In-medium \overline{K} & η mesons Mesic Nuclei, JU Krakow, Sept. 2013 Hadrons in Nuclei, YITP Kyoto, Oct. 2013

Avraham Gal

Racah Institute of Physics, Hebrew University, Jerusalem

- $\bar{K}N \pi Y$ chiral dynamics and its consequences
- \overline{K} nuclear few-body systems
- *K*-nucleus potentials from *K*⁻ atoms
 A.Gal in HYP2012 Proc., NPA 914 (2013) 270
- Quest for η nuclear quasibound states E.Friedman, A.Gal, J.Mareš, PLB 725 (2013) 334

$\bar{K}N - \pi Y$ Chiral Dynamics

 K^-p scattering amplitude from NLO chiral SU(3) dynamics

Y. Ikeda, T. Hyodo, W. Weise (IHW), PLB **706** (2011) 63; NPA **881** (2012) 98 Strong subthreshold K^-p attraction; $\Lambda(1405)$ physics Consequences for kaonic atoms and K^- nuclear quasibound states K^- absorption might be governed by out-of-model $K^-NN \to YN$

Two NLO chiral-model fits by Guo-Oller, PRC 87 (2013) 035202

- Fit I: one value of meson weak-decay constant $f = 125.7 \pm 1.1$ MeV.
- Fit II: separate fixed values for f_{π} , f_{K} , f_{η} . Fit II will create problems when confronted with kaonic-atom data.

 $K^-p \to \pi^{\pm}\Sigma^{\mp}$ reaction data fitted by LEC of NLO scheme for $\bar{K}N - \pi Y$ coupled channels $(Y = \Lambda, \Sigma)$ Y. Ikeda, T. Hyodo, W. Weise, NPA 881 (2012) 98

Large difference in cross sections \Rightarrow Strong isospin dependence

T. Hyodo, W. Weise, PRC 77 (2008) 035204 I = 0 coupled-channel amplitudes

Location of 'resonances': $\bar{K}N \approx 1420 \text{ MeV}, \pi\Sigma \approx 1405 \text{ MeV}$ Are there two distinct ' $\Lambda(1405)$ ' resonances?

\overline{K} nuclear few-body systems

Energy dependence in \overline{K} nuclear few-body systems

• $\Lambda(1405)$ induces strong energy dependence of the scattering amplitudes $f_{\bar{K}N}(\sqrt{s})$ and the underlying effective single-channel input potentials $v_{\bar{K}N}(\sqrt{s})$.

•
$$s = (\sqrt{s_{\text{th}}} - B_K - B_N)^2 - (\vec{p}_K + \vec{p}_N)^2 \le s_{\text{th}}$$

- Expanding nonrelativistically near $\sqrt{s_{\text{th}}} \equiv m_K + m_N$: $\delta\sqrt{s} = -\frac{B}{A} - \frac{A-1}{A}B_K - \xi_N \frac{A-1}{A} \langle T_{N:N} \rangle - \xi_K \left(\frac{A-1}{A}\right)^2 \langle T_K \rangle,$ $\delta\sqrt{s} \equiv \sqrt{s} - \sqrt{s_{\text{th}}}, \ B_K = -E_K, \ \xi_{N(K)} \equiv \frac{m_{N(K)}}{(m_N + m_K)}.$
- Self-consistency: output \sqrt{s} from solving the Schroedinger equation identical with input \sqrt{s} .

3– & 4–body B & Γ calculated self-consistently

N. Barnea, A. Gal, E.Z. Liverts, PLB **712** (2012)

- Variational calculation in hyperspherical basis controlled by K_{max}
- $\bar{K}N$ energy dependence [Hyodo–Weise, PRC 77 (2008) 035204] restrains $B \& \Gamma$ by treating $\delta \sqrt{s_{\bar{K}N}}$ self-consistently
- B(4-body) small w.r.t. non-chiral estimates of over 100 MeV

- $\bar{K}NN$: is there an excited I = 1/2 quasibound state $(\bar{K}d, \text{ dominantly } I_{NN} = 0)$ on top of " K^-pp " g.s. ?
- Bayar & Oset [NPA 881 (2012) 127]: YES, bound by about 9 MeV, from a peak in $|T_{\bar{K}NN}|^2$ calculated in a fixed-scatterer approximation to Faddeev equations.
- Shevchenko [NPA 890-1 (2012) 50]: UNLIKELY, judging from the K⁻d scattering length and effective range deduced from a K̄NN Faddeev calculation.
- Barnea, Gal & Liverts do not find such a bound state below the $\Lambda^* N$ threshold at B = 11.4 MeV.

K pp calculated binding energies & widths (in MeV)											
	chiral,	energy de	pendent	non-chiral, static calculations							
	var. [1]	var. [2]	Fad. [3]	var. [4]	Fad. [5]	Fad. [6]	var. [7]				
В	16	17-23	9-16	48	50-70	60-95	40-80				
Γ	41	40-70	34-46	61	90-110	45-80	40-85				

TZ-

- 1. N. Barnea, A. Gal, E.Z. Liverts, PLB **712** (2012)
- 2. A. Doté, T. Hyodo, W. Weise, NPA 804 (2008) 197, PRC 79 (2009) 014003
- 3. Y. Ikeda, H. Kamano, T. Sato, PTP **124** (2010) 533
- 4. T. Yamazaki, Y. Akaishi, PLB **535** (2002) 70
- 5. N.V. Shevchenko, A. Gal, J. Mareš, PRL **98** (2007) 082301
- 6. Y. Ikeda, T. Sato, PRC 76 (2007) 035203, PRC 79 (2009) 035201
- 7. S. Wycech, A.M. Green, PRC 79 (2009) 014001 (including p waves)

Robust binding & large widths; chiral models give weak binding

Yamazaki et al. PRL 104 (2010) 132502, DISTO data reanalysis at 2.85 GeV Broad K^-pp structure in $pp \rightarrow \Lambda pK^+$ at $\pi N\Sigma$ threshold Forthcoming experiments: $pp \rightarrow (K^-pp) + K^+$ at GSI $K^{-3}\text{He} \rightarrow (K^-pp) + n$ (E15) & $\pi^+d \rightarrow (K^-pp) + K^+$ (E27) at J-PARC

RMF quasibound spectra calculated self-consistently (NLO30 + SE')

- NLO30 is a chirally motivated coupled channel separable model with in-medium versions [A. Cieplý, J. Smejkal, NPA 881 (2012) 115]
- Γ_K due only to $K^-N \to \pi Y$ (no $K^-NN \to YN$) decay modes
- Self consistency: deep K^- levels are narrower than shallow ones

What do K^- atoms tell us?

 K_{atom}^- widths across the periodic table in model F (deep pot.) Lowest χ^2 phenom. model, $\chi^2 = 84$ per 65 data points, J. Mareš, E. Friedman, A. Gal, NPA 770 (2006) 84.

Left: K^- -Ni 4f atomic wavefunction overlap with nuclear density for deep potential, revealing a nuclear $\ell = 3$ quasibound state. Right: FINUDA $1s_{\Lambda}$ formation rates in K^-_{stop} capture in nuclei [Cieplý-Friedman-Gal-Krejčiřík, PLB 698 (2011) 226]. Deep K^- nuclear potential is favored.

Self-consistency requirement imposed in recent K^- atom calculations [Cieplý-Friedman-Gal-Gazda-Mareš, PLB 702 (2011) 402]:

$$\sqrt{s_{K-N}} \to E_{\rm th} - B_N - B_K - \xi_N \frac{p_N^2}{2m_N} - \xi_K \frac{p_K^2}{2m_K}$$

$$\frac{p_K^2}{2m_K} \sim -V_{K^-} \approx 100 \text{ MeV}$$

 K^- is not at rest!

Friedman-Gal, NPA 899 (2013) 60 K^-N subthreshold energy vsnuclear density in K^- atoms. A dominant in-medium effect

Left: IHW free-space input f_{K^-N} Right: atomic-fit output \mathcal{F}_{tot}^{eff}

- Subthreshold energy shift is applied self consistently to in-medium 1N amplitude plus (2+...)N phenomenological amplitude.
- Multiple-scattering inclusion of in-medium correlations.
- K^{-} -atom best-fit: $\chi^2/N_{data} = 118/65$ [Friedman-Gal, NPA 899 (2013) 60].

Kaonic-atom best-fit V_{K^-} for Ni & its non-additive breakdown into in-medium 1N and phenomenological m(any)N contributions.

NLO30: A. Cieply, J. Smejkal, NPA 881 (2012) 115 (in-medium). IHW: Y. Ikeda, T. Hyodo, W. Weise, NPA 881 (2012) 98. Figures taken from Friedman-Gal, NPA 899 (2013) 60.

 K^- nuclear 1N (left) and 2N (right) absorptive potentials, both calculated in a chiral unitary approach [PRC 86 (2012) 065205] by Sekihara, Yamagata-Sekihara, Jido, Kanada-En'yo. Note: empirical 25% 2N:1N BR is reached at too high density. η nuclear quasibound states

 $f_{\eta N}(\sqrt{s})$ from K-matrix & $N^*(1535)$ chiral models

$a_{\eta N}$ model dependence										
$a(\mathrm{fm})$	M1	M2	GW	GR	CS					
Re	0.22	0.38	0.96	0.26	0.67					
Im	0.24	0.20	0.26	0.24	0.20					
Mai et al. PRD 86 (2012) 094033										
Green-Wycech PRC 71 (2005) 014001										
Garcia-Recio et al. PLB 550 (2002) 47										
Cieply-Smejkal arXiv:1308.4300, NPA										

- Re a varies between 0.2 to 1.0 fm; Im a stable 0.2–0.3 fm.
- M1, M2, GW free-space models; GR, CS in-medium.
- In-medium: energy dependence, Pauli blocking, self-energies.

In-medium ηN amplitudes Friedman-Gal-Mareš, PLB 725 (2013) 334 Cieplý-Friedman-Gal-Mareš, in preparation

• KG equation and self-energies:

$$\begin{bmatrix} \nabla^2 + \tilde{\omega}_{\eta}^2 - m_{\eta}^2 - \Pi_{\eta}(\omega_{\eta}, \rho) \end{bmatrix} \psi = 0$$

$$\tilde{\omega}_{\eta} = \omega_{\eta} - i\Gamma_{\eta}/2, \quad \omega_{\eta} = m_{\eta} - B_{\eta}$$

$$\Pi_{\eta}(\omega_{\eta}, \rho) \equiv 2\omega_{\eta}V_{\eta} = -4\pi \frac{\sqrt{s}}{m_{N}}f_{\eta N}(\sqrt{s}, \rho)\rho$$

- Pauli blocking (Waas-Rho-Weise NPA 617 (1997) 449): $f_{\eta N}^{\text{WRW}}(\sqrt{s},\rho) = \frac{f_{\eta N}(\sqrt{s})}{1+\xi(\rho)(\sqrt{s}/m_N)f_{\eta N}(\sqrt{s})\rho}, \quad \xi(\rho) = \frac{9\pi}{4p_F^2}$
- $N^*(1535) \Rightarrow$ energy dependent $f_{\eta N}(\sqrt{s})$. In medium \Rightarrow go subthreshold: $\delta\sqrt{s} = \sqrt{s} - \sqrt{s_{\text{th}}}$ $\delta\sqrt{s} \approx -B_N \frac{\rho}{\bar{\rho}} - \xi_N B_\eta \frac{\rho}{\rho_0} - \xi_N T_N (\frac{\rho}{\rho_0})^{2/3} + \xi_\eta \text{Re } V_\eta(\sqrt{s}, \rho)$ Self-consistency relationship between $\delta\sqrt{s}$ & ρ

Self-consistency relationship

 $\delta\sqrt{s}$ vs. ρ for $1s_{\eta}$ bound state in Ca using in-medium $f_{\eta N}$

- 40–60 MeV subthreshold energy shifts at nuclear matter density ρ_0 , larger than shifting down by B_{η} (GR) or by 30 MeV (Haider-Liu)
- Larger Re $a_{\eta N} \Rightarrow \text{larger } \delta \sqrt{s} = E E_{\text{th}}$

Model dependence I

Binding energy and width of $1s_{\eta}$ bound states across the periodic table using WRW Pauli-blocked $f_{\eta N}$

- Larger Re $a_{\eta N} \Rightarrow$ larger B_{η}
- Widths are unrelated to Im $a_{\eta N}$

Model dependence II

Sensitivity of calculated $B_{1s_{\eta}}$ and $\Gamma_{1s_{\eta}}$ to version of self-consistency

- $\delta\sqrt{s}$ recipe reduces both $B_{1s_{\eta}}$ and $\Gamma_{1s_{\eta}}$ w.r.t. $-B_{1s_{\eta}}$ recipe
- GR's widths are too large to resolve η bound states Why $\Gamma_{\eta}(\text{GR}) \gg \Gamma_{\eta}(\text{CS})$ for similar Im $a_{\eta N}$?

Energy dependence of free-space & in-medium amplitudes

- Subthreshold Re $f_{\eta N}$ similar in both in-medium models in spite of large free-space difference at threshold
- Subthreshold Im $f_{\eta N}$ differ widely, which explains the huge difference between $\Gamma_{\eta}(GR)$ and $\Gamma_{\eta}(CS)$

Model predictions for small widths

• more theoretical work is needed to figure out what makes subthreshold values of Im $f_{\eta N}$ sufficiently small to generate small widths.

Summary

- Large widths, $\Gamma_{\overline{K}} > 50$ MeV, expected for single- \overline{K} quasibound nuclear states. Focus on light systems. Searches for K^-pp are underway in GSI and J-PARC.
- Major issues: (i) how deep is \overline{K} nuclear spectrum? (ii) how big is $\Gamma(\overline{K}NN \to YN)$ w.r.t. $\Gamma(\overline{K}N \to \pi Y)$?
- Subthreshold behavior of f_{ηN} is crucial in studies of η-nuclear bound states to decide whether (i) such states exist, (ii) can they be resolved (widths?), and (iii) which nuclear targets and reactions to try?
- Thanks to my collaborators N. Barnea, A. Cieplý, E. Friedman, D. Gazda, J. Mareš