YITP workshop on Hadron in Nucleus

$\pi^0 \pi^{\pm}$ photoproduction on the deuteron at ELPH

Univ. of Tokyo, ELPH Tohoku Univ^A, KEK^B, Yamagata Univ.^C

Shin'ichi Masumoto, Takatsugu Ishikawa^A, Kyoichiro Ozawa^B,

Hajime Shimizu^A, Yasuhisa Tajima^C, Yusuke Tsuchikawa^A, Ryo Hashimoto^C, Qinghua He^A, Manabu Miyabe^A, Norihiti Muramatsu^A, Hirohoto Yamazaki^A, Ryuji Yamazaki^A, and the Forest Collaboration

Contents

- Introduciton
 - Study of baryon resonances in the reactions $\gamma N \rightarrow \pi^0 \pi^{\pm} N$
- Analysis of $\gamma N \rightarrow \pi^0 \pi^{\pm} N$
 - Experimental setup ELPH FOREST
 - Event selection and acceptance correction
 - Total and differential cross section of $\gamma N
 ightarrow \pi^0 \pi^\pm N$
 - Monte-Carlo simulation of Fermi motion on the deuteron
- Summary

Introduction

- We investigate the highly excited states of baryon resonances by using photon beam.
- The properties of baryons were mainly derived from partial-wave analysis of single π and η production.
- The highly excited baryons do not strongly couple to the πN channel.
- ⇒multi-meson photoproduction process provides important information on highly excited baryon states.

Focus on baryon resonances couple to ρN and $\pi \Delta$ channel using $\gamma N \rightarrow \pi^0 \pi^\pm N$ reaction

- The total and differential cross section of $\pi^0\pi^+$ photoproduction for photon energies from 300 to 800 MeV have been reported by Mainz and DAPHNE.
- Measurement of $\pi^0\pi^-$ photoproduction has not been reported.

⇒The precise measurements of the $\pi^0 \pi^{\pm}$ photoproduction for photon energies more than 800 MeV are important to study the properties of 2nd and 3rd resonance region.

Analysis of $\gamma N \rightarrow \pi^0 \pi^{\pm} N$ on the proton and deuteron

FORES

- $570 \sim 1150 \text{ MeV} (\Delta E = 1 \sim 2 \text{ MeV})$
- Hydrogen/deuteron target
- Three type of calorimeters : acceptance \sim 90%
- Plastic scintillation counters are placed in front of each calorimeters.

Analysis procedure of $\gamma N \rightarrow \pi^0 \pi^{\pm} N$

1. Particle identification

Detection of all emitted particles ($\pi^0 \rightarrow \gamma \gamma$, π^{\pm} , proton/neutron) are required.

- $\pi^0 \rightarrow \gamma \gamma$ selection.
- Proton/charged pion identification.
- Neutron identification.
- 2. Kinematical Fitting
 - Event identification using Chi-square probability test.
 - improve intermediate mass resolution.
- 3. Acceptance & Efficiency correction
 - Evaluate detection efficiency of proton/neutron/charged pion
 - Total cross section and differential cross section

1. Particle identification

(MeV)

scintillatior

plastic

of

energy

Measured

 $\pi^0 \rightarrow \gamma \gamma$ selection Two neutral particles Timing difference of $\gamma\gamma$ < 1.5 nsec. •90 $\leq M_{\gamma\gamma} < 190 \text{ MeV}/c^2$ Counts/(MeV/*c*² invariant mass 200 400 600 0

200

calorimeter (MeV)

400

 $E - \Delta E$

Neutron identification

 Delayed neutral particle from $\gamma\gamma$ timing [1.5, 15) nsec

2. Kinematical Fitting (4C-fit)

• Event selection using Chi-square test.

Constraints :

 $\gamma\gamma$ invariant mass Energy and momentum conservation Measurement variables :

> photon beam energy Momenta of the $\gamma\gamma$ Emitted nucleon momentum Emitted angle of π^{\pm}

 χ^2 probability ≥ 0.1

3. Acceptance & Efficiency correction

- We evaluate proton, neutron and charged pion detection efficiency of pure CsI and Lead/SciFi calorimeters.
- Proton efficiency is evaluated using missing proton kinematical fit of $\gamma p \rightarrow \eta p$ and $\gamma p \rightarrow \pi^0 p$ reaction on the hydrogen.
- Neutron (charged pion) efficiency is evaluated using missing neutron (charged pion) kinematical fit of $\gamma p \rightarrow \pi^0 \pi^+ n$ reaction on the hydrogen.

$\gamma N \rightarrow \pi^0 \pi^{\pm} N$ cross section

- Acceptance correction using Geant4 based Monte-Calro simulation with obtained detector efficiency.
- Those plots with higher energy above 800 MeV are newly obtained.
- Our data covers 2nd and 3rd resonance region.

Deviation of the experimental data from the phase space distribution are evidence for meson intermediate states.

Cross section on the deuteron

- Cross section on the deuteron target is affected by Fermi motion and Final state interaction.
- We evaluate Fermi motion effect using $\gamma p \rightarrow \pi^0 \pi^+ n$ reaction on hydrogen and deuteron.
- Fermi motion effect is evaluate by Monte Calro simulation using nucleon momentum distribution and effective mass of participant.
- In this work, πN and NN rescatterings in the final state are neglected.

- Fermi momentum distribution is determined by atomic density and Hulthen's wave function.
- Effective mass of participant

$$m'_{(p)} = \sqrt{\left(m_d - m_{(s)}\right)^2 - 2m_d(E_{(s)} - m_{(s)})}$$

assuming the spectator nucleon is on-shell in the initial state.

• : Estimated $\gamma p^* \rightarrow \pi^0 \pi^+ n$ cross section on the deuteron using $\gamma p \rightarrow \pi^0 \pi^+ n$ cross section on the hydrogen.

Summary

- We have measured $\pi^0 \pi^{\pm}$ photoproduction on the hydrogen and deuteron for 570 < E_{ν} < 1150 MeV.
 - Obtained cross section is consistent with Mainz and DAPHNE data ($\gamma p \rightarrow \pi^0 \pi^+ n$).
 - Our data covers 2nd and 3rd resonance region.
 - An enhancement of ρN intermediate state is observed near 2nd resonance region.
 - Fermi motion effect on the deuteron is evaluate by toy Monte-Calro simulation.
- Future plan
 - We need more detail study for Fermi motion effect and final state interaction.