Partial Restoration of Chiral Symmetry and In-medium Pion Properties

<u>Soichiro Goda</u> (Kyoto Univ.) Daisuke Jido (Tokyo Metropolitan Univ.)

Hadrons in Nuclei

Table of Contents

- Introduction
 - Chiral symmetry breaking
 - Partial Restoration of Chiral Sym.
- Approach
 - In-medium chiral perturbation theory
- Analyses and Results
 - In-medium pion decay constant pion mass pi0 decay

Summary

Introduction

Chiral Symmetry Breaking

Chiral SSB characterizes Low energy QCD vacuum.

- Breaking pattern: $SU(2)_L \otimes SU(2)_R \rightarrow SU(2)_V$
- Nambu-Goldstone bosons: *pions*
- Chiral condensate: $\langle \bar{q}q \rangle$ Characteristic scale of Hadrons

Mass generation mechanism?

How do we confirm the mechanism phenomenologically?

One of the proofs is to examine partial restoration of chiral sym.

Partial restoration of chiral sym.

Partial restoration = Reduction of $|\langle \bar{q}q \rangle|$ in medium

We focus on nuclear medium with finite density and 0 temperature.

$$\frac{\langle \bar{u}u + \bar{d}d \rangle^*}{\langle \bar{u}u + \bar{d}d \rangle_0} = \left(1 - \frac{\rho}{m_\pi^2 f_\pi^2} \sigma_{\pi N}\right) + o(\rho) \quad \Longrightarrow \quad \begin{array}{l} \text{In-medium hadron} \\ \text{properties' change} \end{array}$$

 $\sigma_{\pi N} = m_q \langle N | \bar{u}u + \bar{d}d | N \rangle$ πN sigma term : πN scattering amplitude in soft limit

Complementarity between quark and hadron descriptions

Once we determine the density dependence of the condensate, we can **predict** in-medium hadronic quantities and vice versa.

Several in-medium low energy theorems are derived modelindependently using current algebras.

D. Jido, T. Hatsuda and T. Kunihiro, Phys. Lett. B 670 (2008) 109

In-medium Glashow-Weinberg relation

$$\frac{\langle \bar{u}u + \bar{d}d \rangle^*}{\langle \bar{u}u + \bar{d}d \rangle_0} = \left(\frac{f_t}{f_\pi}\right) \left(\frac{G_\pi^*}{G_\pi}\right) \qquad \qquad \begin{array}{c} f_t \text{ :temporal pion decay constant} \\ G_\pi^* \text{ :pseudo-scalar coupling} \end{array}$$

In-medium Weinberg-Tomozawa relation
 In-medium decay constant is related to s-wave isovector π-N sca. length.

$$T^{-}(\omega = m_{\pi}) \approx \frac{m_{\pi}}{2f_{t}^{2}} = -4\pi \left(1 + \frac{m_{\pi}}{m_{N}}\right) b_{1}^{*} \qquad \Longrightarrow \qquad \frac{f_{t}^{2}}{f_{\pi}^{2}} = \frac{b_{1}}{b_{1}^{*}}$$

In-medium Gell-Mann-Oakes-Renner relation

$$\frac{\langle \bar{u}u + \bar{d}d \rangle^*}{\langle \bar{u}u + \bar{d}d \rangle_0} = \left(\frac{f_t}{f_\pi}\right)^2 \left(\frac{m_\pi^*}{m_\pi}\right)^2$$

These theorems suggest that in-medium pionic observables are related to in-medium chiral condensate.

> Deeply bound pionic atom suggests the partial restoration.

Solve KG eq. with π-Nucleus optical potential and Coulomb potential E. Kolomeitsev, N. Kaiser and W. Weise, Phys. Rev. Lett. 90 (2003) 092501

Essence: Reduction of pion decay constant
 s-wave pion-nucleus optical potential (self-energy) to leading order in Tp approx.

 $2m_{\pi}U_{s} \approx -T^{-}(\rho)\delta\rho = -\frac{\delta\rho}{4f_{\pi}^{2}}\left(1 - \frac{\sigma_{\pi N}}{f_{\pi}^{2}m_{\pi}^{2}}\right)^{-1} = -\frac{\delta\rho}{4f_{\pi}^{*2}}$ $\rho = \rho_{p} + \rho_{n} \quad \delta\rho = \rho_{p} - \rho_{n}$

W. Weise, Nucl. Phys. A690, 98c (2001); W. Weise, Acta Phys. Pol. B 31, 2715 (2000).

Repulsive enhancement of s-wave isovector π -Nucleus sca. length can be explained by the reduction of decay constant.

Motivation

To understand partial restoration of chiral symmetry in nuclear matter beyond linear density approximation

Our work in this talk

We evaluate > Temporal decay constant > Pion mass > π0 decay width

in nuclear matter using in-medium chiral perturbation theory(CHPT) and discuss Low energy theorems beyond linear density approximation.

In-medium chiral perturbation theory

J. A. Oller, Phys. Rev. C **65** (2002) 025204 U. G. Meissner, J. A. Oller and A. Wirzba, Annals Phys. **297** (2002) 27

Effective field theory for pions in nuclear matter
 πN interactions: determined by chiral sym.
 Ground-state: Filled Fermi sea of nucleons

Nucleon propagator is replaced into in-medium (Fermi gas) propagator.

Green fn. is characterized by **Double Expansion.**

- Expansion parameters
 - Pion momentum, mass
 - Fermi momentum of nuclear matter

$$p_{\pi} \sim m_{\pi} \sim O(p)$$

$$k_F \sim 2m_{\pi} \sim O(p)$$

Classification based on density orders

- Key point: Renormalization in vacuum sector
- Ex. Density corrections to pion mass

Physical pi-N coupling

Definition of in-medium pion decay const.

$$\langle \Omega | A^a_\mu | \pi^{*b}(p) \rangle = i \hat{f} \sqrt{Z} p_\mu \quad \Longrightarrow \quad f^*_\pi = \hat{f} \sqrt{Z}$$

 $|\Omega\rangle$:Nuclear matter ground state A^a_{μ} :Axial current \hat{f} :1PI pi-A vertex correction Z :Wave fn. renormalization $Z = \left(1 + \frac{\partial \Sigma}{\partial p_0^2}\right)^{-1}$

Pi op.
$$\langle \Omega | P^a P^b | \Omega \rangle = \delta^{ab} G_{\pi}^* \frac{i}{p^2 - m_{\pi}^{*2} + i\epsilon} G_{\pi}^* = \delta^{ab} \hat{G}_{\pi} \frac{iZ}{p^2 - m_{\pi}^{*2} + i\epsilon} \hat{G}_{\pi} \quad \Longrightarrow \quad \pi^a = \frac{P^a}{\hat{G}_{\pi}}$$

$$\mathsf{LSZ} \quad \langle \Omega | A^a_\mu | \pi^{*b}(p) \rangle = \lim_{p^2 \to m^{*2}_\pi} \left(\frac{i\sqrt{Z}}{p^2 - m^{*2}_\pi + i\epsilon} \right)^{-1} \langle \Omega | A^a_\mu \pi^b | \Omega \rangle = i \hat{f} \sqrt{Z} p_\mu$$

 \succ In-medium pion changes by a factor of vZ. $\pi^*
ightarrow \sqrt{Z}\pi$

➢ If we find the density dependence of the wave function renormalization Z and \hat{f} , we can determine the in-medium decay constant.

• Density corrections of \hat{f} and Σ

We can classify density corrections using order counting for kf.

Density dependence of pion decay const.

NLO contribution is small around normal nuclear density.

ullet Within NLO, linear density approximation is good up to $\,
ho_0\,$.

Pion mass is almost unchanged within NLO.

In medium Low energy theorems

Within $O(\rho^{4/3})$ Low energy theorems are satisfied.

Gell-Mann-Oakes-Renner relation

$$\frac{\langle \bar{u}u + \bar{d}d \rangle^*}{\langle \bar{u}u + \bar{d}d \rangle_0} = \left(\frac{f_t}{f_\pi}\right)^2 \left(\frac{m_\pi^*}{m_\pi}\right)^2$$

In-medium chiral condensate

N. Kaiser, P. de Homont and W. Weise, Phys. Rev. C77, 025204 (2008) SG, D.Jido, arXiv: 1308.2660

Glashow-Weinberg relation

$$\frac{\langle \bar{u}u + \bar{d}d \rangle^*}{\langle \bar{u}u + \bar{d}d \rangle_0} = \left(\frac{f_t}{f_\pi}\right) \left(\frac{G_\pi^*}{G_\pi}\right)$$

$$\langle \Omega | P^a | \pi^{*b} \rangle = G^*_{\pi} \delta^{ab}$$
$$C^* = \hat{C} \sqrt{Z}$$

 $- \cup_{\pi} \vee \square$

In-medium pi0 decay

PiO decay is caused by the chiral anomaly. $\partial_{\mu}A^{\mu a} = f_{\pi}m_{\pi}^{2}\pi^{a} - \delta^{a3}\frac{e^{2}}{16\pi^{2}}\epsilon_{\mu\nu\rho\sigma}G^{\mu\nu}G^{\rho\sigma}$

Chiral anomaly comes from Wess-Zumino-Witten term in EFT. WZW term includes only pions.

Wave fn. Renormalization only carries medium effect.

Summary

We evaluated

in-medium pion decay constant, mass and wave fn. renormalization using in-medium chiral perturbation theory.

- In-medium low energy theorems are satisfied within NLO.
- In-medium pion changes by wave function renormalization.
 Pi0 decay width increases.

Outlook

- Pi-N scattering length, pi-pi scattering length
- 3-flavor

Thank you for your attention.