Systematic study of deeply-bound pionic atom and future perspectives

Takahiro Nishi Department of Physics, University of Tokyo

Collaborators

G.P.A. Berg^A, M. Dozono^B, N. Fukuda^B, T. Furuno^C, H. Fujioka^C, H. Geissel^D,
R.S. Hayano, N. Inabe^B, K. Itahashi^B, S. Itoh, D. Kameda^B, T. Kubo^B, H. Matsubara^B,
S. Michimasa^B, K. Miki^E, H. Miya, M. Nakamura^B, Y. Murakami, N. Nakatsuka^C, S. Noji^F,
K. Okochi, S. Ota, H. Suzuki^B, K. Suzuki^G, M. Takaki, H. Takeda^B,
Y. K. Tanaka, K. Todoroki, K.Tsukada^H, T. Uesaka^B, Y. Watanabe, H. Weick^D, H. Yamada, and K. Yoshida^B

Univ. of Tokyo, Univ. of Notre Dame^A, RIKEN^B, Kyoto Univ.^C, GSI^D, Osaka Univ.^E, Michigan State Univ.^F, SMI^G, Tohoku Univ. ^H

1)Spectroscopy of deeply-bound pionic atom

2)Precise / systematic experiment in RIBF, RIKEN

3)Future perspectives ~ pionic unstable nuclei ~

4)Summary

1. Spectroscopy of deeply-bound pionic atom

Deeply-bound pionic atom

4

Deeply-bound pionic atom

Deeply-bound pionic atom

6

Deeply-bound pionic atom

Experiment at GSI

Deduction of b₁ from experimental data

	TABLE I. O	Observed binding energies (B_{1s}) and widths (Γ_{1s}) of the 1s π^- states in ^{115,119,123} Sn isotopes.						
Isotope	B_{1s} (MeV)	Stat.	ΔB_{1s} (MeV) Syst.	Total	Γ_{1s} (MeV)	Stat.	$\Delta\Gamma_{1s}$ (MeV) Syst.	Total
¹¹⁵ Sn	3.906	±0.021	±0.012	±0.024	0.441	±0.068	±0.054	± 0.087
¹¹⁹ Sn	3.820	± 0.013	± 0.012	± 0.018	0.326	± 0.047	± 0.065	± 0.080
¹²³ Sn	3.744	±0.013	±0.012	±0.018	0.341	±0.036	±0.063	±0.072

K. Suzuki et al., PRL92 072302 (2004)

π-A s-wave optical potential

$$V_s(r) = -\frac{2\pi}{\mu} [\epsilon_1 b_0 \{\rho(r) + b_1 \delta \rho(r)\} + \epsilon_2 B_0 \rho(r)^2].$$

4 parameters (b_0 , b_1 , ReB₀, ImB₀) in equation \Leftrightarrow 2 parameters from each atom BE_{1s}, Γ_{1s}

(i) Seki-Masutani relation (b_0 and ReB₀ has strong correlation) (ii) pionic atom of light / symmetric nuclei (¹⁶O, ²⁰Ne, ²⁸Si)

$$b_0^* = b_0 + 0.025 ReB_0 = -0.0274 \pm 0.0002$$

Deduction of b₁ from experimental data

10

neutron distribution ambiguities

K. Suzuki et al., PRL92, 072302 (2004).

2. Precise / systematic experiment at RIBF, RIKEN

YITP workshop on Hadron in Nucleus, 31st Oct. 2013 in Kyoto University **Production method; (d,³He) reaction**

Production method; (d,³He) reaction

Experiment for precise / systematic study

cf. $\Delta E \sim 400$ keV in GSI experiment

Experiment for precise / systematic study

systematic study of pionic nuclei in isotope / isotone chain

NNDC, BNL

Experiment at RIKEN

Experimental setup

Experimental setup

Ion optics (dispersion matching)

Ion optics (dispersion matching)

Ion optics (dispersion matching)

Pilot experiment

pilot experiment; performed in 2010 112I 113I 119I 120I 114I 115I 116I 117I118I 121I 12 Nuclear chart Z 111Te 112Te 113Te 114Te 115Te 116Te 117Te 118Te 119Te 120Te 121Te 122Te 123Te 124Te 125Te 126Te 127Te 110Sb 111Sb 112Sb 113Sb 114Sb 115Sb 116Sb 117Sb 118Sb 119Sb 120Sb 121Sb 122Sb 123Sb 124Sb 125Sb 126Sb 51 1138n 1148n 1158n 1168n 1178n 1188n 1198n 1208n 1218n 1228n 109Sn 110Sn 111Sn 112Sn 123Sn 124Sn 125Sn 110In 111In 112In 113In 109In 114In 115In 116In 117In 118In 119In 120In 121In 122In 128In 124In 108In 49 target for pilot experiment 107Ca 108Ca 109Ca 110Ca 111Ca 112Ca 113Ca 11 108Ag 109Ag 110Ag 111Ag 112Ag 113Ag 114Ag 115Ag 116Ag 117Ag 118Ag 119Ag 120Ag 121Ag 122Ag 106Ag 107Ag 47 106Pd | 107Pd | 108Pd | 109Pd 110Pd 111Pd 112Pd 113Pd 114Pd 115Pd 116Pd 117Pd 118Pd 119Pd 120Pd 121Pd 105Pd 106Rh 107Rh 108Rh 109Rh 110Rh 111Rh 112Rh 113Rh 114Rh 115Rh 116Rh 117Rh 118Rh 119Rh 120Rh 104Rh 105Rh 45 59 61 63 65 67 69 71 73 N

NNDC, BNL

YITP workshop on Hadron in Nucleus, 31st Oct. 2013 in Kyoto University **Pilot experiment**

pilot experiment; performed in 2010

Target ; ¹²²Sn Purpose ; test for • all detector system

ion optics

YITP workshop on Hadron in Nucleus, 31st Oct. 2013 in Kyoto University **Pilot experiment**

pilot experiment; performed in 2010

Pilot experiment

Decomposition of Spectra

Decomposition of Spectra

Current status

Finalizing

- optical aberration
- acceptance including angular dependence
- energy calibration by $p(d, {}^{3}\text{He})\pi^{0}$ reaction

main experiment

- some improvements are suggested
- preparing for the main experiment

3. Future perspectives ~ pionic unstable nuclei ~

Pionic atom of unstable nuclei

systematic study of stable nuclei

Pionic atom of unstable nuclei

systematic study of stable nuclei

Pionic atom of unstable nuclei

YITP workshop on Hadron in Nucleus, 31st Oct. 2013 in Kyoto University **Pionic atom of neutron rich nuclei**

Different density lower than $0.6 \rho_0$ is probed

Density dependence of $|\langle \overline{q}q
angle|$ will be deduced

Inverse kinematics of (d,³He) reaction

	normal	inverse		
Beam	deuteron	(unstable) nuclei		
target	stable nuclei	deuteron		
Beam energy	250 MeV/u	250 MeV/u		
Detecting particle	³ He	³ He		

Inverse kinematics of (d,³He) reaction

	normal	inverse		
Beam	deuteron	(unstable) D ₂ gas		
target	stable nuclei	deuteron		
Beam energy	250 MeV/u	250 MeV/u		
Detecting particle	³ He	³ He		

Inverse kinematics of (d,³He) reaction

		nor	rmal	inverse		
Beam		deuteron		(unstable)	D ₂ gas	
target		stable nuclei		deute	ron	
Beam energy ~		[,] 365 MeV 1eV/u 250 ľ _		~ 60 MeV		
Detecting particle		³ He		³ He	2	

Experimental design for inverse kinematics

Yield and resolution estimation (simulation)

GEANT4 simulation

Yield and resolution estimation (simulation)

Yield and resolution estimation (simulation)

resolution			
Cause	ΔQ (FWHM) [keV]		
Energy Resolution of Si at T _{He} ~ 60 MeV σ _{Si} = 0.1 %	~ 350		
Energy Straggling of ³ He in TPC	~ 350		
Vertex Reconstruction With Incident Beam $\sigma_{TPC} = 500 \ \mu m$	~ 130		
Total	~ 500		

Yield and resolution estimation (simulation)

	requirement
yield	10 ² / day (for 1s state)
resolution	$\Delta Q < I MeV (FWHM)$
	simulation result
yield	I.I×I0 ² / day (for Is state)
resolution	ΔQ ~ 500 keV (FWHM)

This design satisfy the requirement of the experiment

Current status

We are evaluating the resolution of Si detector with α source.

Summary

- Deeply-bound pionic atom is good probe for quark condensate in finite density.
- We are planning the precise / systematic measurement of deeply-bound pionic atom and performed a pilot experiment.
- We succeed to observe the deeply bound pionic states in ¹²¹Sn and angler dependence of the (*d*, ³He) reaction cross section for the first time with in 15-hour measurement.
- Now we are finalizing the result of the pilot experiment to extract binding energy and width of deeply bound pionic states.
- ✤ We are also preparing for main experiment with ¹²²Sn target.
- Experiment with inverse kinematics enable us to produce unstable pionic atom and to approach the density dependence of quark condensate.
- The feasibility was confirmed by GEANT4 simulation and we are starting the study of detectors.

Deduction of b₁ from experimental data

	TABLE I. Observed binding energies (B_{1s}) and widths (Γ_{1s}) of the 1s π^- states in ¹						^{9,123} Sn isotopes.	
Isotope	B_{1s} (MeV)	Stat.	ΔB_{1s} (MeV) Syst.	Total	Γ_{1s} (MeV)	Stat.	$\Delta\Gamma_{1s}$ (MeV) Syst.	Total
¹¹⁵ Sn	3.906	±0.021	±0.012	±0.024	0.441	±0.068	±0.054	± 0.087
¹¹⁹ Sn	3.820	± 0.013	± 0.012	± 0.018	0.326	± 0.047	± 0.065	± 0.080
¹²³ Sn	3.744	±0.013	±0.012	±0.018	0.341	±0.036	±0.063	±0.072

K. Suzuki et al., PRL92 072302 (2004)

π-A s-wave optical potential

$$V_s(r) = -\frac{2\pi}{\mu} [\epsilon_1 b_0 \{\rho(r) + b_1 \delta \rho(r)\} + \epsilon_2 B_0 \rho(r)^2].$$

4 parameters (b_0 , b_1 , ReB₀, ImB₀) in equation \Leftrightarrow 2 parameters from experiment BE_{1s}, Γ_{1s}

Physics motivation; quark condensate

Gell-Mann-Oakes-Renner relation

M. Gell-Mann *et al.*, PR175(1968)2195.

$$f_{\pi}^2 m_{\pi^{\pm}}^2 = -m_q \langle \bar{q}q \rangle + O(m_q^2)$$

 f_{π} : pion decay constant

Tomozawa-Weinberg relation

```
Y.Tomozawa, NuovoCimA46(1966)707.
S.Weinberg, PRL17(1966)616.
```

 $b_1 \simeq \frac{1}{4(1 + m_\pi/M_{Nucleon})} \frac{m_\pi}{2\pi f_\pi^2}$

b₁: isovector scattering length

W. Weise, NPA553(93)59.

Physics motivation; quark condensate

Conventional method; use π⁻ beam

slow pion beam is captured in target nuclei and cascade emitting X-ray

pionic 1s state in H
 → b₁ in vacuum

This method is applied only for

- higher orbits
- light nuclei (~²⁴Mg for 1s)

Yamazaki et al, Phys. Rep. 514, 1(2012)

This method cannot produce "deeply-bound" pionic atom...