n} = \frac{2Y\sqrt{R_{ij}}}{3(1-\nu^{2})} \left(\xi_{ij}^{3/2} - A\sqrt{\xi_{ij}}v_{ij}^{n}\right)$$

- $oldsymbol{f}_{ij}^{\mathrm{t}} = egin{cases} ilde{oldsymbol{f}}_{ij}^{\mathrm{t}} & ext{if } ig| ilde{oldsymbol{f}}_{ij}^{\mathrm{t}} ig| < \mu_{\mathrm{s}} f_{ij}^{\mathrm{n}} \ \mu_{\mathrm{s}} f_{ij}^{\mathrm{n}} oldsymbol{t}_{ij} & ext{otherwise} \end{cases}$
- $\tilde{f}_{ij}^{t} = -k^{t}u_{ij}^{t} \eta^{t}v_{ij}^{t}$ Linear spring and no tangential force in our previous model

Intdocution 000	Model (1) 00	Results (1) 000000	Model (2) ○●○	Results (2)	Summary
Peristalt	ic tube				

Monodisperse particles embedded in a tube's wall

- "Particle-Wall" interactions
 - $\bullet \boldsymbol{f}_{ij} = (f_{ij}^{n} \boldsymbol{n}_{ij} + \boldsymbol{f}_{ij}^{t}) \Theta(\xi_{ij}) \Theta(f_{ij}^{n})$
 - neglecting rotation

$$\bullet \ d_{\rm w} = d^*, \ m_{\rm w} = 0.1 m^*$$

"Wall-Wall" interactions

Linear spring force w/ natural length l

Peristaltic external force $f_i = (f_i^{\rm p} \cos \phi_i, f_i^{\rm p} \sin \phi_i, 0) + f_i^{\rm keep}$

$$f_i^{\rm p} = f^{\rm p} \sin(2\pi(z_i - ct)/\lambda)$$

Intdocution 000	Model (1) 00	Results (1) 000000	Model (2) ○●○	Results (2)	Summary
Peristalti	c tube				

Monodisperse particles embedded in a tube's wall
 "Particle-Wall" interactions

$$\bullet \boldsymbol{f}_{ij} = (f_{ij}^{n} \boldsymbol{n}_{ij} + \boldsymbol{f}_{ij}^{t}) \Theta(\xi_{ij}) \Theta(f_{ij}^{n})$$

neglecting rotation

•
$$d_{\rm w} = d^*$$
, $m_{\rm w} = 0.1m^*$

"Wall-Wall" interactions

Linear spring force w/ natural length l

Peristaltic external force $f_i = (f_i^{\rm p} \cos \phi_i, f_i^{\rm p} \sin \phi_i, 0) + f_i^{\rm keep}$

$$f_i^{\rm p} = f^{\rm p} \sin(2\pi(z_i - ct)/\lambda)$$

Intdocution 000	Model (1) 00	Results (1) 000000	Model (2) ○●○	Results (2)	Summary
Peristaltic	tube				

- Monodisperse particles embedded in a tube's wall
- "Particle-Wall" interactions

$$\boldsymbol{J}_{ij} = (f_{ij}^{n} \boldsymbol{n}_{ij} + \boldsymbol{f}_{ij}^{t}) \Theta(\xi_{ij}) \Theta(f_{ij}^{n})$$

neglecting rotation

•
$$d_{\rm w} = d^*$$
, $m_{\rm w} = 0.1m^*$

- "Wall-Wall" interactions
 - Linear spring force w/ natural length l
- Peristaltic external force $f_i = (f_i^{\rm p} \cos \phi_i, f_i^{\rm p} \sin \phi_i, 0) + f_i^{\rm keep}$

$$f_i^{\rm p} = f^{\rm p} \sin(2\pi (z_i - ct)/\lambda)$$

Intdocution 000	Model (1) 00	Results (1) 000000	Model (2) ○●○	Results (2)	Summary
Peristaltic	tube				

- Monodisperse particles embedded in a tube's wall
- "Particle-Wall" interactions

$$\boldsymbol{f}_{ij} = (f_{ij}^{n} \boldsymbol{n}_{ij} + \boldsymbol{f}_{ij}^{t}) \Theta(\xi_{ij}) \Theta(f_{ij}^{n})$$

neglecting rotation

•
$$d_{\mathrm{w}} = d^*$$
, $m_{\mathrm{w}} = 0.1m^*$

- "Wall-Wall" interactions
 - Linear spring force w/ natural length l
- Peristaltic external force $\boldsymbol{f}_i = (f_i^{\mathrm{p}} \cos \phi_i, f_i^{\mathrm{p}} \sin \phi_i, 0) + \boldsymbol{f}_i^{\mathrm{keep}}$

$$f_i^{\rm p} = f^{\rm p} \sin(2\pi (z_i - ct)/\lambda)$$

Intdocution 000	Model (1) 00	Results (1) 000000	Model (2) ○●○	Results (2)	Summary
Peristaltic	tube				

- Monodisperse particles embedded in a tube's wall
- "Particle-Wall" interactions

$$\boldsymbol{f}_{ij} = (f_{ij}^{n} \boldsymbol{n}_{ij} + \boldsymbol{f}_{ij}^{t}) \Theta(\xi_{ij}) \Theta(f_{ij}^{n})$$

neglecting rotation

•
$$d_{\mathrm{w}}=d^{*}$$
, $m_{\mathrm{w}}=0.1m^{*}$

- "Wall-Wall" interactions
 - Linear spring force w/ natural length l

Peristaltic external force $\boldsymbol{f}_i = (f_i^{\mathrm{p}} \cos \phi_i, f_i^{\mathrm{p}} \sin \phi_i, 0) + \boldsymbol{f}_i^{\mathrm{keep}}$

$$f_i^{\rm p} = f^{\rm p} \sin(2\pi (z_i - ct)/\lambda)$$

Intdocution 000	Model (1) 00	Results (1) 000000	Model (2) ○○●	Results (2)	Summary
Paramet	ers, etc.				

- $t^* \equiv \sqrt{m^*/Yd^*}$ • Parameters • $a = 3.5d^*, \lambda \simeq 20.0d^*$ • $A = 0.1t^*, \nu = 0.5, k^t = 1.0Yd^*, \eta^t = 0.1Yd^*t^*, \mu_s = 0.5, \mu_k = 0.4$ • Restitution coeff. $(d_i = d^*, m_i = m^*)$ $e \simeq 0.85$ for $v \simeq d^*/t^*$ • Müller and Pöschel, PRE (2011) • Control parameters
 - \blacksquare amplitude of peristaltic force $f^{\rm p}$

- \blacksquare peristaltic speed c
- \blacksquare number of particles N

Intdocution 000	Model (1) 00	Results (1) 000000	Model (2) ○○●	Results (2)	Summary
Paramet	ers, etc.				

- $t^* \equiv \sqrt{m^*/Yd^*}$ • Parameters • $a = 3.5d^*, \lambda \simeq 20.0d^*$ • $A = 0.1t^*, \nu = 0.5, k^t = 1.0Yd^*, \eta^t = 0.1Yd^*t^*, \mu_s = 0.5, \mu_k = 0.4$ • Restitution coeff. $(d_i = d^*, m_i = m^*)$ $e \simeq 0.85$ for $v \simeq d^*/t^*$ • Müller and Pöschel, PRE (2011) • Control parameters
 - \blacksquare amplitude of peristaltic force $f^{\rm p}$

- \blacksquare peristaltic speed c
- number of particles N

Intdocution 000	Model (1) 00	Results (1) 000000	Model (2) 000	Results (2)	Summary
Snapshot	S				

$$N/V_0 = 7.10 \times 10^{-1}/d^{*3}, c/\lambda = 4.01 \times 10^{-3}/t^*$$

 $f^{\rm p} = 0.005Yd^{*2}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Blue: \Leftarrow , Red: \Rightarrow

Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
000	00	000000	000	○●○○○○○	
Snapshot	S				

$$N/V_0 = 7.10 \times 10^{-1}/d^{*3}, c/\lambda = 4.01 \times 10^{-3}/t^*$$

 $f^{\rm p} = 0.004Y d^{*2}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Blue: \Leftarrow , Red: \Rightarrow

$$J/t^* = \sum_i v_{zi}/L, J^*/t^* = Nc/L$$

Transitions exist for certain f^p's

- from a jammed flow to a unjammed flow
 - because of stress-contrilled walls
- different transition which is found in the previous models

 \blacksquare J can be negative for small f^{p} 's

Time evolution of averaged flow rate

$$J/t^* = \sum_i v_{zi}/L, J^*/t^* = Nc/L$$

Transitions exist for certain f^p's

- from a jammed flow to a unjammed flow
 - because of stress-contrilled walls
- different transition which is found in the previous models

 \blacksquare J can be negative for small f^{p} 's

Intdocution 000	Model (1) oo	Results (1) 000000	Model (2) 000	Results (2)	Summary
Stationary	flow rate				

$$n\equiv Nd^{*3}/V_0$$
, $\dot{\epsilon}\equiv ct^*/\lambda$

Discontinuous transition for large c's

No transition? or continuous transition? for small c's

(日)、

э

• Negative J's for small f^{p} 's

Intdocution 000	Model (1) oo	Results (1) 000000	Model (2) 000	Results (2)	Summary
Stationary	flow rate				

$$n\equiv Nd^{*3}/V_{0}$$
, $\dot{\epsilon}\equiv ct^{*}/\lambda$

- Discontinuous transition for large c's
- No transition? or continuous transition? for small c's

(日)、

э

• Negative J's for small f^{p} 's

Intdocution 000	Model (1) oo	Results (1) 000000	Model (2) 000	Results (2)	Summary
Stationary	flow rate				

$$n\equiv Nd^{*3}/V_{0}$$
, $\dot{\epsilon}\equiv ct^{*}/\lambda$

- Discontinuous transition for large c's
- No transition? or continuous transition? for small c's

(日)、

• Negative J's for small f^{p} 's

$$n\equiv Nd^{*3}/V_0$$
, $\dot{\epsilon}\equiv ct^*/\lambda$

(日) (同) (日) (日)

э

No negative J's for smooth granular particles?because of friction?

Intdocution 000	Model (1) oo	Results (1) 000000	Model (2) 000	Results (2)	Summary

ロトメロトメヨトメヨト ヨーのへの

・ロト ・ 日 ・ ・ ヨ ・

Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
000	00	000000	000	0000000	
Summary					

Peristalsis transport of granular particles

- Frictionless case
 - Discontinuous transition between jammed flow and unjammed flow
 - Scaling relationships

N.Y. and H. Hayakawa, Phys. Rev. E 85, 031302 (2012).

- Frictional case
 - Discontinuous transition between jammed flow and "unjammed flow"
 - this unjammed flow is different from that in frictionless case

Back flow

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
000	00	000000	000	0000000	

・ロト・日本・日本・日本・日本・日本

Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
000	00	000000	000	0000000	
Negative	J				

$$N/V_0 = 7.10 \times 10^{-1}/d^{*3}, c/\lambda = 4.01 \times 10^{-3}/t^*$$

 $f^{\rm p} = 0.002Y d^{*2}$

rotation smooth

Blue: \Leftarrow , Red: \Rightarrow

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
000	00	000000	000	0000000	
Peristaltic	transport				

Progressive wave of area contraction/expansion.

- Biological systems
 - esophagus
 - small intensine
 - ureters
 - vasomotion (spontaneous oscillation) of small blood vessels
- Peristaltic Pump
 - blood, corrosive fluids, foods, ...
 - preventing the transported fluid from their mechanical parts.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
000	00	000000	000	0000000	
Peristaltio	c transpor	t			

- Progressive wave of area contraction/expansion.
- Biological systems
 - esophagus
 - small intensine
 - ureters
 - vasomotion (spontaneous oscillation) of small blood vessels
- Peristaltic Pump
 - blood, corrosive fluids, foods, ...
 - preventing the transported fluid from their mechanical parts.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
000	00	000000	000	0000000	
Peristalti	c transpor	t			

- Progressive wave of area contraction/expansion.
- Biological systems
 - esophagus
 - small intensine
 - ureters
 - vasomotion (spontaneous oscillation) of small blood vessels
- Peristaltic Pump
 - blood, corrosive fluids, foods, …
 - preventing the transported fluid from their mechanical parts.

Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
000	00	000000	000	0000000	
Peristaltic transport					

- Progressive wave of area contraction/expansion.
- Biological systems
 - esophagus
 - small intensine
 - ureters
 - vasomotion (spontaneous oscillation) of small blood vessels
- Peristaltic Pump
 - blood, corrosive fluids, foods, ...
 - preventing the transported fluid from their mechanical parts.

Zien and Ostrach, J. Biomech. 3, 63 (1970)

Shapiro et al., JFM 37, 799 (1969)

Newtonian fluids

- Stokes approximation
 - assuming some of parameters are zero or small.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

reflux, trapping.

Non-Newtonian fluids

- many studies,
 e.g., Maxwell fluids,
 third-order fluids,
 power-law fluids, ...
- Particles
 - one particle in fluids
 - dilute particles in fluids
| Intdocution
000 | Model (1)
00 | Results (1)
000000 | Model (2)
000 | Results (2) | Summary |
|--------------------|-----------------|-----------------------|------------------|-------------|---------|
| Previous | studies | | | | |

Newtonian fluids

- Stokes approximation
 - assuming some of parameters are zero or small.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- reflux, trapping.
- Non-Newtonian fluids
 - many studies,
 e.g., Maxwell fluids,
 third-order fluids,
- Particles
 - one particle in fluids
 - dilute particles in fluids

Shapiro et al., JFM 37, 799 (1969)

Intdocution 000	Model (1) 00	Results (1) 000000	Model (2) 000	Results (2)	Summary
Previous	studies				

Newtonian fluids

- Stokes approximation
 - assuming some of parameters are zero or small.
- reflux, trapping.
- Non-Newtonian fluids
 - many studies,
 - e.g., Maxwell fluids, third-order fluids,
 - power-law fluids, ...

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

- Particles
 - one particle in fluids
 - dilute particles in fluids

Shapiro et al., JFM 37, 799 (1969)

Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
000	00	000000	000	0000000	
Previous	studies				

Fauci, Computers Fluids 21, 583 (1992)

Jiménez-Lozano et al., PRE 79, 041901

- Newtonian fluids
 - Stokes approximation
 - assuming some of parameters are zero or small.

- reflux, trapping.
- Non-Newtonian fluids
 - many studies,
 e.g., Maxwell fluids,
 third-order fluids,
 power-law fluids, ...
- Particles
 - one particle in fluids
 - dilute particles in fluids

N. Y. and H. H., Phys. Rev. E 85, 031302 (2012).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Peristaltic transport of smooth dissipative particles
- Strain-controlled peristaltic motion
- Unjammed flow → Jammed flow

Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
000	00	000000	000	0000000	
Previous	results—f	low rate			

イロト イポト イヨト イヨト

э

- Large $w \Rightarrow$ steady slow unjammed flow
- Small $w \Rightarrow$ steady fast jammed flow
- Discontinuous transition at $w = w_c$.

Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
000	00	000000	000	0000000	
Objective	es				

Peristaltic transport of frictional granular particles

- More realistic systems
 - rough v.s. smooth
 - stress- v.s. strain-controlled

slow peristaltic speed

Polydisperse granular particles w/o gravity & fluid • diameter d_i , $0.8 \leq d_i/d^* \leq 1.0$ mass $m_i = m^* (d_i/d^*)^3$ $\bullet \boldsymbol{f}_{ij} = (f_{ij}^{n} \boldsymbol{n}_{ij} + \boldsymbol{f}_{ij}^{t}) \Theta(\xi_{ij}) \Theta(f_{ij}^{n})$ **n**_{ij} = $r_{ij}/|r_{ij}|, r_{ij} = r_i - r_j,$ • $\xi_{ii} = (d_i + d_i)/2 - |\mathbf{r}_{ii}|,$ Hertzian contact force w/ damping term $\bullet v_{ii}^{\mathrm{n}} = \boldsymbol{v}_{ii} \cdot \boldsymbol{n}_{ii}, \ \boldsymbol{v}_{ii} = \boldsymbol{v}_i - \boldsymbol{v}_i,$ $R_{ii} = d_i d_i / 2(d_i + d_i)$

Polydisperse granular particles w/o gravity & fluid
diameter d_i, 0.8 ≤ d_i/d* ≤ 1.0
mass m_i = m*(d_i/d*)³
f_{ij} = (fⁿ_{ij}n_{ij} + f^t_{ij})Θ(ξ_{ij})Θ(fⁿ_{ij})
n_{ij} = r_{ij}/|r_{ij}|, r_{ij} = r_i - r_j,
ξ_{ij} = (d_i + d_j)/2 - |r_{ij}|,
Hertzian contact force w/ damping term $fⁿ_{ij} = \frac{2Y\sqrt{R_{ij}}}{2(1-u^2)}(\xi^{3/2}_{ij} - A\sqrt{\xi_{ij}}v^n_{ij})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

 Polydisperse granular particles w/o gravity & fluid diameter d_i , $0.8 < d_i/d^* < 1.0$ **mass** $m_i = m^* (d_i/d^*)^3$ • $\boldsymbol{f}_{ij} = (f_{ij}^{n} \boldsymbol{n}_{ij} + \boldsymbol{f}_{ij}^{t}) \Theta(\xi_{ij}) \Theta(f_{ij}^{n})$ **n**_{ii} = $r_{ii}/|r_{ii}|, r_{ii} = r_i - r_i,$ • $\xi_{ii} = (d_i + d_i)/2 - |\mathbf{r}_{ii}|,$ Hertzian contact force w/ damping term $f_{ij}^{n} = \frac{2Y\sqrt{R_{ij}}}{3(1-\nu^{2})} \left(\xi_{ij}^{3/2} - A\sqrt{\xi_{ij}}v_{ij}^{n}\right)$ $\bullet v_{ij}^{n} = \boldsymbol{v}_{ij} \cdot \boldsymbol{n}_{ij}, \, \boldsymbol{v}_{ij} = \boldsymbol{v}_{i} - \boldsymbol{v}_{j},$ $\blacksquare R_{ii} = d_i d_i / 2(d_i + d_i)$

 $\bullet \boldsymbol{f}_{ij} = (f_{ij}^{n} \boldsymbol{n}_{ij} + \boldsymbol{f}_{ij}^{t}) \Theta(\xi_{ij}) \Theta(f_{ij}^{n})$ Cundall-Strack $oldsymbol{f}_{ij}^{\mathrm{t}} = egin{cases} ilde{oldsymbol{f}}_{ij}^{\mathrm{t}} & ext{if } ig| ilde{oldsymbol{f}}_{ij}^{\mathrm{t}} ig| < \mu_{\mathrm{s}} f_{ij}^{\mathrm{n}} \ \mu_{\mathrm{k}} f_{ij}^{\mathrm{n}} oldsymbol{t}_{ij} & ext{otherwise} \end{cases}$ $\bullet \quad \tilde{\boldsymbol{f}}_{ij}^{\mathrm{t}} = -k^{\mathrm{t}}\boldsymbol{u}_{ij}^{\mathrm{t}} - \eta^{\mathrm{t}}\boldsymbol{v}_{ij}^{\mathrm{t}}$ $\mathbf{i} \dot{\boldsymbol{u}}_{ij}^{\mathrm{t}} = \boldsymbol{v}_{ij}^{\mathrm{t}} - [(\boldsymbol{u}_{ij}^{\mathrm{t}} \cdot \boldsymbol{v}_{ij})/|\boldsymbol{r}_{ij}|]\boldsymbol{n}_{ij}$ • $\boldsymbol{v}_{ij}^{\mathrm{t}} = (\boldsymbol{v}_{ij} - v_{ij}^{\mathrm{n}} \boldsymbol{n}_{ij}) + \frac{d_i - \xi_{ij}}{2} \boldsymbol{n}_{ij} \times \boldsymbol{\omega}_i$ $-rac{d_j-\xi_{ij}}{2}oldsymbol{n}_{ji} imesoldsymbol{\omega}_j$ $oldsymbol{t}_{ij}= ilde{oldsymbol{f}}_{ij}^{ extsf{t}}/| ilde{oldsymbol{f}}_{i,i}^{ extsf{t}}|$

 Solving eqs. of motion by Two-step Adams–Bashforth method

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- $\bullet \boldsymbol{f}_{ij} = (f_{ij}^{n} \boldsymbol{n}_{ij} + \boldsymbol{f}_{ij}^{t}) \Theta(\xi_{ij}) \Theta(f_{ij}^{n})$ Cundall-Strack $oldsymbol{f}_{ij}^{\mathrm{t}} = egin{cases} oldsymbol{ ilde{f}}_{ij}^{\mathrm{t}} & ext{if } ig| oldsymbol{ ilde{f}}_{ij}^{\mathrm{t}} ig| < \mu_{\mathrm{s}} f_{ij}^{\mathrm{n}} \ \mu_{\mathrm{k}} f_{ij}^{\mathrm{n}} oldsymbol{t}_{ij} & ext{otherwise} \end{cases}$ $\bullet \quad \tilde{\boldsymbol{f}}_{ij}^{\mathrm{t}} = -k^{\mathrm{t}}\boldsymbol{u}_{ij}^{\mathrm{t}} - \eta^{\mathrm{t}}\boldsymbol{v}_{ij}^{\mathrm{t}}$ • $\dot{\bm{u}}_{ij}^{ ext{t}} = \bm{v}_{ij}^{ ext{t}} - [(\bm{u}_{ij}^{ ext{t}} \cdot \bm{v}_{ij})/|\bm{r}_{ij}|]\bm{n}_{ij}$ • $\boldsymbol{v}_{ij}^{\mathrm{t}} = (\boldsymbol{v}_{ij} - v_{ij}^{\mathrm{n}} \boldsymbol{n}_{ij}) + \frac{d_i - \xi_{ij}}{2} \boldsymbol{n}_{ij} \times \boldsymbol{\omega}_i$ $-rac{d_j-\xi_{ij}}{2}oldsymbol{n}_{ji} imesoldsymbol{\omega}_j$ $oldsymbol{t}_{ij}= ilde{oldsymbol{f}}_{ij}^{ extsf{t}}/| ilde{oldsymbol{f}}_{ij}^{ extsf{t}}|$
- Solving eqs. of motion by Two-step Adams–Bashforth method

Monodisperse particles embedded in a tube's wall

"Particle-Wall"

■ Hertzian force w/ damping term $f_{ij} = (f_{ij}^n n_{ij} + f_{ij}^t) \Theta(\xi_{ij}) \Theta(f_{ij}^n)$ ■ no rotation

 \blacksquare diameter of "wall" particle $d_{\rm w}/d^*=1.0$

 \blacksquare mass of "wall" particle $m_{
m w}/m^*=0.1$

"Wall-Wall"

Linear spring force w/ natural length l $f_{ij} = -k(|\boldsymbol{r}_{ij}| - l)\boldsymbol{n}_{ij}$

Peristaltic external force $f_i = (f_i^{p} \cos \phi_i, f_i^{p} \sin \phi_i, 0) + f_i^{keep}$ $f_i^{p} = f^{p} \sin \left(\frac{2\pi}{\lambda}(z_i - ct)\right)$

Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
000	00	000000	000	0000000	
Peristaltic tube					

- Monodisperse particles embedded in a tube's wall
- "Particle-Wall"
 - Hertzian force w/ damping term $\boldsymbol{f}_{ij} = (f_{ij}^{\mathrm{n}} \boldsymbol{n}_{ij} + \boldsymbol{f}_{ij}^{\mathrm{t}}) \Theta(\xi_{ij}) \Theta(f_{ij}^{\mathrm{n}})$ ■ no rotation

diameter of "wall" particle d_w/d* = 1.0
 mass of "wall" particle m_w/m* = 0.1

"Wall-Wall"

• Linear spring force w/ natural length l $f_{ij} = -k(|r_{ij}| - l)n_{ij}$

Peristaltic external force $f_i = (f_i^{p} \cos \phi_i, f_i^{p} \sin \phi_i, 0) + f_i^{keep}$ $f_i^{p} = f^{p} \sin \left(\frac{2\pi}{\lambda}(z_i - ct)\right)$

Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
000	00	000000	000	0000000	
Peristaltic tube					

- Monodisperse particles embedded in a tube's wall
- "Particle-Wall"
 - Hertzian force w/ damping term $\boldsymbol{f}_{ij} = (f_{ij}^{\mathrm{n}} \boldsymbol{n}_{ij} + \boldsymbol{f}_{ij}^{\mathrm{t}}) \Theta(\xi_{ij}) \Theta(f_{ij}^{\mathrm{n}})$ ■ no rotation
 - \blacksquare diameter of "wall" particle $d_{\rm w}/d^*=1.0$
 - \blacksquare mass of "wall" particle $m_{\rm w}/m^*=0.1$
- "Wall-Wall"
 - Linear spring force w/ natural length l $\boldsymbol{f}_{ij} = -k(|\boldsymbol{r}_{ij}|-l)\boldsymbol{n}_{ij}$

Peristaltic external force $f_i = (f_i^{p} \cos \phi_i, f_i^{p} \sin \phi_i, 0) + f_i^{keep}$ $f_i^{p} = f^{p} \sin \left(\frac{2\pi}{\lambda}(z_i - ct)\right)$

Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
000	00	000000	000	0000000	
Peristaltic tube					

- Monodisperse particles embedded in a tube's wall
- "Particle-Wall"
 - Hertzian force w/ damping term $\boldsymbol{f}_{ij} = (f_{ij}^{\mathrm{n}} \boldsymbol{n}_{ij} + \boldsymbol{f}_{ij}^{\mathrm{t}}) \Theta(\xi_{ij}) \Theta(f_{ij}^{\mathrm{n}})$ ■ no rotation
 - \blacksquare diameter of "wall" particle $d_{\rm w}/d^*=1.0$
 - \blacksquare mass of "wall" particle $m_{\rm w}/m^*=0.1$
- "Wall-Wall"
 - Linear spring force w/ natural length l $\pmb{f}_{ij} = -k(|\pmb{r}_{ij}|-l)\pmb{n}_{ij}$

Peristaltic external force $f_{i} = (f_{i}^{p} \cos \phi_{i}, f_{i}^{p} \sin \phi_{i}, 0) + f_{i}^{keep}$ $f_{i}^{p} = f^{p} \sin \left(\frac{2\pi}{\lambda}(z_{i} - ct)\right)$

Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
000	00	000000	000	0000000	
Paramete	ers, etc.				

- Scaled by
 - largest mass m^{*},
 - largest diameter d^{*},

$$\checkmark \sqrt{m^*/Yd^*}$$

- Parameters
 - a = 3.5, $\lambda \simeq 20.0$
 - $A = 0.1, \nu = 0.5, k^{t} = 1.0, \eta^{t} = .1, \mu_{s} = 0.5, \mu_{k} = 0.4$
- Control parameters
 - \blacksquare amplitude of peristaltic force f^{p}
 - strain rate $\dot{\epsilon} \equiv c/\lambda$
 - initial number density $n \equiv N/\pi a^2 L$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Intdocution	Model (1)	Results (1)	Model (2)	Results (2)	Summary
000	00	000000	000	0000000	
Paramete	ers, etc.				

- Scaled by
 - largest mass m^{*},
 - largest diameter d^{*},

$$\sqrt{m^*/Yd^*}$$

- Parameters
 - a = 3.5, $\lambda \simeq 20.0$
 - $A = 0.1, \nu = 0.5, k^{t} = 1.0, \eta^{t} = .1,$
 - $\mu_{\rm s} = 0.5$, $\mu_{\rm k} = 0.4$
- Control parameters
 - \blacksquare amplitude of peristaltic force $f^{\rm p}$
 - strain rate $\dot{\epsilon} \equiv c/\lambda$
 - initial number density $n\equiv N/\pi a^2 L$