

Investigation of the ³He-η system in deuteron-proton collisions at COSY-ANKE

YITP Workshop on Hadron in Nucleus

31st October - 2nd November, 2013

Institut für Kernphysik

wissen leben WWU Münster

Why η -Meson Production Close to Threshold?

• Do bound meson-nucleus systems exist?

- ANKE: $\overset{(\rightarrow)}{d+p} \rightarrow {}^{3}He+\eta$
- Excitation function close to threshold \rightarrow FSI
- Polarized beam \rightarrow Test of FSI hypothesis, role of spins

wissen.leben WWU Münster

Westfälische Wilhelms-Universität Münster

The COSY-Accelerator at Jülich

COSY (Cooler Synchrotron)

Energy range

- 0.045 2.8 GeV (p)
- 0.023 2.3 GeV (d) (momentum 3.7 GeV/c)

Beam cooling

- Electron cooling
- Stochastic cooling

Polarisation

• p, d beams & targets

Beams

• internal, external

Experiments, Detectors

• ANKE, TOF, WASA, ...

The ANKE-Facility

Identification of ³He Nuclei at ANKE

Identification of the Reactions: $d+p \rightarrow {}^{3}He+X$

"Momentum rabbit"

Identification of the Reactions: $d+p \rightarrow {}^{3}He+X$

- 4-momenta of the incoming particles (d,p) known
 - Deuteron (mass = m_d):

energy + momentum: Adjustable by the accelerator

- Proton (mass = m_p): target particle at rest, momentum = 0
- Energy of the ³He nucleus measurable by detectors
- η-meson: Not directly detectable at ANKE
 - → Identification of the reaction via the missing mass analysis

Identification of the Reactions: $d+p \rightarrow {}^{3}He+X$

- 4-momenta of the incoming particles (d,p) known
 - Deuteron (mass = m_d):

energy + momentum: Adjustable by the accelerator

- Proton (mass = m_p): target particle at rest, momentum = 0
- Energy of the ³He nucleus measurable by detectors
- η-meson: Not directly detectable at ANKE
 - $\rightarrow \qquad \text{Identification of the reaction via the} \\ \text{missing mass analysis} \qquad \qquad \boxed{330} \\ \hline 330 \\ \hline 330$

Entries

Two-Particle Final State: Phase Space

Assumption:

- Two-particle reaction a+b → c+d without initial and final state interactions ("ISI" and "FSI"):
- Scattering (and production) amplitude f = const.
 - → Increase of the cross section according to phase space expectations

$$\frac{d\sigma(\vartheta)}{d\Omega} = \frac{p_f}{p_i} |f_s|^2 \propto p_f \propto \sqrt{Q}$$

- p_i / p_f : Momenta of in- and outgoing particles in the CMS
- Q: Q-value = Sum of kinetic energies im CMS

Results for the Reaction d+p \rightarrow ³He+ η

- 195 data points from ANKE close to threshold
- Strong deviation from phase space expectation!
- Most probably not caused by higher partial waves

The Reaction d+p \rightarrow ³He+ η

- Extreme increase of the total cross section close to the production threshold
- Increase of the cross sections within $\Delta Q < 1 \text{ MeV}$
 - → strong energy dependence at threshold
- After that total cross sections remain almost constant
 - \rightarrow Additional effect beside pure phase space

Scattering Theory and Final State Interaction

Description of the cross section including FSI:

$$\frac{d\sigma(\vartheta)}{d\Omega} = \frac{p_f}{p_i} |f_s|^2 = \frac{p_f}{p_i} \cdot \frac{|f_{\text{prod}}|^2}{\left|1 - i \cdot a \cdot p_f + \frac{1}{2}a \cdot r_0 \cdot p_f^2\right|^2}$$

Assumption:

- Energy dependence of the production amplitude f_{Prod} is negligible close to threshold: $f_{Prod} \sim \text{const.}$
- Initial State Interaction (ISI) also:

ISI = const.

Scattering Theory and Final State Interaction

- The scattering length can deliver informationen about possible bound states
- Conditions for bound η^3 He state:
 - Existence of a pole in the complex p_f plane

$$f_{s} = \frac{f_{\text{prod}}}{1 - i \cdot a \cdot p_{f} + \frac{1}{2}a \cdot r \cdot p_{f}^{2}} \qquad a \equiv a_{r} + ia$$

$$r \equiv r_{r} + ir_{i}$$

· As well as

$$a_r < 0, \qquad a_i > 0, \qquad R = \frac{|a_i|}{|a_r|} < 1$$

wissen.leben WWU Münste

wissen.leben WWU Münster

The Reaction d+p \rightarrow ³He+ η

Fit to data very close to threshold: Only s-wave

Fit parameter:

- Complex scattering length a=a_r+ia_i
- Complex effective range r=r_r+ir_i
- Finite momentum width δp_{beam} of the accelerator beam

The Reaction d+p \rightarrow $^{3}\text{He+}\eta$

Excitation function without accelerator beam smearing δp_{beam} :

Blue line:

- Defolded shape, extracted from data (no accelerator beam smearing)
- Total cross section reaches maximum already ∆Q<0.5 MeV above threshold

The d+p \rightarrow ³He+ η Scattering Amplitude

Extracted scattering amplitude (Q > 0 MeV)

- Scattering amplitude decreases rapidly with increasing final state momentum p_f
- Scattering amplitude almost constant at high energies
 - → strong FSI in η³He system

Compare: dp- and γ^3 He-Scattering

 Different initial states and production mechanism, but same final state

Compare: dp- and γ^3 He-Scattering

η –³He Scattering Length

Fit to data delivers information about the complex $\eta\text{--}{}^{3}\text{He}$ scattering length:

$$\left(\frac{d\sigma(\vartheta)}{d\Omega}\right) \cdot \frac{p_i}{p_f} = \left|f_{\text{scat}}\right|^2 = \left|f_{\text{prod}} \cdot FSI\right|^2 = \left|f_{\text{prod}}\right|^2 \cdot \left|FSI\right|^2$$
Result:
$$a = \left[\pm \left(10.7 \pm 0.8^{+0.1}_{-0.5}\right) + i\left(1.5 \pm 2.6^{+1.0}_{-0.9}\right)\right] \text{fm} \checkmark FSI = \frac{1}{1 - i \cdot a \cdot p_f + \frac{1}{2}a \cdot r_0 \cdot p_f^2}$$
Notice: Determination of $|a_r|!$

WISSEN.leben

η –³He-Interaction: Determination of Pols

Consideration of Higher Partial Waves: P-Waves

- Close to threshold: $d\sigma/d\Omega(\theta) = \text{const.} \rightarrow \text{pure s-wave}$
- Above a few MeV Q-value: Contributions $\sim \cos(\theta)$ visible

Consideration of Higher Partial Waves: P-Waves

 Assumption: Only s- and p-waves Production operator:

$$\hat{f} = A\vec{\varepsilon} \cdot \hat{p}_{p} + iB(\vec{\varepsilon} \times \vec{\sigma}) \cdot \hat{p}_{p} + C\vec{\varepsilon} \cdot \vec{p}_{\eta} + iD(\vec{\varepsilon} \times \vec{\sigma}) \cdot \vec{p}_{\eta}$$

A, B: s-wave amplitudes C, D: p-wave amplitudes

ε: polarisation vector of the deuteron

C. Wilkin, A.K., et al., PLB 654 (2007) 92

$$\frac{d\sigma}{d\Omega} = \frac{p_{\eta}}{p_{p}} \overline{\left|f\right|^{2}} = \frac{p_{\eta}}{3p_{p}} I$$

$$I = |A|^{2} + 2|B|^{2} + p_{\eta}^{2}|C|^{2} + 2p_{\eta}^{2}|D|^{2} + 2p_{\eta}\operatorname{Re}(A * C + 2B * D)\cos\theta_{\eta}$$

Consideration of Higher Partial Waves: P-Waves

• Resulting asymmetry factor:

$$\alpha = 2p_{\eta} \frac{\operatorname{Re}(A * C + 2B * D)}{|A|^{2} + 2|B|^{2} + p_{\eta}^{2}|C|^{2} + 2p_{\eta}^{2}|D|^{2}}$$

Assumption:

• Same s-wave amplitudes:

 $A = B = f_s$ energy dependence due to FSI

• Same p-wave amplitudes:

$$C = D = const.$$

$$\alpha = 2p_{\eta} \frac{\operatorname{Re}(f_{s}^{*}C)}{\left|f_{s}\right|^{2} + p_{\eta}^{2}\left|C\right|^{2}}$$

Consideration of Higher Partial Waves: P-Waves

• With the asymmetry factor

$$\alpha = 2p_{\eta} \frac{\operatorname{Re}(f_{s}^{*}C)}{\left|f_{s}\right|^{2} + p_{\eta}^{2}\left|C\right|^{2}}$$

and the experimental data from ANKE

$$\alpha = \frac{d}{d(\cos\theta_{\eta})} \ln\left(\frac{d\sigma}{d\Omega}\right)\Big|_{\cos\theta_{\eta}=0} \qquad \left(\frac{d\sigma}{d\Omega}\right)_{CM} = \frac{\sigma_{tot}}{4\pi} \cdot \left(1 + \alpha \cdot \cos\theta_{CM}\right)$$

it is possible to extract the amplitudes iteratively:

$$\sigma = 4\pi \frac{p_{\eta}}{p_{p}} \left[\left| f_{s} \right|^{2} + p_{\eta}^{2} \left| C \right|^{2} \right]$$

wissen.leben WWU Münster

Consideration of Higher Partial Waves: P-Waves

- Very good description of total and differential cross sections
- Position of the nearthreshold pol nearly unaffected

(same for second pol)

• Strong phase variation of s-wave

Black: inclusion of phase variation Pink: no phase variation $|f_s|$

η –³He-Interaction: Determination of Pols

- Pole close to the reaction threshold
- Position of the near-threshold pole (and scattering length) stable, i.e. nearly independend of fit range
- Large real part of scattering length and |a_r|>a_i
- ANKE data indicate a rapid variation of the phase of the s-wave close to threshold

Polarized Measurements

Production amplitude for $dp \rightarrow {}^{3}He + \eta (\pi^{0})$:

$$f_B = \overline{u}_{\tau} \overrightarrow{p}_p \cdot (A \overrightarrow{\varepsilon}_d + i B \overrightarrow{\varepsilon}_d \times \overrightarrow{\sigma}) u_p$$

Determination of the energy dependence of the amplitudes A and B by measurement of:

$$\frac{d\sigma}{d\Omega} = \frac{1}{3} \frac{p_{\eta}}{p_{p}} \Big[|A|^{2} + 2|B|^{2} \Big] \qquad T_{20} = \sqrt{2} \left[\frac{|B|^{2} - |A|^{2}}{|A|^{2} + 2|B|^{2}} \right]$$
$$A|^{2} = \frac{p_{p}}{p_{\eta}} (1 - \sqrt{2}T_{20}) \frac{d\sigma}{d\Omega} \qquad |B|^{2} = \frac{p_{p}}{p_{\eta}} (1 + \frac{1}{\sqrt{2}}T_{20}) \frac{d\sigma}{d\Omega}$$
$$T_{20} = \frac{2 \cdot \sqrt{2}}{p_{zz}} \cdot \frac{d\sigma_{0} / d\Omega(9) - d\sigma_{\uparrow} / d\Omega(9)}{d\sigma_{0} / d\Omega(9)} \qquad 9 = 0^{0} or 180^{0}$$

Polarized Measurements

- Assumption: $dp \rightarrow {}^{3}He + \eta$
- Negligible effect of ISI
- Energy dependence of |f|² only given by FSI
 - \rightarrow Shape of excitation function independent of spins
 - \rightarrow Same energy dependence of amplitudes $|A|^2$ and $|B|^2$

$$|A|^{2} = |A_{0}|^{2} \cdot FSI(p_{\eta})$$

$$|B|^{2} = |B_{0}|^{2} \cdot FSI(p_{\eta})$$
$$\Rightarrow \quad T_{20} = \sqrt{2} \left[\frac{|B_{0}|^{2} - |A_{0}|^{2}}{|A_{0}|^{2} + 2|B_{0}|^{2}} \right] \cdot \frac{FSI(p_{\eta})}{FSI(p_{\eta})} = \text{const.}$$

• Measure T_{20} as function of the excess energy

The Reaction $d^+p \rightarrow {}^{3}He^+\eta$ at ANKE

- Alternating injection of unpolarized and tensor polarized deuterons in COSY
- Ramped COSY beam: Q = -5 MeV ... +10 MeV (300 s)
- Full geometrical acceptance of ANKE for $d+p \rightarrow {}^{3}He+\eta$
- Determination of p_{zz} by, e.g., $d+p \rightarrow (pp)+n$ (analyzing powers known)

Preliminary Results: $d^+p \rightarrow {}^{3}He^+\eta$

$$T_{20} = \frac{2 \cdot \sqrt{2}}{p_{zz}} \cdot \frac{d\sigma_0 / d\Omega(\vartheta) - d\sigma_1 / d\Omega(\vartheta)}{d\sigma_0 / d\Omega(\vartheta)}$$

M. Papenbrock, PhD thesis in preparation

• Data indicate T_{20} = const. close to threshold

•
$$|T_{20}| \le 1 \rightarrow |A|^2 / |B|^2 = O(1)$$

• S-Wave amplitudes |A|² and |B|² are of similar size

Preliminary Results: $d^+p \rightarrow {}^{3}He^+\eta$

• Assumption: $T_{20} = \text{const.} \rightarrow |A|^2/|B|^2 = \text{const.}$

Preliminary Results: $d^+p \rightarrow {}^{3}He^+\eta$

 Energy dependence of |f|² known from "old" unpolarized measurements

 $\rightarrow |A|^2(p_f)$ and $|B|^2(p_f)$ can be calculated

$$\frac{d\sigma}{d\Omega} = \frac{1}{3} \frac{p_{\eta}}{p_{p}} \left[\left| A \right|^{2} + 2 \left| B \right|^{2} \right]$$
$$A |^{2} = \frac{p_{p}}{p_{\eta}} (1 - \sqrt{2}T_{20}) \frac{d\sigma}{d\Omega}$$
$$B |^{2} = \frac{p_{p}}{p_{\eta}} (1 + \frac{1}{\sqrt{2}}T_{20}) \frac{d\sigma}{d\Omega}$$

M. Papenbrock, PhD thesis in preparation

wissen.leben WWU Münster

Preliminary Results: $d^+p \rightarrow {}^{3}He^+\eta$

• Allow for an energy dependence of $|A|^2/|B|^2$:

 \rightarrow Test: Different energy dependence of $|A|^2(p_f)$ and $|B|^2(p_f)$?

Preliminary Results: $d^+p \rightarrow {}^{3}He^+\eta$

- No significant different energy dependence of |A|² and |B|²
- Remarkable excitation function of d+p \rightarrow ³He+ η still an indication for very strong FSI effect

Next Steps:

- Finalize data analysis
- Quantification of T_{20} and $|A|^2/|B|^2$
- Esitmation (or upper limits) for non-FSI effect
- Evaluation of effect on pole position or scattering length In parallel:
- Analysis of new ANKE data on p+n \rightarrow d+ η via p+d \rightarrow d+ η +p_{spec}
- Comparison of results from:

 $d+p \rightarrow {}^{3}He+\eta$

 $d\text{+}d \rightarrow {}^{4}\text{He}\text{+}\eta$

Summary

- The ANKE data on the η -³He system exposes an unexpected strong final state interaction
- The energy dependence of σ_{total} and $d\sigma/d\Omega$ indicates a radip s-wave phase variation at threshold
- Preliminary tensor polarized data support the strong FSI interpretation
- The η -³He system is a good candidate for a bound meson-nucleus state (strong interaction)
- New data the $d\eta$ system will allow for further tests on the pole positions as function of the nucleus mass

Thank you very much....

の街