K⁻pp search experiment in the d(p⁺,K⁺) reaction at J-PARC

Hiroyuki Ekawa Dept. of Phys., Kyoto Univ.

for the J-PARC E27 collaboration

YITP workshop on Hadron in Nucleus 1st Nov. 2013

Contents

- 1. Introduction
- 2. E27 Experiment
- 3. Data analysis
 - inclusive analysis
 - coincidence analysis
- 4. Summary

K⁻pp bound state

- The attractive interaction between KN(I = 0) is expected to form nuclear K bound system.
- K^- pp is the simplest nuclear \overline{K} bound state.
- Theoretical prediction of B.E. and Γ depends on the KN interaction models and the calculation method .

	Theoretical prediction	B.E(MeV)	Г(MeV)
PRC76, 045201 (2002)	T. Yamazaki and Y. Akaishi	48	61
arXiv:0512037v2[nucl-th]	A. N. Ivanov, P. Kienle, J. Marton, E. Widman	118	58
PRC76, 044004 (2007)	N. V. Shevchenko, A. Gal, J. Mares, J. Revai	50 70	~100
PRC76, 035203 (2007)	Y. Ikeda and T. Sato	60 95	45 80
NPA804, 197 (2008)	A. Dote, T. Hyodo, W. Weise	20 ±3	40 70
PRC80, 045207 (2009)	S. Wycech and A. M. Green	56.5 78	39 60
Nucl.Phys. A914 (2013)	M. Bayar and E. Oset	15 30	75 80

KN (I = 0)

р

K-

Previous experiments

	FINUDA	DISTO	
Reaction	Stopped K ⁻ absorption on ^{6,7} Li + ¹² C	p + p @ Tp=2.85GeV	
Method	Invariant mass of back to back Ap pairs	p+p→X+K ⁺ (missing mass) X→Λ+p (invariant mass)	
B.E	115 ⁺⁶ ₋₅ (stat) ⁺³ ₋₄ (syst) MeV	105 ± 5 MeV	
Width	67 ⁺¹⁴ ₋₁₁ (stat) ⁺² ₋₃ (syst) MeV	118 ± 8 MeV	

E27 experiment

$d(\pi^+, K^+)$ inclusive spectrum (simulation)

K⁻pp signal is hidden by other processes.

Exclusive measurement

We can suppress quasi-free B.G. by requiring 2 high momentum protons.

We performed data taking in June 2012.

d(π^+, K^+) @1.7 GeV/c : 7.6 days, $3.3 \times 10^{11} \pi$ p(π^+, K^+) @1.7 GeV/c : 0.6 days, 7.6 $\times 10^9 \pi$ calibration : 2 days 3M π^+ /spill (6s cycle)

Performance of spectrometer

 $p(\pi^+, K^+)\Sigma$ @1.58 GeV/c (calibration run)

Missing mass resolution

- 2.41 MeV (FWHM)

Mass

- 1188.98 ± 0.03 MeV (PDG : 1189.37 MeV)

cross section is consistent with old data (D.J.Candlin et al.)

p(π⁺,K⁺) @1.7 GeV/c

d(π⁺,K⁺) @1.7 GeV/c

Main components

- A production
- Σ production
- Y* : Σ (1385), Λ (1405)
 production

Overall shape is consistent with simulation.

ΣN-ΛN Cusp

excess is observed at 2.13 GeV

Peak shift Y* mass shift lower 2.5 ~ 30 MeV

Differential cross section d(π⁺,K⁺) @1.7 GeV/c

 $d\sigma^{2}/d\Omega$ /dM $_{2^{\circ}-16^{\circ}(Lab)}$

quasi-free Y* region

comparison between data and simulation

The discrepancy can not be interpreted by quasi-free processes .

d(γ,K⁺π⁻)Y* @1.5-2.4 GeV

• Spring-8 LEPS

Peak shift is not observed for Σ (1385).

1 proton tagging

16

Proton distribution is different between quasi-free process and K⁻pp non mesonic decay.

⇒ 1 proton tagging method will work well !!

Performance of range counter

i : stop layer

Coincidence study

We studied coincidence data by using RC cut.

 \overline{p} cut : π or slow p p cut : proton (p > 280 MeV/c)

1 pion coincidence

1 pion tagging spectrum

 R_{π} = (Pion coincidence spectrum) / (Inclusive spectrum) R_{π} ∝ (π emission BR) x (π detection efficiency)

QFA and QFZ emit 1 pion QFY* and π YN emit 2 pions

 R_{π} reflects π emission probability, therefore the ratio in QFY* + π YN region is higher than those in the other regions.

 R_{π} is almost constant at each region.

1 proton tagging spectrum

 ΣN - ΛN Cusp is clearly seen.

K⁻pp-like bump structure is observed.

We should take account of the tagging efficiency of RC carefully.

Analysis is on going.

2 proton tagging spectrum

2 proton tagging rate is very low.

An excess seems to exist at ~2.26 GeV, but the number of events is small.

Summary

- We performed p(π⁺,K⁺)X and d(π⁺,K⁺)X measurement by using 1.7 GeV/c π⁺ beam in June 2012.
- **Σ**N-ΛN cusp structure and peak shift of Y* are observed in $d(\pi^+, K^+)$ inclusive spectrum.
- K⁻pp-like bump structure is observed in 1 proton tagging spectrum.
- 2 proton tagging event is too low, therefore further combined analysis is necessary.

"Study of kaonic nuclei by the d(pi+, K+) reaction at J-PARC." Yudai Ichikawa @ HADRON 2013