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We first extract the scattering length a(K−p) from the SIDDHARTA measurements [15]
using Eq. (17). The result is:

Rea
(
K−p

)
= −0.65 ± 0.10 fm, Ima

(
K−p

)
= 0.81 ± 0.15 fm, (25)

where the uncertainties reflect the experimental errors. The predictions from chiral SU(3) dy-
namics, proceeding again through the sequence of TW, TWB and full NLO schemes, gives the
following values for the K−p scattering length:

a
(
K−p

)
= −0.93 + i0.82 fm (TW), (26)

a
(
K−p

)
= −0.94 + i0.85 fm (TWB), (27)

a
(
K−p

)
= −0.70 + i0.89 fm (NLO). (28)

The large magnitude of Rea(K−p) in the TW and TWB schemes corresponds to the overesti-
mation of the kaonic hydrogen energy shift in these approaches, while the best-fit NLO result is
fully compatible with the value (25) deduced from the experimental data.

To calculate the K−n scattering length, we construct the coupled-channels amplitudes in the
charge Q = −1 sector (K−n, π−Λ, π−Σ0, π0Σ−, ηΣ− and K0Ξ−), again using physical
meson and baryon masses in order to take into account isospin breaking effects in the thresh-
old energies. With the same subtraction constants as in the Q = 0 sector, the calculated K−n

scattering lengths are:

a
(
K−n

)
= 0.29 + i0.76 fm (TW), (29)

a
(
K−n

)
= 0.27 + i0.74 fm (TWB), (30)

a
(
K−n

)
= 0.57 + i0.73 fm (NLO). (31)

The relatively large jump in Rea(K−n) when passing from “TW” and “TWB” to the best-fit
“NLO” scheme is strongly correlated to the corresponding change in Rea(K−p). Thus, to deter-
mine the I = 1 component of the K̄N scattering length, it is highly desirable to extract the K−n

scattering length, e.g. from a precise measurement of kaonic deuterium [24,17].
Next, consider the subthreshold extrapolation of the complex elastic K−n amplitude. Fig. 5

shows the real and imaginary parts of this amplitude. Note that the I = 1 K̄N interaction is also
attractive but weaker than the I = 0 interaction so that f (K−n → K−n) is non-resonant. In the
absence of empirical threshold constraints for the K−n scattering length one still faces relatively
large uncertainties. Variation of the subtraction constants within the range of Eq. (23) applied to
the NLO scheme leads to the following estimated uncertainties:

a
(
K−n

)
= 0.57+0.04

−0.21 + i0.72+0.26
−0.41 fm. (32)

The errors in a(K−n) relate primarily to the uncertainty of the subtraction constant in the πΛ

channel.

3.3.4. πΣ invariant mass distribution
One of the important features of chiral SU(3) coupled-channels dynamics is the pronounced

channel dependence of the Λ(1405) production spectra reflecting the two-poles nature of the
Λ(1405) [22]. To demonstrate this two-mode structure, we show the imaginary parts of the scat-
tering amplitudes πΣ → πΣ (Fig. 6, left) and K̄N → K̄N (Fig. 6, right) in the I = 0 channel.
These strength functions exhibit the Λ(1405) spectrum as seen in different channels. Evidently,
there is no single universal invariant mass distribution of the Λ(1405). As seen in the figure, the
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fij (
√

s) = 1
8π

√
s
Tij (

√
s). (16)

The K−p elastic scattering amplitude at threshold defines the scattering length, a(K−p) =
f11(

√
s = mK− + Mp), a complex number because of the absorptive channels converting K−p

into πΣ and πΛ. The energy shift and width of the 1s state of kaonic hydrogen are related to
the K−p scattering length, with important second order corrections, as follows [11]:

$E − iΓ /2 = −2α3µ2
r a

(
K−p

)[
1 + 2αµr(1 − lnα)a

(
K−p

)]
, (17)

where α is the fine-structure constant and the K−p reduced mass is given by µr = mK−Mp/

(mK− + Mp).
The total reaction cross sections in the various meson–baryon scattering channels are given

by

σij (
√

s) = qi

qj

|Tij (
√

s)|2
16πs

, (18)

where the cross section is defined for
√

s > Mi + mi , above the threshold of the final-state chan-
nel i. For the K−p elastic cross section, we also take into account electromagnetic interactions
which are important near the K−p threshold [8]. The Coulomb interaction gives an additional
contribution to the diagonal amplitude in the K−p channel:

f Coul
11 (

√
s, θcm) = 1

2q2
1aB sin2(θcm/2)

× Γ (1 − i/(q1aB))

Γ (1 + i/(q1aB))
exp

(
2i

q1aB
ln sin

θcm

2

)
, (19)

with aB = 84 fm, the Bohr radius of the K−p system, and θcm denoting scattering angle. This
Coulomb amplitude is added to the strong interaction amplitude and the scattering angle is inte-
grated up to cos θcm < 0.966 to avoid the divergence at θcm = 0.

Several combinations of K−p inelastic yields at threshold are known in the form of branching
ratios defined as

γ = Γ
(
K−p → π+Σ−)

Γ
(
K−p → π−Σ+) = σ51

σ61
, Rn = Γ

(
K−p → π0Λ

)

Γ
(
K−p → neutral states

) = σ31

σ31 + σ41
,

Rc = Γ
(
K−p → π+Σ−,π−Σ+)

Γ
(
K−p → all inelastic channels

) = σ51 + σ61

σ31 + σ41 + σ51 + σ61
, (20)

with all partial cross sections σij calculated at the K−p threshold.

3. Results and discussion

3.1. Fitting procedure

We now describe the systematic fitting procedure used in the framework of the chiral SU(3)
dynamics at NLO level. We first summarize the empirical constraints that enter this study.
Important constraints are the kaonic hydrogen shift and width from the SIDDHARTA measure-
ments [15]:

$E = 283 ± 36(stat) ± 6(syst) eV, Γ = 541 ± 89(stat) ± 22(syst) eV.
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3.3.4. πΣ invariant mass distribution
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channel dependence of the Λ(1405) production spectra reflecting the two-poles nature of the
Λ(1405) [22]. To demonstrate this two-mode structure, we show the imaginary parts of the scat-
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Fig. 4. Real part (left) and imaginary part (right) of the K−p → K−p forward scattering amplitude obtained from
the NLO calculation and extrapolated to the subthreshold region. The empirical real and imaginary parts of the K−p

scattering length deduced from the recent kaonic hydrogen measurement (SIDDHARTA [15]) are indicated by the dots
including statistical and systematic errors. The shaded uncertainty bands are explained in the text.

z1 = 1424 − i26 MeV, z2 = 1381 − i81 MeV.

The higher energy z1 pole is dominated by the K̄N channel and the lower energy z2 pole receives
stronger weight from the πΣ channel. This confirms the two-poles scenario of the Λ(1405) [7,
22,23]. Actually, the existence of two poles around the Λ(1405) resonance had been found in
previous NLO calculations [8,9], but the precise location of the poles, especially of the lower
one, could not be determined in these earlier studies, given the lack of precision in the empirical
constraints.

In the present analysis, the SIDDHARTA measurement provides much more severe con-
straints also on the pole positions. The real parts of z1 and z2 are remarkably stable in all three
TW, TWB and NLO schemes. The imaginary parts deviate within ! 20 MeV between these
schemes, as seen in Table 3. Using the error analysis from Eq. (23) together with the best-fit
NLO results, one finds:

z1 = 1424+7
−23 − i26+3

−14 MeV, z2 = 1381+18
−6 − i81+19

−8 MeV. (24)

The uncertainties of the pole locations are thus significantly reduced from previous work, and the
two-poles structure of the Λ(1405) is now consistently established with the constraints from the
precise kaonic hydrogen measurement. Because of isospin symmetry, the two poles are stable
against variations of the I = 1 subtraction constants (the ones in the πΛ and ηΣ channels). The
error assignments in the pole positions and half widths are mainly reflecting the uncertainties of
the K̄N and πΣ subtraction constants.

3.3.3. K−p and K−n scattering lengths
A discussion of low-energy K̄-nuclear interactions requires the knowledge of both the K−p

and K−n amplitudes near threshold. The complete K̄N threshold information involves both
isospin I = 0 and I = 1 channels. The K−p scattering length a(K−p) = [a0 +a1]/2 is given by
the average of the I = 0 and I = 1 components, whereas the K−n scattering length a(K−n) = a1
is purely in I = 1. Note that Coulomb corrections to a(K−p) and isospin breaking effects in
threshold energies may be significant [11] and must be taken into account in a detailed quantita-
tive analysis.

average of I=0 and I=1 components

However ...
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fij (
√

s) = 1
8π

√
s
Tij (

√
s). (16)
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s = mK− + Mp), a complex number because of the absorptive channels converting K−p
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$E − iΓ /2 = −2α3µ2
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(
K−p

)[
1 + 2αµr(1 − lnα)a

(
K−p

)]
, (17)

where α is the fine-structure constant and the K−p reduced mass is given by µr = mK−Mp/

(mK− + Mp).
The total reaction cross sections in the various meson–baryon scattering channels are given

by

σij (
√
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qj

|Tij (
√

s)|2
16πs

, (18)

where the cross section is defined for
√

s > Mi + mi , above the threshold of the final-state chan-
nel i. For the K−p elastic cross section, we also take into account electromagnetic interactions
which are important near the K−p threshold [8]. The Coulomb interaction gives an additional
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f Coul
11 (

√
s, θcm) = 1

2q2
1aB sin2(θcm/2)

× Γ (1 − i/(q1aB))

Γ (1 + i/(q1aB))
exp

(
2i

q1aB
ln sin

θcm

2

)
, (19)

with aB = 84 fm, the Bohr radius of the K−p system, and θcm denoting scattering angle. This
Coulomb amplitude is added to the strong interaction amplitude and the scattering angle is inte-
grated up to cos θcm < 0.966 to avoid the divergence at θcm = 0.
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K−p → π+Σ−,π−Σ+)
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with all partial cross sections σij calculated at the K−p threshold.

3. Results and discussion

3.1. Fitting procedure

We now describe the systematic fitting procedure used in the framework of the chiral SU(3)
dynamics at NLO level. We first summarize the empirical constraints that enter this study.
Important constraints are the kaonic hydrogen shift and width from the SIDDHARTA measure-
ments [15]:

$E = 283 ± 36(stat) ± 6(syst) eV, Γ = 541 ± 89(stat) ± 22(syst) eV.
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We first extract the scattering length a(K−p) from the SIDDHARTA measurements [15]
using Eq. (17). The result is:

Rea
(
K−p

)
= −0.65 ± 0.10 fm, Ima

(
K−p

)
= 0.81 ± 0.15 fm, (25)

where the uncertainties reflect the experimental errors. The predictions from chiral SU(3) dy-
namics, proceeding again through the sequence of TW, TWB and full NLO schemes, gives the
following values for the K−p scattering length:

a
(
K−p

)
= −0.93 + i0.82 fm (TW), (26)

a
(
K−p

)
= −0.94 + i0.85 fm (TWB), (27)

a
(
K−p

)
= −0.70 + i0.89 fm (NLO). (28)

The large magnitude of Rea(K−p) in the TW and TWB schemes corresponds to the overesti-
mation of the kaonic hydrogen energy shift in these approaches, while the best-fit NLO result is
fully compatible with the value (25) deduced from the experimental data.

To calculate the K−n scattering length, we construct the coupled-channels amplitudes in the
charge Q = −1 sector (K−n, π−Λ, π−Σ0, π0Σ−, ηΣ− and K0Ξ−), again using physical
meson and baryon masses in order to take into account isospin breaking effects in the thresh-
old energies. With the same subtraction constants as in the Q = 0 sector, the calculated K−n

scattering lengths are:

a
(
K−n

)
= 0.29 + i0.76 fm (TW), (29)

a
(
K−n

)
= 0.27 + i0.74 fm (TWB), (30)

a
(
K−n

)
= 0.57 + i0.73 fm (NLO). (31)

The relatively large jump in Rea(K−n) when passing from “TW” and “TWB” to the best-fit
“NLO” scheme is strongly correlated to the corresponding change in Rea(K−p). Thus, to deter-
mine the I = 1 component of the K̄N scattering length, it is highly desirable to extract the K−n

scattering length, e.g. from a precise measurement of kaonic deuterium [24,17].
Next, consider the subthreshold extrapolation of the complex elastic K−n amplitude. Fig. 5

shows the real and imaginary parts of this amplitude. Note that the I = 1 K̄N interaction is also
attractive but weaker than the I = 0 interaction so that f (K−n → K−n) is non-resonant. In the
absence of empirical threshold constraints for the K−n scattering length one still faces relatively
large uncertainties. Variation of the subtraction constants within the range of Eq. (23) applied to
the NLO scheme leads to the following estimated uncertainties:

a
(
K−n

)
= 0.57+0.04

−0.21 + i0.72+0.26
−0.41 fm. (32)

The errors in a(K−n) relate primarily to the uncertainty of the subtraction constant in the πΛ

channel.

3.3.4. πΣ invariant mass distribution
One of the important features of chiral SU(3) coupled-channels dynamics is the pronounced

channel dependence of the Λ(1405) production spectra reflecting the two-poles nature of the
Λ(1405) [22]. To demonstrate this two-mode structure, we show the imaginary parts of the scat-
tering amplitudes πΣ → πΣ (Fig. 6, left) and K̄N → K̄N (Fig. 6, right) in the I = 0 channel.
These strength functions exhibit the Λ(1405) spectrum as seen in different channels. Evidently,
there is no single universal invariant mass distribution of the Λ(1405). As seen in the figure, the

U.-G. Meißner et al, EPJ C35 (2004) 349

110 Y. Ikeda et al. / Nuclear Physics A 881 (2012) 98–114

We first extract the scattering length a(K−p) from the SIDDHARTA measurements [15]
using Eq. (17). The result is:

Rea
(
K−p

)
= −0.65 ± 0.10 fm, Ima

(
K−p

)
= 0.81 ± 0.15 fm, (25)

where the uncertainties reflect the experimental errors. The predictions from chiral SU(3) dy-
namics, proceeding again through the sequence of TW, TWB and full NLO schemes, gives the
following values for the K−p scattering length:

a
(
K−p

)
= −0.93 + i0.82 fm (TW), (26)

a
(
K−p

)
= −0.94 + i0.85 fm (TWB), (27)

a
(
K−p

)
= −0.70 + i0.89 fm (NLO). (28)

The large magnitude of Rea(K−p) in the TW and TWB schemes corresponds to the overesti-
mation of the kaonic hydrogen energy shift in these approaches, while the best-fit NLO result is
fully compatible with the value (25) deduced from the experimental data.

To calculate the K−n scattering length, we construct the coupled-channels amplitudes in the
charge Q = −1 sector (K−n, π−Λ, π−Σ0, π0Σ−, ηΣ− and K0Ξ−), again using physical
meson and baryon masses in order to take into account isospin breaking effects in the thresh-
old energies. With the same subtraction constants as in the Q = 0 sector, the calculated K−n

scattering lengths are:

a
(
K−n

)
= 0.29 + i0.76 fm (TW), (29)

a
(
K−n

)
= 0.27 + i0.74 fm (TWB), (30)

a
(
K−n

)
= 0.57 + i0.73 fm (NLO). (31)

The relatively large jump in Rea(K−n) when passing from “TW” and “TWB” to the best-fit
“NLO” scheme is strongly correlated to the corresponding change in Rea(K−p). Thus, to deter-
mine the I = 1 component of the K̄N scattering length, it is highly desirable to extract the K−n

scattering length, e.g. from a precise measurement of kaonic deuterium [24,17].
Next, consider the subthreshold extrapolation of the complex elastic K−n amplitude. Fig. 5

shows the real and imaginary parts of this amplitude. Note that the I = 1 K̄N interaction is also
attractive but weaker than the I = 0 interaction so that f (K−n → K−n) is non-resonant. In the
absence of empirical threshold constraints for the K−n scattering length one still faces relatively
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3.3.4. πΣ invariant mass distribution
One of the important features of chiral SU(3) coupled-channels dynamics is the pronounced

channel dependence of the Λ(1405) production spectra reflecting the two-poles nature of the
Λ(1405) [22]. To demonstrate this two-mode structure, we show the imaginary parts of the scat-
tering amplitudes πΣ → πΣ (Fig. 6, left) and K̄N → K̄N (Fig. 6, right) in the I = 0 channel.
These strength functions exhibit the Λ(1405) spectrum as seen in different channels. Evidently,
there is no single universal invariant mass distribution of the Λ(1405). As seen in the figure, the
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scattering
length

by SIDDHARTA

now fully
compatible 
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Fig. 4. Real part (left) and imaginary part (right) of the K−p → K−p forward scattering amplitude obtained from
the NLO calculation and extrapolated to the subthreshold region. The empirical real and imaginary parts of the K−p

scattering length deduced from the recent kaonic hydrogen measurement (SIDDHARTA [15]) are indicated by the dots
including statistical and systematic errors. The shaded uncertainty bands are explained in the text.

z1 = 1424 − i26 MeV, z2 = 1381 − i81 MeV.

The higher energy z1 pole is dominated by the K̄N channel and the lower energy z2 pole receives
stronger weight from the πΣ channel. This confirms the two-poles scenario of the Λ(1405) [7,
22,23]. Actually, the existence of two poles around the Λ(1405) resonance had been found in
previous NLO calculations [8,9], but the precise location of the poles, especially of the lower
one, could not be determined in these earlier studies, given the lack of precision in the empirical
constraints.

In the present analysis, the SIDDHARTA measurement provides much more severe con-
straints also on the pole positions. The real parts of z1 and z2 are remarkably stable in all three
TW, TWB and NLO schemes. The imaginary parts deviate within ! 20 MeV between these
schemes, as seen in Table 3. Using the error analysis from Eq. (23) together with the best-fit
NLO results, one finds:

z1 = 1424+7
−23 − i26+3

−14 MeV, z2 = 1381+18
−6 − i81+19

−8 MeV. (24)

The uncertainties of the pole locations are thus significantly reduced from previous work, and the
two-poles structure of the Λ(1405) is now consistently established with the constraints from the
precise kaonic hydrogen measurement. Because of isospin symmetry, the two poles are stable
against variations of the I = 1 subtraction constants (the ones in the πΛ and ηΣ channels). The
error assignments in the pole positions and half widths are mainly reflecting the uncertainties of
the K̄N and πΣ subtraction constants.

3.3.3. K−p and K−n scattering lengths
A discussion of low-energy K̄-nuclear interactions requires the knowledge of both the K−p

and K−n amplitudes near threshold. The complete K̄N threshold information involves both
isospin I = 0 and I = 1 channels. The K−p scattering length a(K−p) = [a0 +a1]/2 is given by
the average of the I = 0 and I = 1 components, whereas the K−n scattering length a(K−n) = a1
is purely in I = 1. Note that Coulomb corrections to a(K−p) and isospin breaking effects in
threshold energies may be significant [11] and must be taken into account in a detailed quantita-
tive analysis.

average of I=0 and I=1 components

However ...

Now, we do need to determine 
the I=1 component of KbarN scattering length

important to extract K- n scattering length
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Next-generation K-atom exp.
for high-precision measurement



Next-generation K-atom exp.
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単素子での成果
アレイでの成果

単素子での成果 †

インハウスで製作したTESカロリメータで、5.9keVのX線に対してエネルギー分解能 2.8eVを達成しました。
(2009年6月現在)

　

図の説明:
インハウスで製作したTESマイクロカロリメータ(左図)および55Fe線源を照射した際に得られたX線スペクトル(右図)。
SiNx(シリコン窒化)膜上に、Ti(チタン)及びAu(金)の薄膜によりTESマイクロカロリメータを作成し、吸収体としてAuを
使用している。大きさは約200um(マイクロメートル)。
右図で赤線は左のTESにFe線源からのX線を照射した際の実験データである。比較のために半導体検出器で測定した際の
データを黒線で示す。青はMnK!線の微細構造モデルに基づく実験データへのベストフィットモデル。右上の囲みは5840
から5940eVのMn線を拡大したもの。K!1線(5.899 keV) と、K!2線(5.888 keV) が明瞭に分離されており分解能は
FWHMで 2.8eVである。
参照

Akamatsu et al., AIP Conf. Proc., submitted
江副祐一郎ほか：日本物理学会誌 Vol. 64 No. 8, 2009

!

アレイでの成果 †

図の説明:
インハウスで製作した16"16(256)ピクセルのTESマイクロカロリメータアレイ(左図)、およびそのうちの一つの素子に
55Fe線源のX線を照射した際のスペクトル(右図)。
右図の赤線が実験データ、青線はMnK!線の微細構造モデルに基づく実験データへのベストフィットモデル。微細構造の
主要なX線であるK!1線(5.899 keV) と、K!2線(5.888 keV) が明瞭に分離されており、分解能は FWHMで 4.4eVであ
る。
参照

Yoshitake et al., IEEE Trans. Appl. Conductivity, 2009, Vol. 19, pp. 456-460
Ezoe et al., AIP Conf. Proc., submitted
江副祐一郎ほか：日本物理学会誌 Vol. 64 No. 8, 2009
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TES group homepage
for development of X-ray micro-calorimeter

Site admin: Toshishige Hagihara

1. Crystal spectrometer 2. Microcalorimeter

Problem in both : small acceptance

spherically bent Bragg crystal

ultimate energy resolution

position & energy resolution

� background reduction
by analysis of hit pattern

high stop density

� high    X - ray line yields

� bright X - ray source

6

pionic atom exp.@ PSI : D. Gotta et al. X-ray observation satellite (ASTRO-H)

 Compact and portable
limited beam time, then need to remove
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Progress of this project
in this year

1. get started a collaboration with NIST (in Feb.)
having the world’s top-class technology of TES arrays ( multiplexing readout technics )

2. performed a test experiment at lab. of NIST (in Aug.)

3. got two budgets

1) for a study of basic performance of TES in beam environment 
(as a part of the large research fund lead by Tamura-san)

2) for sending Japanese researchers to NIST (zuno-junkan)



2. NIST’s multi-pixel TES array
1. Short introduction
2. NIST’s multi-pixel TES array
3. What do we measure ? 
4. Experimental setup
5. Yield estimations
6. The first test exp. at NIST
7. Anti-coincidence system
8. Summary



X-ray microcalorimeter
a thermal detector measuring the energy

of an incident x-ray photon as a temperature rise
CHAPTER 2. INSTRUMENT DESCRIPTION 7

Figure 2.1: Schematic view of an X-ray microcalorimeter. The calorimeter consists of an
absorber and a thermometer which have a heat capacity C, and are connected to a heat
sink with a thermal conductance G of the thermal link.

C
d∆T

dt
= −G∆T (2.2)

where G is the thermal conductance of the thermal link. Thus, the temparature rise
decays exponentially, with a time constant is

τ =
C

G
(2.3)

The energy resolution is limited by thermodynamic fluctuation in the detector. The
number of phonons in the calorimeter pixel is N ∼ CT/kBT = C/kB. Thus, the thermo-
dynamic fluctuation is given by

∆E ∼
√

NkBT =
√

kBT 2C (2.4)

Fundamental energy resolution limit can be written as

∆EFWHM ∼ 2.35 ξ
√

kBT 2C (2.5)

where ξ is a parameter which depends on the thermometer sensitivity and the operating
condition. Considering the temperature dependence of C, the energy resolution strongly
depends on the temperature, and by operating at extremely low temperature (≤ 0.1 K),
very high energy resolution can be achieved.

Using a thermistor, the temperature rise is sensed as a dynamical change of a resistance.
The thermometer sensitivity α is define by

α ≡ d ln R

d ln T
=

T

R

dR

dT
(2.6)

Temperature rise
= E / C ( ~ 1 mK )

Decay time constant
= C / G ( ~ 100 μs )

e.g.,   Absorber : Au (0.3 mm×0.3 mm wide, 300 nm thick)
        Thermometer : thin bilayer film of Ti (40nm) and Au(110 nm)

T

t

τ~CG
~ 1 pJ/K

~ 1 nW/K

Absorber with larger “Z” (to stop the high energy x-rays)



TES microcalorimeter
TES = Transition Edge Sensor

-> using the sharp transition between normal and 
superconducting state to sense the temperature.
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absorber and a thermometer which have a heat capacity C, and are connected to a heat
sink with a thermal conductance G of the thermal link.
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= −G∆T (2.2)

where G is the thermal conductance of the thermal link. Thus, the temparature rise
decays exponentially, with a time constant is

τ =
C

G
(2.3)

The energy resolution is limited by thermodynamic fluctuation in the detector. The
number of phonons in the calorimeter pixel is N ∼ CT/kBT = C/kB. Thus, the thermo-
dynamic fluctuation is given by

∆E ∼
√

NkBT =
√

kBT 2C (2.4)

Fundamental energy resolution limit can be written as

∆EFWHM ∼ 2.35 ξ
√

kBT 2C (2.5)

where ξ is a parameter which depends on the thermometer sensitivity and the operating
condition. Considering the temperature dependence of C, the energy resolution strongly
depends on the temperature, and by operating at extremely low temperature (≤ 0.1 K),
very high energy resolution can be achieved.

Using a thermistor, the temperature rise is sensed as a dynamical change of a resistance.
The thermometer sensitivity α is define by

α ≡ d ln R

d ln T
=

T

R

dR

dT
(2.6)

Thermometer sensitivity

Energy resolution

--> developed by Stanford / NIST
at the beginning

TES ; Transition Edge Sensor (超伝導遷移端温度計)

入射したX線光子のエネルギーを
素子の微小な温度上昇として測る検出器

エネルギー分解能

TES型X線マイクロカロリメータ

熱容量 C  
～1 pJ/K　 

X線エネルギー 
 E 

吸収体 
温度計 T  
～100 mK 

熱浴 
熱伝導度 G ～1 nW/K 

温度計の感度

超伝導遷移端での急激な
抵抗変化で素子の温度上昇を計測

log R 

log T 

常伝導状態 

超伝導状態 

遷移端  
幅～数 
mK 

α～100-1000 

 遷移端幅
～数 mK

! 

"E(FWHM ) = 2 2ln2
k
B
T
2
C

#
$1eV1 eV

introduction 
2/2

単素子 (200 μm角)：ΔE = 2.8 eV @ 5.9 keV

※ 世界最高性能 [NASA/GSFC]：ΔE = 1.6 eV @ 5.9 keV 

これまでの研究成果

3

~ 2 eV @ 6 keV

ΔE~ a few mK
width of transition edge

Dynamic range
Emax ~ CTC / α

 Trade-off between dynamic range and 
energy resolution : ΔE ~ √Emax

( Johnson noise and phonon noise are the most fundamental )



 W.B. Doriese, TES Workshop @ ASC (Portland), October 8, 2012 
synchrotron spectroscopy    our spectrometer    results 

installed TES spectrometer 

NSLS U7A:  
soft-X-ray (200 & 800 eV) 
spectroscopy beamline. 

installed: 
late 2011 

NIST TES array system

W.B. Doriese, TES Workshop @ ASC (Portland), Oct 8, 2012

• 1 pixel : 350 x 350 μm2

• 160 array : total ~ 20 mm2

• 2~3 eV (FWHM) @ 6 keV

e.g., soft-X-ray spectroscopy @ BNL

well established system!

 NIST’s standard TES

~ 200 eV (FWHM) @ 6 keV
... a typical Silicon detector

used in the previous K-atom exp.

two-order 
improved
resolution



NIST TES for gamma-rays

D. A. Bennett et al., Rev. Sci. Instrum. 83, 093113 (2012)

• 1 pixel : 1.45 x 1.45 mm2

• 256 array : total ~ 5 cm2

• 53 eV (FWHM) @ 97 keV

e.g., hard-X-ray spectroscopy  NIST’s standard TES

State-of-art high-purity
germanium detectors

an order 
improved
resolution

093113-4 Bennett et al. Rev. Sci. Instrum. 83, 093113 (2012)

(a) (b)

1.4 mm

SU8 posts

MoCu film

FIG. 3. (a) Photograph of a TES microcalorimeter before the absorber is
attached showing the Si3N4 membrane (darker area), TES in the middle, and
20 SU8 posts connected to the TES by the copper legs. (b) A portion of one
of the detector chips where some of the TES have been absorberized.

(Fig. 3(a)). The posts are connected to the Mo-Cu film by cop-
per traces of equal length to ensure that heat traveling through
any one of the posts has a similar thermal path to the Mo-Cu
film.

The absorbers, shown for a few of the pixels in Fig. 3(b),
are 1.45 by 1.45 mm by 0.38 mm thick pieces of polycrys-
talline Sn. Sn is chosen because it has reasonably high effi-
ciency for stopping gamma rays in the energy range of inter-
est (20 keV to 220 keV), while still having low specific heat
near 120 mK. The transition temperature of Sn is 3.7 K, well
above the operating temperature of these devices. In this case,
the phonon contribution, which scales as T3, dominates over
the electron contribution to the specific heat, which scales as
e−!/kBT . The heat capacity of the tin absorber is predicted
to be 22.5 pJ/K, using the Debye temperature of bulk tin,
195 K, and a device temperature near Tc = 120 mK. We can
estimate the energy resolution of these devices by scaling the
22 eV FWHM energy resolution result from Bacrania et al.1

up to the design values of C and Tc to predict a FWHM energy
resolution of 77 eV. On a previous array10 with Sn absorbers
2.25 mm2 by 0.25 mm thick, we achieved energy resolutions
consistent with this scaling.

B. TES array fabrication and detector hybridization

Large arrays of TES sensors are made possible by mod-
ern microfabrication techniques. The detector fabrication pro-
cess starts with 3 in. Si wafers. The wafers are 275 µm thick
and polished on both sides. We grow 120 nm of SiO2 on
the wafers by use of wet thermal oxidation. Then we deposit
1 µm of stoichiometric silicon-nitride (Si3N4) by use of low
pressure chemical vapor deposition. We etch alignment marks
into the Si3N4 on the front side of the wafers.

We then deposit a superconducting bilayer of Mo and Cu
with dc-magnetron sputtering. The Mo and Cu thicknesses
are chosen to give suitable device Tc and RN. Typically, the
Mo is 100 nm thick and the Cu 200 nm. Using two lithogra-
phy and wet etch steps, we pattern the bilayer into TESs with
Mo leads. A wide border of bilayer is left around the perime-
ter of each die. In the next step, we use lift-off lithography
and electron-beam evaporation to deposit the Cu banks on the
edge of the TESs and bars, which extend from the banks onto
the TES bilayer. The thickness of this additional Cu layer is

500 nm. We designed the pattern for this step to also place
Cu around the perimeter of the chip to aid heat-sinking. A
subsequent lift-off step is used to place 100 nm of Au on the
perimeter to facilitate heat-sink wire-bonding. The last step on
the front side is to form the posts for absorber hybridization.
We first deposit 15 nm of Ti using lift-off in the post locations
to aid post adhesion. We then use SU8, a photo-imageable
epoxy, to form posts that are 35 µm tall.

We conduct the final processing steps on the backside of
the wafer. We affix the frontside of the wafer to a similarly
sized sapphire carrier wafer using wax. The Si3N4 and SiO2

are stripped from the backside by use of reactive ion etching.
We deposit a 1 µm Au backside thermal heat sink layer by
use of a lift-off process. Then we use a Bosch-process Si deep
etch to remove the Si behind each TES to form Si3N4 mem-
branes. The deep-etch step also separates the wafer into dies.
We extract the individual die by thermally reflowing the wax
layer and sliding the die off the sapphire carrier wafer. The
die is then solvent-cleaned to remove the wax.

Absorber attachment begins with preparation of the Sn.
The 99.99+ percent pure Sn is crushed in a vise to the desired
thickness of 0.38 mm. The cold working of the Sn increases
its hardness, allowing cleaner cuts with a dicing saw. Previous
experiments have shown that the change in grain size from
this cold working does not affect the performance of Sn as a
gamma-ray absorber in microcalorimeters.11 We then dice the
Sn into 1.45 mm squares with a diamond blade.

Each Sn absorber is physically attached by glue to 20
posts made of a photo-imagable epoxy (SU8) by use of a die
bonder. The bonder has a micromanipulator with an 8:1 ratio
and contains both a tweezer used to hold the glue applica-
tor and a vacuum tool to pick up the absorber. A controlled
amount of glue is applied to all of the posts of a single de-
tector and then the absorber is placed on the posts and left
to dry. The die bonder also allows the same force to be ap-
plied to each absorber. This process consistently yields well
over 90% attachment. For a small number of microcalorime-
ters per chip, the glue used to attach the absorber can spread
too far and cause a thermal short to the silicon wafer. We are
making design changes and process improvements to elimi-
nate these glue shorts and achieve close to 100% attachment
yield.

IV. INSTRUMENT DESIGN AND EXPERIMENTAL
SETUP

A. Cryogenics

The key advantage of superconducting microcalorimeters
is derived from low-temperature operation, because energy
resolution scales as !E ∝ Tc. The NIST-LANL gamma spec-
trometer achieves low temperatures by use of a pulse-tube-
backed adiabatic demagnetization refrigeration (ADR) capa-
ble of cooling the detector package to a base temperature of
50 mK without the use of liquid cryogens. The absence of
liquid cryogens allows convenient use of the instrument by
non-experts outside of specialized cryogenic laboratories.

The cryostat is shown in Fig. 4 along with the de-
tector housing. The left side of Fig. 4 shows a schematic
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for 100 - 400 keV



Is 160 pixel (= 20 mm2) enough?

Energy resolution
in FWHM

K-4He Kα
events

Stat. accuracy of
ene. determining (6 keV)

KEK-E570
with SDD 190 eV 1500 events 2 eV

= 190 / 2.35 / sqrt(1500)

TES 2 ~ 3 eV 100 events
(~ 4-day beam)

~ 0.1 eV
= 2 ~ 3 / 2.35 / sqrt(100)

estimated K-4He Kα yield (w/ realistic setup)
~ 25 events / day

TWO
orders
higher

ONE
order
lower

ONE
order
better



Count rate with TES

‣ Practical x-ray TES time constants ~ 100 - 500 μs

‣ 10s of Hz / TES for highest resolution

 W.B. Doriese, TES Workshop @ ASC (Portland), October 8, 2012 
synchrotron spectroscopy    our spectrometer    results 

TES count rate 

�fall ~ 100 & 500 �s 
          for most X-ray TESs 

'��������������(����$#���!�����JLTP (1993)]: 
 

% requires one � / record 
 

% limited to 10s of Hz / TES for highest resolution 
with practical X-ray-TES time constants 

 

‣ Prev. exp : single count rate (incl. bg) ~ 1000 Hz for 100 mm2

‣ Effective area ~ 0.1 mm2 / TES  -> ~ 1 Hz / TES

--> acceptable even 10 times higher count rate



3. What do we measure?
1. Short introduction
2. NIST’s multi-pixel TES array
3. What do we measure ? 
4. Experimental setup
5. Yield estimations
6. The first test exp. at NIST
7. Anti-coincidence system
8. Summary



1)  Kaonic helium 3 & 4
( & Pionic helium 3 & 4 )
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308 S. Baird et al. / Exotic atoms 

nuclei have been analysed by Batty 11) using an optical-model potential of the form 

V(r)=27rh2( 1 + m~---)dO (r),  
/z 

where tz is the reduced mass of the kaon-nucleus  system, m is the mass of the 
nucleon, p(r) is the nuclear density distribution normalized to A and d is an 
adjustable complex paramete r  which plays the role of an effective scattering length. 
Using the value ~ = 0.34 + i0.84 fm obtained from an analysis of all available data 
for heavier nuclei gives t~2p = --0.0002 keV and/ '2p = 0.002 keV for helium, values 
which are much smaller than those measured.  The predicted values are generally 
insensitive to the form chosen for t~ (r). 

It is interesting to speculate as to possible reasons for this apparent  discrepancy 
between the measured values and the simple optical-model predictions for helium. 
Because the nucleons in 4He are tightly bound by - 2 0  MeV the effective energy 
( - 1 4 1 1  MeV) for kaon-nucleon interactions in 4He is very close to the energy of 
the A(1405) resonance. As a result it may not be too surprising that parameters  
which fit data for heavier nuclei where the interaction energy is further away from 
the resonance do not fit the helium values. However,  no simple modification to 
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Fig. 5. Calculated strong interaction shift and width for kaonic helium as a function of the value of the 
real part of ~. The calculations used a~ = 0.1 fm. 
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S. Baird et al., NPA392(1983)297

30 years ago!



Experiment

stat. and syst. errors are quadratically added

previous 3 exp.

BT90
HZ00
FR06

Potential strength
U0[MeV]

AK05

Theory

(Ucoupl = 120 [MeV])

WG71 : C.E. Wiegand and R. Pehl, PRL27,1410 (1971).
BT79 : C.J. Batty et al., NPA326, 455 (1979).
BR83 : S. Baird et al., NPA392, 297 (1983).
BT90 : C.J. Batty, NPA 508, 89c (1990).
HZ00 : S. Hirenzaki et al., PRC 61, 055205 (2000).
FR06 : E. Friedman, private communication (2006).
AK05 : Y.Akaishi, EXA05 proceedings (2005).

E570 exp.

Original motivation
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(Japan)
in 2007

3He4He

Y. Akaishi, in: Proceedings for EXA05, Austrian 
Academy of Sciences Press, Vienna, 2005, p. 45.

phenomenological fundamental
| Shift | << 0.2 eV

@DAFNE (Italy)
in 2009-2011

| Shift | <~ 10 eV

3He

shallow deep

using conventional Si detector
having ~ 200 eV(FWHM) resolution
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Advanced motivation

• Shift accuracy : < 0.1 eV
• Width accuracy: < 2~3 eVHigh accuracy measurement

started theoretical calc. for K-d
by S. Ohnishi et al.

motivated

To compare the data, need more precise calc.
-> Few-body calculation (e.g., Hiyama-san)

including nuclear excitation effects etc.



Advanced motivation

K-3He & K-4He  3d-2p  :   6 keV

Comparison with few body calculations

&

3d-2p  :   2 keV
2p-1s  : 11 keV

π-3He & π-4He 

so far, no accurate data using crystal spectrometer

πN
well known

KN
poorly known



2)  Kaon mass



strong-interaction study
the most tightly bound energy levels that are 

the most perturbed by the strong force

Kaon mass
the higher orbit having almost

no influence on the strong interaction

Small n

Large n

nucleus
K-

K-

Summary of Kaonic atom study
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WEIGHTED AVERAGE
493.677±0.013 (Error scaled by 2.4)

Values above of weighted average, error,
and scale factor are based upon the data in
this ideogram only.  They are not neces-
sarily the same as our ‘best’ values,
obtained from a least-squares constrained fit
utilizing measurements of other (related)
quantities as additional information.
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error bar
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Kaon mass is essential to determine the strong- 
interaction shift with 0.1-eV order of magnitude.

( Δm = 16 keV -->  EM value for K-He Lα = 0.15eV )
( Δm = 2.5 keV -->  EM value for K-He Lα = 0.03eV )

most fundamental quantity
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measurement with TES
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multi-nucleon process
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Abstract

Recent studies of strong-interaction effects in kaonic atoms suggest that analysing so-called ‘lower’ and
‘upper’ levels in the same atom could separate one-nucleon absorption from multinucleon processes. The
present work examines the feasibility of direct measurements of upper level widths in addition to lower
level widths in future experiments, using superconducting microcalorimeter detectors. About ten elements
are identified as possible candidates for such experiments, all of medium-weight and heavy nuclei. New
experiments focused on achieving good accuracy for widths of such pairs of levels could contribute signifi-
cantly to our knowledge of the K−–nucleon interaction in the nuclear medium.
 2013 Elsevier B.V. All rights reserved.

Keywords: Kaonic atoms; Antikaon–nucleon interaction; Microcalorimeter

1. Introduction

Results of the precision measurements of kaonic hydrogen atoms by the SIDDHARTA Col-
laboration [1,2] form already part of the data-base used by Ikeda, Hyodo and Weise (IHW) in
constructing the antikaon–nucleon scattering amplitudes near threshold [3,4]. Studies of kaonic
atoms using potentials built on sub-threshold in-medium antikaon–nucleon scattering ampli-
tudes [5–7] clearly indicate that multinucleon processes contribute significantly to the observed
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0375-9474/$ – see front matter  2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.nuclphysa.2013.07.005



E. Friedman, S. Okada / Nuclear Physics A 915 (2013) 170–178 171

Table 1
rms radii of various terms of the K−–nucleus potential (in fm). rm is the rms radius of the nucleus.

rm Re(full) Re(1N) Re(mN) Im(full) Im(1N) Im(mN)

Ni 3.72 3.34 3.82 2.86 3.73 4.46 3.12
Pb 5.56 5.21 5.71 4.78 5.46 6.23 5.00

strong-interaction level shifts and widths. In particular it was shown [8] using the IHW am-
plitudes that analysing so-called ‘lower’ and ‘upper’ levels in the same atom could separate
one-nucleon (1N) absorption from multinucleon (mN) processes. This property is the result of
the very different radial dependences of the 1N and 2N terms of the potential, as demonstrated
for Ni and Pb in Table 1. It is seen that in both examples the rms radius of the 1N real term is
larger than that for the mN real term by 0.95 fm and that for the imaginary part the difference is
1.2 to 1.3 fm.

With the one-nucleon amplitudes firmly based on the SIDDHARTA experiment and its sub-
sequent analyses, there is now a possibility to gain information on multinucleon processes of
antikaons in nuclei. This calls for reduced uncertainties in experimental results, particularly for
the upper level widths.

Strong-interaction effects in exotic atoms have been studied in great detail for several decades,
see [9] for a recent review. Regarding strengths of absorption, kaonic atoms are intermediate be-
tween weak absorption in pionic atoms and very strong absorption in antiprotonic atoms. Absorp-
tion is sufficiently strong to make it the dominant effect in kaonic atoms, where strong-interaction
level widths are up to one order of magnitude larger than the corresponding strong-interaction
level shifts. Furthermore, these shifts are almost universally repulsive, although the real poten-
tials required to fit kaonic atom data are attractive. Hence the role of the real part is secondary to
that of the imaginary part of the potential.

The level width which is usually obtained as the imaginary part of the complex eigenvalue
when solving the Klein–Gordon equation with an optical potential [10] is also related to the
imaginary part of the potential as follows

Γst = −2

∫
ImVopt|ψ |2 d"r∫

[1 − (B + VC)/µ]|ψ |2 d"r (1)

where B , VC and µ are the K− binding energy, Coulomb potential and reduced mass, respec-
tively. (For a Schroedinger equation the denominator is just the normalizing integral.) The widths
are therefore the quantities which are more directly connected to the potential.

All available experimental results regarding upper levels in kaonic atoms are in the form of
relative yields, defined as

Y rel = Γrad/(Γrad + Γst) (2)

where Γrad and Γst are the radiation width of the upper to lower level transition and the strong-
interaction width of the upper level, respectively. The relative error of the derived Γst which is the
quantity of interest turns out to be the relative error of the measured yield divided by (1 − Y rel),
introducing conflicting demands between intensity and accuracy.

The available data for kaonic atoms are based on experiments of three to four decades ago
[11]. Although the data cover the whole of the periodic table with reasonably good accuracy for
the shifts and widths of the lower levels, the widths of the upper levels are determined from the
measured relative yields of the upper to lower level transitions. This causes an increase of errors

Analysing so-called ‘lower’ and ‘upper’ levels in the same atom could 
separate one-nucleon (1N) absorption from multinucleon (mN) processes.
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Table 2
Absolute and relative yields of the relevant transitions for kaonic atoms indicated in the figures. Also listed are the (n, l)
values of the various levels, see text.

Target U + 1 U L Y abs
U+1→U Y abs

U→L Y rel
U→L

Ca (5,4) (4,3) (3,2) 0.665 0.044 0.061
Ti (5,4) (4,3) (3,2) 0.627 0.019 0.029
Cr (5,4) (4,3) (3,2) 0.570 0.012 0.019

Se (6,5) (5,4) (4,3) 0.705 0.091 0.121
Kr (6,5) (5,4) (4,3) 0.689 0.061 0.083
Sr (6,5) (5,4) (4,3) 0.663 0.043 0.062
Zr (6,5) (5,4) (4,3) 0.628 0.031 0.047

Sn (7,6) (6,5) (5,4) 0.706 0.218 0.292
Te (7,6) (6,5) (5,4) 0.696 0.152 0.207
Ba (7,6) (6,5) (5,4) 0.651 0.069 0.101

Yb (8,7) (7,6) (6,5) 0.674 0.236 0.331
Ta (8,7) (7,6) (6,5) 0.655 0.147 0.212
Pb (8,7) (7,6) (6,5) 0.601 0.067 0.107

Fig. 5. Summary of upper-level results and the feasibility guideline due to the detector resolution.

gratifying to note that all the relative yields are smaller than 0.25–0.33 so that the increase of the
relative errors of the corresponding width due to the 1/(1 − Y rel) factor is not too large.

Strong-interaction widths of many other levels are part of the input into the atomic cascade
calculations and these were calculated from the same potential Eq. (3). The results in the table
were calculated assuming the standard statistical distribution of the population of l values for
large n. Varying the parameter α in the range of ±0.1 can change absolute yields by up to ±20%.
However, absolute yields do not serve any purpose in the analysis; they should be regarded only
as estimates that are useful in planning experiments.

Fig. 5 shows a summary of the present results for upper levels and the guideline based on the
detector resolution. The lower dashed curve represents a fixed value of "E = 53 eV between
100 and 400 keV and the upper dashed curve is for "E = 53 × √

EX/100 eV where EX is
in keV. However, the widths of lower levels must also be taken into consideration in planning
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utilizing ρ2 dependence
in high-Z K-atoms
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gratifying to note that all the relative yields are smaller than 0.25–0.33 so that the increase of the
relative errors of the corresponding width due to the 1/(1 − Y rel) factor is not too large.

Strong-interaction widths of many other levels are part of the input into the atomic cascade
calculations and these were calculated from the same potential Eq. (3). The results in the table
were calculated assuming the standard statistical distribution of the population of l values for
large n. Varying the parameter α in the range of ±0.1 can change absolute yields by up to ±20%.
However, absolute yields do not serve any purpose in the analysis; they should be regarded only
as estimates that are useful in planning experiments.

Fig. 5 shows a summary of the present results for upper levels and the guideline based on the
detector resolution. The lower dashed curve represents a fixed value of "E = 53 eV between
100 and 400 keV and the upper dashed curve is for "E = 53 × √

EX/100 eV where EX is
in keV. However, the widths of lower levels must also be taken into consideration in planning
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well separated from
“Compton scattered X-rays”

and “Fe Ka energy”.

Both have been serious problems
in the prev. experiments.
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Summary
๏ Next-generation hadronic-atom exp. with NIST TES array having great 
performance of 2~3 eV (FWHM) resolution @ 6keV

๏ π-3,4He , K-3,4He --> comparison with few-body calc.

๏ new accurate charged kaon mass

๏ multi-nucleon process of K in nucleus ( w/ ‘upper’ & ‘lower’ levels)

๏ w/ k/M-pixel TES : other hadronic atom (Σ-, Ξ-) x-ray spectroscopies

๏ Test experiment without beam was done. (evaluation of basic performance)

๏ future perspective
‣ 2014 : test experiment with beam ( at PSI / TRIUMF / J-PARC ?)
‣ --> and preparation of LoI / proposal to J-PARC

in future



  J-PARC E15/E17 collaborators

  RIKEN :  T. Tamagawa, S. Yamada (ASTRO-H)

  NIST(Boulder) : D.A. Bennett, W.B. Doriese, G.C. O'Neil, 

J.W. Fowler, K.D. Irwin, D.S. Swetz, D.R. Schmidt, J.N. Ullom

  Tokyo Metropolitan Univ. : Y. Ezoe, Y. Ishizaki,  T. Ohashi

  KEK : S. Ishimoto, M. Hazumi

  Univ. of Tokyo : M. Ohno

Thanks to


