YITP workshop on Hadron in Nucleus 31 Oct. – 2 Nov. 2013, Maskawa Hall, Kyoto University

$\eta'(958)$ -nucleus bound states and their formations by missing mass spectroscopies

With the state of the state of

Hideko NAGAHIRO (Nara Women's University)

<u>H. Nagahiro</u>, D.Jido, H. Fujioka, K.Itahashi, S. Hirenzaki, PRC87(13)045201 [(p,d) theo.]
 Itahashi, Fujioka, Geissel, Hayano, Hirenzaki, Itoh, Jido, Metag, <u>Nagahiro</u>, Nanova, Nishi, Okochi, Outa, Suzuki, Tanaka, Weick, PTP128(12)601, [(p,d) exp. @GSI]

ma so is and so is a

<u>H. Nagahiro</u>, S. Hirenzaki, E. Oset, A. Ramos, PLB709(12)87, [chiral unitary, (π,N)] D. Jido, <u>H. Nagahiro</u>, S. Hirenzaki, PRC85(12)032201(R) [χ sym vs. $m_{\eta'}$, (π,N)] <u>H.Nagahiro</u>, M.Takizawa, S. Hirenzaki, PRC74(06)045203 [NJL, (γ,p)] <u>H. Nagahiro</u>, S. Hirenzaki, PRL94(05)232503 [(γ,p)]

mass reduction in finite T/ρ ? \checkmark

smaller absorption width in medium ?

 $\Delta m \sim -150 \text{ MeV} @ \rho_0$ [NJL model w/ KMT interaction] $\Delta m \sim -200 \text{ MeV}$? in finite T [in Au+Au collisions at RHIC]

[experimentally observed enhanced production of soft pions Interpreted as mass reduction of η' in the hot medium [Csorgo et al., PRL105(10)182301]]

 \rightarrow Phenomenologically poorly understood

small scattering length? \checkmark

 $|\text{Re } a_{\eta'N}| < 0.8 \text{ fm}, [pp \rightarrow pp\eta'@ \text{ COSY, Moskal et al., PLB474(00)416}]$

 $|a_{n'N}| \sim 0.1 \text{fm}, \quad [\dots, \text{Moskal et al.}, \text{PLB482}(00)356]$

[estimated from FSI on $pp \rightarrow pp\eta'$ observed at COSY]

 $\Gamma_{n'}(\rho_0; \langle |\vec{p}_{n'}| \rangle \sim 1 \text{GeV}/c) \sim 15 - 25 \text{ MeV} @\rho_0,$

[estimated transparency ratio $\gamma A \rightarrow \eta' X$]

 η' property in medium A WA WE A WAR A WA

Our strategy for studying the η' properties

Possible η' bound states and their formation

- » with missing mass spectroscopy : (γ ,p), (π ,N), (p,d), ...
 - > H.N., S.Hirenzaki, PRL94 (05) 232503
 - > H.N., M.Takizawa, S.Hirenzaki, PRC74 (06)045203
 - > ... and references in title page !

$\rightarrow \Gamma_{\eta'}$ in-medium strongly affects its observation possibilities

Experimental information [CBELSA/TAPS [M.Nanova et al., PLB710(12)600]

 $\Gamma_{\eta'} \sim 15 - 25 \text{ MeV}@\rho_0$ [estimated transparency ratio $\gamma A \rightarrow \eta' X$]

phenomenological approach [H.N., S. Hirenzaki, E. Oset, A, Ramos, PLB]

Based on : Coupled-channel calculation [Oset-Ramos, PLB704(11)334] P-B (π N, η N, KA, K Σ + η' N)+ V-B (K*A, K* Σ) + η_{o} B <u>Phenomenological approach for $\eta' N$ interaction</u> Oset-Ramos, PLB704(11)334 Unitarized scattering amplitude by coupled-channel BS eq.

Interaction kernel V

(1) Weinberg-Tomozawa interaction : pseudoscalar-baryon (PB) channel $\pi N, \eta N, K\Lambda, K\Sigma + \eta' N$ by the $\eta - \eta'$ mixing

their result : $|a_{\eta'N}| = 0.01 \text{ fm} \iff |a_{\eta'N}| \sim 0.1 - 0.8 \text{ fm} \text{ [PLB'00]}$

(2) Vector meson-baryon (VB) channel their result : $|a_{n'N}| = 0.03$ fm

(3) coupling of the singlet component of pseudoscalar to baryons

 $\eta_{0}, \eta_{0} \qquad \mathcal{L}_{\eta_{0}B} \propto \eta_{0}^{2} \langle \partial_{\mu} \bar{B} \gamma^{\mu} B - \bar{B} \gamma^{\mu} \partial_{\mu} B \rangle \qquad \text{Borasoy, PRD61(00)014011} \\ B - \frac{1}{\alpha} B \qquad \alpha \dots \text{free parameter} \qquad \rightarrow |a_{\eta'N}| = 0.1 \text{ fm}$

phenomenological estimation for $V_{\eta'}^{opt}$

<u>Optical potential</u> $V_{\eta'}$ [H.N., S. Hirenzaki, E. Oset, A. Ramos, PLB709(12)87]

We consider only the **attractive** case & **energy-independent** potential.

Re $V_{n'}$	and Im	V_n	with	various	α	values
		- 1				

in unit of MeV

α	$ a_{\eta'N} $ fm	$V^{1st}_{\eta'}(ho_0)$	$V_{\eta'}^{2nd}(ho_0)$	$V_{\eta'}^{total}(ho_0)$	
-0.193	0.1	-8.6 - 1.7i	-0.1 - 0.1i	-8.7 - 1.8i	
-0.834	0.3	-26.3 - 2.1i	-0.6 - 0.9i	-26.8 - 3.0i	
-1.79	0.5	-43.8 - 3.0i	-1.3 - 2.5i	-44.1 - 5.5i	
-9.67	1.0	-87.7 - 6.9i	-4.1 - 10.4i	-91.8 - 17.2i	

 $\operatorname{Re} V \gg \operatorname{Im} V$

phenomenological estimation for $V_{\eta'}^{opt}$

<u>The reason why Re $V \gg \text{Im } V$ in coupled channel calculation</u>

Kawarabayashi-Ohta, PTP66(81)1789 Borasoy, PRD61(00)014011

 \rightarrow gives attraction

 \rightarrow width [small]

This interaction ...

- \checkmark *resembles* that of the anomaly effect discussed by D. Jido PRC85(12)
- ✓ seems to **dominate** the $\eta'N$ interaction
- ✓ contributes mostly to the η' elastic channel & barely to the inelastic channel

ongoing work [A. Hinata (NaraWU) et al.]

- ✓ energy-dependence of $V_{\eta'}$: we discuss over <u>a wide energy range</u> (deep bound state $\leftrightarrow a_{\eta'N}$ at threshold)
- ✓ possible α value evaluated from, ex.) $\pi N \rightarrow \eta' N$ cross section

target-nucleus dependence demerit to see peaks										
light nucleus ←					→ he	\rightarrow heavy nucleus				
less (shallow) η' bound states less hole-states \checkmark simpler structure					many many ✓ co	 many (deeper) η' bound states many hole-states ✓ complex structure 				
	¹¹ C	u states .		¹⁵ O	U , IU) IVI	c v casc	³⁹ Ca			
rum		s, p			s, p, d			s, p, d, f, g		
one neutron-hole state (excited states of daughter nucleus)										
∕ed s −⊗	hole	ΔS_p	Γ	hole	ΔS_p	Γ	hole	ΔS_p	Г	
serv	0p _{3/2}	_	—	0p _{1/2}	—	—	0d _{3/2}	—	_	
ob	$0s_{1/2}$	18	12	0p _{3/2}	6.3	0	1s _{1/2}	3.2	7.7	
				$0s_{1/2}$	29	19	0d _{5/2}	8	3.7	
							0p _{1/2}	25	21.6	

9

21.6

30.5

25

48

0p_{3/2}

 $0s_{1/2}$

Briefly about on-going theoretical works :

We are now revisiting the $\eta' N$ scattering and η' -nucleus optical potential $V_{\eta'}$

- ✓ different model for vector-meson-baryon channel (K.P. Khemchandani, PRD84)
- ✓ trying to extract **possible** α value
 - $\rightarrow \eta' N$ scattering length, $\pi N \rightarrow \eta' N$ production, η' transparency ratio, ... & also η' -mesic nuclei formation, ... Sakamoto, Kiyomura (Nara WU)
- ✓ considering "possibility to have $\eta' N$ bound state"

→ subtraction const. positive → negative value ($\Lambda \sim 1 \text{GeV}$) (Oset-Ramos, PLB) (Hinata *et al.*)

Summary : η' (958)-meson-nucleus bound system

Partial restoration of Chiral sym and $U_A(1)$ anomaly effect in the viewpoint of mesic-nuclei

(possible) large mass reduction without large absorption

$\text{Re}V \gg \text{Im}V$

special feature of η' \checkmark attraction from contact interaction ✓ smaller inelastic channel

possibilities to observe bound state peaks

ongoing theoretical works in NaraWU

estimate possible α (strength of singlet meson-baryon int.)

 \leftrightarrow transparency ratio of η'

 $\leftrightarrow \pi N \rightarrow \eta' N$ cross section

 $\leftrightarrow \eta' N$ scattering length and so on...