Quarkonia and their decay properties

Ajay Kumar Rai

Department of Applied Physics, Sardar Vallabhbhai National Institute of Technology, Surat, INDIA

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

Outline

Introduction

Theoretical Framework

Mass Spectrum Decay Constants Electric Dipole Transitions Two photon decay width

Results

Mass Spectrum Decay Constants Electric Dipole Transitions Transitions Two photon decay widths

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Conclusion

References

Introduction

- The number of known states for the $c\bar{c}$ and $b\bar{b}$ is constantly increasing.
- It is believed that some of these new states could be the first manifestation of the existence of exotic hadrons (tetraquarks, molecules, hybrids etc)[1, 2, 3].
- In order to explore such options, a comprehensive understanding of the heavy quarkonium spectroscopy is required.

Theory

Mass Spectrum

We use the following Hamiltonia[4]

$$H = \sqrt{\mathbf{p}^2 + m_Q^2} + \sqrt{\mathbf{p}^2 + m_{\bar{Q}}^2} + V(\mathbf{r})$$
(1)

The inter-quark potential is of the form[5, 6, 7],

$$V(r) = -\frac{\alpha_c}{r} + Ar^{\nu} + V_0 \tag{2}$$

Choose a hydrogenic trial wavefunction

$$R_{nl}(r) = \left(\frac{\mu^3(n-l-1)!}{2n(n+l)!}\right)^{1/2} (\mu r)^l e^{-\mu r/2} L_{n-l-1}^{2l+1}(\mu r) \quad (3)$$

The Gaussian Wavefunction has the form

$$R_{nl}(\mu, r) = \mu^{3/2} \left(\frac{2(n-1)!}{\Gamma(n+l+1/2)} \right) (\mu r)^{l} e^{-\mu^{2} r^{2}/2} L_{n-1}^{l+1/2}(\mu^{2} r^{2})$$

Theory

Mass Spectrum

Fix α_s using the formula[8, 9, 10]

$$\alpha_s = \frac{4\pi}{\left(11 - \frac{2}{3}n_f\right)\ln\frac{M^2 + m_B^2}{\Lambda^2}}$$

where $M=2m_Qm_{\bar{Q}}/\left(m_Q+m_{\bar{Q}}\right)$, $M_B=0.95~{\rm GeV}$ and $\Lambda=413~{\rm MeV}$.

- By using suitable value of A, use virial theorem[11] to find the variational parameter μ.
- Solve the Schrodinger equation

$$H\psi = E\psi$$
 (5)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

to obtain the ground state spin-averaged mass of the meson.

Match the obtained spin-avergaed mass to experimental measurement using the equation

$$M_{CW,n} = \frac{\sum_{J} 2(2J+1) M_{nJ}}{\sum_{J} 2(2J+1)}$$
(6)

by fixing the value of parameter V_0

 Use the following equation to get excited state spectrum[12, 13, 14],

$$V_{SD}(\mathbf{r}) = \left(\frac{\mathbf{L} \cdot \mathbf{S}_{\mathbf{Q}}}{2m_{Q}^{2}} + \frac{\mathbf{L} \cdot \mathbf{s}_{\mathbf{Q}}}{2m_{\bar{Q}}^{2}}\right) \left(-\frac{dV(r)}{dr} + \frac{8}{3}\alpha_{S}\frac{1}{r^{3}}\right) + \frac{4}{3}\alpha_{S}\frac{1}{m_{Q}m_{\bar{Q}}}\frac{\mathbf{L} \cdot \mathbf{S}}{r^{3}} + \frac{4}{3}\alpha_{S}\frac{2}{3m_{Q}m_{\bar{Q}}}\mathbf{S}_{\mathbf{Q}} \cdot \mathbf{s}_{\mathbf{Q}}4\pi\delta(\mathbf{r}) + \frac{4}{3}\alpha_{S}\frac{1}{m_{Q}m_{\bar{Q}}}(3(\mathbf{S}_{\mathbf{Q}} \cdot \mathbf{n}) - (\mathbf{s}_{\mathbf{Q}} \cdot \mathbf{n}) - \mathbf{S}_{\mathbf{Q}} \cdot \mathbf{s}_{\mathbf{Q}})\frac{1}{r^{3}},$$
where $\mathbf{n} = \frac{\mathbf{r}}{r}$
(7)

 The decay constants are evaluated using the relation[15],

$$f_{P/V}^2 = \frac{12 \left| \psi_{P/V}(0) \right|^2}{M_{P/V}} \bar{C}^2(\alpha_S)$$
(8)

Where $\bar{C}(\alpha_{S})$ is the QCD correction factor given by[16]

$$\bar{C}^2(\alpha_S) = 1 - \frac{\alpha_S}{\pi} \left[2 - \frac{m_Q - m_{\bar{Q}}}{m_Q + m_{\bar{Q}}} \ln \frac{m_Q}{m_{\bar{Q}}} \right]$$
(9)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Theory Electric Dipole Transitions

The E1 radiative transition rate is given by[17, 18]

$$\Gamma(i \to f + \gamma) = \frac{4\alpha \langle e_Q \rangle^2}{27} k^3 (2J_f + 1) \left| \langle f | r | i \rangle \right|^2 S_{if} \quad (10)$$

where S_{if} is the statistical factor with $S_{if} = 1$ for the transitions between spin-triplet states and $S_{if} = 3$ for the transition between spin-triplet states, $\langle e_Q \rangle$ is an effective quark charge given by

$$\langle e_Q \rangle = \frac{m_{\bar{Q}} e_Q - m_Q e_{\bar{Q}}}{m_Q + m_{\bar{Q}}} \tag{11}$$

Theory Magnetic dipole transitions

 The M1 rate for transitions between S-wave levels is given by[17, 19, 18]

$$\Gamma_{M1}(i \to f + \gamma) = \frac{16\alpha}{3} \mu^2 k^3 (2J_f + 1) |\langle f | j_0(kr/2) | i \rangle|^2$$

where the magnetic dipole moment is

$$\mu = \frac{m_{\bar{Q}}e_Q - m_Q e_{\bar{Q}}}{4m_{\bar{Q}}m_Q}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

and *k* is the photon energy.

Theory

Two photon decay widths

In the non-relativistic limit, the two-photon decay widths of $c\bar{c}$; ${}^{1}S_{0}$, ${}^{3}P_{0}$, and ${}^{3}P_{2}$ can be written as [20]

$$\Gamma^{NR}({}^{1}S_{0} \to \gamma\gamma) = \frac{3\alpha^{2}e_{c}^{4} \left|R_{nS}(0)\right|^{2}}{m_{c}^{2}},$$
(12)

$$\Gamma^{NR}({}^{3}P_{0} \to \gamma\gamma) = \frac{27\alpha^{2}e_{c}^{4}\left|R_{nP}^{\prime}(0)\right|^{2}}{m_{c}^{4}},$$
(13)

$$\Gamma^{NR}({}^{3}P_{2} \to \gamma\gamma) = \frac{36\alpha^{2}e_{c}^{4} |R_{nP}^{\prime}(0)|^{2}}{5m_{c}^{4}}.$$
 (14)

The first-order QCD radiative corrections to the two-photon decay rates can be accounted for as[20]

$$\Gamma({}^{1}S_{0} \to \gamma\gamma) = \Gamma^{NR}({}^{1}S_{0} \to \gamma\gamma) \times \left[1 + \frac{\alpha_{S}}{\pi} \left(\frac{\pi^{2}}{3} - \frac{20}{3}\right)\right], \quad (15)$$

Theory Two photon decay widths

$$\Gamma({}^{3}P_{0} \to \gamma\gamma) = \Gamma^{NR}({}^{3}P_{0} \to \gamma\gamma) \times \left[1 + \frac{\alpha_{S}}{\pi} \left(\frac{\pi^{2}}{3} - \frac{28}{9}\right)\right], \quad (16)$$

$$\Gamma({}^{3}P_{2} \to \gamma\gamma) = \Gamma^{NR}({}^{3}P_{2} \to \gamma\gamma) \times \left[1 - \frac{16\alpha_{S}}{3\pi}\right].$$
(17)

In calculating these decay widths we have made use of the spectroscopic parameters obtained from the present model using the gaussian wavefunction only.

Results Fitted and Used Parameters

	1/	c	īc	l	-					
		Gauss.	Hydro.	Gauss.	Hydro.	-				
	1.0	-0.287	-0.213	-0.370	-0.336					
A = 0	0.175 f	for cā wh	ile $A = 0.2$	24 for <i>b</i> ,	$m_b = 4.88$	GeV,				
$m_c = 1.55 GeV$										

<□▶ < □▶ < □▶ < □▶ < □▶ < □▶ = □ の < ⊙

Table, Value of 1/ (in Cal/)

Spin Averaged Masses

Table : S wave Spin Averaged Masses of $c\bar{c}$

		Hydrogenic				Gaussian		Expt.[1]	Theory
nL	ν	μ	<i>R</i> (0)	Ε (μ)	μ	<i>R</i> (0)	Ε (μ)	(GeV)	(GeV)
		(GeV)	GeV ^{-7/}	(GeV)	(GeV)	GeV ⁵ /-	(GeV)		
	0.5	1.362	1.123	3.068	0.526	0.573	3.068	3.068	3.068[2]
10	1.0	1.692	1.556	3.068	0.655	0.797	3.068		3.068[21]
15	1.5	2.014	2.020	3.068	0.771	1.016	3.068		3.068[22]
	2.0	2.317	2.493	3.068	0.872	1.222	3.068		
	0.5	1.097	0.406	3.392	0.294	0.195	3.367	3.674[1]	3.672[2]
20	1.0	1.705	0.787	3.668	0.460	0.382	3.685		3.661[21]
25	1.5	2.290	1.225	3.972	0.624	0.604	4.075		3.666[22]
	2.0	2.811	1.667	4.298	0.778	0.842	4.483		
	0.5	1.072	0.262	3.545	0.233	0.123	3.522		4.026[2]
20	1.0	1.847	0.592	4.063	0.405	0.283	4.122		4.064[21]
35	1.5	2.619	0.999	4.691	0.584	0.490	4.922	▲립▶ ▲ 글	★ ≣ ★ ■

		Hydrogenic			Gaussian			Theory
nL	ν	μ (GeV)	R(0) GeV ^{3/2}	$E(\mu)$ (GeV)	μ (GeV)	R(0) GeV ^{3/2}	$E(\mu)$ (GeV)	(GeV)
	0.5	1.084	0.199	3.652	0.203	0.093	3.634	4.420[2]
4S	1.0	1.985	0.495	4.390	0.376	0.234	4.492	
	1.5	2.909	0.877	5.354	0.564	0.430	5.704	
	2.0	3.682	1.249	6.702	0.755	0.667	7.115	
	0.5	1.103	0.164	3.738	0.184	0.076	3.724	4.830[2]
EC	1.0	2.112	0.434	4.680	0.357	0.204	4.822	
55	1.5	3.162	0.795	5.993	0.551	0.391	6.445	
	2.0	4.009	1.135	8.026	0.752	0.625	8.403	
	0.5	1.125	0.141	3.811	0.171	0.064	3.801	5.164[2]
6S	1.0	2.226	0.392	4.946	0.343	0.183	5.126	
	1.5	3.384	0.734	6.622	0.541	0.363	7.159	
	2.0	4.285	1.045	9.402	0.751	0.594	9.724	

Spin averaged masses

		Hydrogenic				Gaussian		Evot [1]	Theory
nL	ν	μ (GeV)	R(0) GeV ^{3/2}	E(μ) (GeV)	μ (GeV)	R(0) GeV ^{3/2}	E(μ) (GeV)	(GeV)	(GeV)
	0.5	2.647	3.046	9.453	1.019	1.544	9.453	9.453	9.443[2]
1S	1.0	3.007	3.686	9.453	1.160	1.876	9.453		9.445[21]
	1.5	3.299	4.237	9.453	1.261	2.128	9.453		9.442[22]
	2.0	3.555	4.741	9.453	1.339	2.328	9.453		
	0.5	2.043	1.033	9.826	0.548	0.498	9.792		10.015[2]
26	1.0	2.852	1.703	10.024	0.771	0.831	10.021		10.015[21]
25	1.5	3.533	2.348	10.202	0.965	1.162	10.250		9.996[22]
	2.0	4.110	2.946	10.355	1.131	1.476	10.463		
	0.5	1.968	0.651	9.992	0.429	0.308	9.958		10.348[2]
20	1.0	3.044	1.252	10.377	0.670	0.602	10.403		10.348[21]
33	1.5	3.996	1.882	10.757	0.893	0.926	10.896	★ 4 @ ★ 4 3	10.329[22]

Table : S wave Spin Averaged Masses of $b\bar{b}$

€ 990

	ν –	Hydrogenic			Gaussian			Theory
nL		μ (GeV)	R(0) GeV ^{3/2}	Ε (μ) (GeV)	μ (GeV)	R(0) GeV ^{3/2}	Ε (μ) (GeV)	(GeV)
	0.5	1.975	0.491	10.107	0.371	0.229	10.077	10.583[2]
	1.0	3.252	1.037	10.663	0.618	0.494	10.723	
45	1.5	4.429	1.648	11.252	0.857	0.806	11.487	
	2.0	5.480	2.267	11.827	1.080	1.140	12.286	
	0.5	2.003	0.401	10.197	0.335	0.186	10.172	10.864[2]
EC	1.0	3.448	0.905	10.914	0.585	0.429	11.006	
55	1.5	4.823	1.498	11.717	0.834	0.730	12.046	
	2.0	6.068	2.114	12.539	1.073	1.064	13.175	
	0.5	2.038	0.343	10.273	0.310	0.158	10.252	11.076[2]
65	1.0	3.628	0.815	11.143	0.561	0.384	11.266	
03	1.5	5.182	1.390	12.161	0.818	0.675	12.583	
	2.0	6.603	1.999	13.252	1.069	1.009	14.061	

Results Spin averaged masses

nL		Hydrogenic		Gau	ssian	Expt.[1]	Theory
	ν	μ (GeV)	E(μ) (GeV)	μ (GeV)	Ε (μ) (GeV)	(GeV)	(GeV)
	0.5	1.066	3.358	0.331	3.331	3.525[1]	3.525[2]
	1.0	1.607	3.569	0.498	3.531		3.526[21]
IP	1.5	2.117	3.798	0.649	3.740		3.492[22]
	2.0	2.590	4.022	0.761	5.255		
	0.5	1.057	3.526	0.247	3.498		3.926[2]
20	1.0	1.796	4.004	0.420	3.990		3.945[21]
Δr	1.5	2.534	4.576	0.594	4.602		
	2.0	3.226	5.184	0.754	6.550		

Table : P and D wave Spin Averaged Masses of $c\bar{c}$.

		Hydro	ogenic	Gau	ssian	- Theory
nL	ν	μ	$E(\mu)$	μ	$E(\mu)$	(GeV)
		(GeV)	(GeV)	(GeV)	(GeV)	
	0.5	1.074	3.640	0.210	3.614	4.337[2]
20	1.0	1.953	4.351	0.385	4.370	
ЪР	1.5	2.866	5.256	0.570	5.392	
	2.0	3.714	6.325	NS	NS	
	0.5	1.028	3.488	0.272	3.457	3.802[2]
1D	1.0	1.697	3.874	0.448	3.831	3.811[21]
ID	1.5	2.342	4.317	0.614	4.246	
	2.0	2.949	4.763	0.751	7.228	
	0.5	1.056	3.615	0.223	3.584	
ЛС	1.0	1.893	4.263	0.399	4.230	
20	1.5	2.752	5.078	0.580	5.051	
	2.0	3.577	5.970	NS		

Results Spin averaged masses

nL		Hydrogenic		Gau	ıssian	Expt.[1]	Theory
	ν	μ (GeV)	E(μ) (GeV)	μ (GeV)	E(μ) (GeV)	(GeV)	(GeV)
	0.5	1.990	9.792	0.617	9.757	9.899	9.900[2]
	1.0	2.703	9.941	0.836	9.899		9.901[21]
IP	1.5	3.286	10.073	0.907	10.673		9.873[22]
	2.0	3.780	10.188	1.167	11.035		
	0.5	1.941	9.973	0.453	9.936	10.260	10.260[2]
20	1.0	2.968	10.326	0.695	10.300		10.261[21]
ZP	1.5	3.865	10.675	0.865	11.268		10.231[22]
	2.0	4.647	10.995	1.078	11.920		

Table : P and D wave Spin Averaged Masses of $b\bar{b}$.

nL		Hydr	ogenic	Gau	issian	
	ν	μ	$E(\mu)$	μ	$E(\mu)$	Theory (GeV)
		(GeV)	(GeV)	(GeV)	(GeV)	
	0.5	1.958	10.094	0.384	10.059	10.544[2]
3P	1.0	3.204	10.628	0.632	10.627	
	1.5	4.344	11.195	0.840	11.831	
	2.0	5.367	11.740	1.071	12.802	
	0.5	1.890	9.922	0.500	9.895	10.163[2]
1D	1.0	2.812	10.217	0.742	10.168	10.158[21]
ID	1.5	3.587	10.481	0.849	11.591	10.127[22]
	2.0	4.251	10.719	1.071	12.396	
	0.5	1.927	10.055	0.407	10.029	
0.5	1.0	3.110	10.554	0.656	10.512	
2D	1.5	4.178	11.061	NS		
	2.0	5.129	11.546	NS		

Mass spectrum

Table : Mass spectrum of charmonium(in GeV).

State	This	s Work	Expt [1]	Ref[2]	Ref [21]	Bef[22]
State	Gaussian	Hydrogenic		101[2]	101(21)	101[22]
1 ¹ <i>S</i> ₀	2.972	2.800	2.980	2.981	2.979	2.980
1 ³ <i>S</i> ₁	3.100	3.157	3.097	3.096	3.096	3.097
1 ³ <i>P</i> ₀	3.455	3.405	3.415	3.413	3.424	3.436
1 ³ <i>P</i> ₁	3.519	3.535	3.511	3.511	3.510	3.486
1^1P_1	3.531	3.569	3.525	3.525	3.526	3.493
$1^{3}P_{2}$	3.554	3.622	3.556	3.555	3.556	3.507
2 ¹ S ₀	3.665	3.585	3.637	3.635	3.588	3.608
2 ³ S ₁	3.692	3.695	3.686	3.685	3.686	3.686
1 ³ <i>D</i> ₁	3.823	3.848	3.773	3.783	3.798	
$1^{3}D_{2}$	3.831	3.873		3.795	3.813	
1^1D_2	3.833	3.874		3.807	3.811	
1 ³ <i>D</i> ₃	3.833	3.886		3.813	3.815	

Ξ.

State	Thi	s Work	Expt [1]	Ref[2]	Ref [21]
	Gaussian	Hydrogenic		[-]	[]
2 ³ P ₀	3.930	3.756		3.870	3.854
2 ³ P ₁	3.980	3.948		3.906	3.929
2 ¹ <i>P</i> ₁	3.990	4.004		3.926	3.945
2 ³ P ₂	4.008	4.088	3.927	3.949	3.972
3 ¹ <i>S</i> ₀	4.111	4.015		3.989	3.991
3 ³ <i>S</i> ₁	4.126	4.079	4.039	4.039	4.088
2 ³ D ₁	4.221	4.210	4.153	4.150	
2 ³ D ₂	4.230	4.256		4.190	
2 ¹ D ₂	4.231	4.263	4.156	4.196	
2 ³ D ₃	4.232	4.291		4.220	
3 ³ P ₀	4.314	4.021		4.301	
3 ³ P ₁	4.361	4.273		4.319	
3 ¹ <i>P</i> 1	4.370	4.351		4.337	
3 ³ P ₂	4.388	4.463	4.351	4.354	
4 ¹ S ₀	4.484	4.356		4.401	
4 ³ <i>S</i> ₁	4.494	4.401	4.421	4.427	

Mass Spectrum

Table : Mass spectrum of bottomonium(in GeV).

State	Thi	s Work	Expt [1]	Ref[2]	Ref [21]	Ref[22]	
	Gaussian	Hydrogenic	2.12.12.12.12	101[2]	101[21]		
1 ¹ S ₀	9.421	9.331	9.391	9.398	9.400	9.377	
1 ³ <i>S</i> ₁	9.464	9.494	9.460	9.460	9.460	9.464	
1 ³ <i>P</i> ₀	9.879	9.887	9.859	9.859	9.863	9.834	
1 ³ <i>P</i> ₁	9.892	9.930	9.893	9.892	9.892	9.864	
1^1P_1	9.899	9.941	9.898	9.900	9.901	9.873	
$1^{3}P_{2}$	9.908	9.959	9.912	9.912	9.913	9.886	
2 ¹ S ₀	10.014	9.998		9.990	9.993	9.963	
2 ³ S ₁	10.023	10.033	10.023	10.023	10.023	10.007	
1 ³ <i>D</i> ₁	10.165	10.207		10.154	10.153	10.120	
$1^{3}D_{2}$	10.168	10.216	10.164	10.161	10.158	10.126	
1^1D_2	10.168	10.217		10.163	10.158	10.127	
1 ³ D ₃	10.171	10.222		10.166	10.162	10.130	

500

Ξ.

State	Thi	s Work	Expt [1]	Ref [2]	Ref [21]	Bef[22]
Biato	Gaussian	Hydrogenic	2.100(1)	100.[2]	101(21)	101[22]
2 ³ <i>P</i> ₀	10.282	10.251	10.232	10.233	10.234	10.199
2 ³ <i>P</i> ₁	10.294	10.308	10.255	10.255	10.255	10.224
$2^{1}P_{1}$	10.300	10.325	10.259	10.260	10.261	10.231
2 ³ P ₂	10.307	10.352	10.269	10.268	10.268	10.242
3 ¹ <i>S</i> ₀	10.400	10.362		10.329	10.328	10.298
3 ³ <i>S</i> ₁	10.404	10.381	10.355	10.355	10.355	10.339
2 ³ D ₁	10.508	10.536		10.435		10.573
2 ³ D ₂	10.511	10.551		10.443		10.602
2 ¹ D ₂	10.512	10.554		10.445		
2 ³ D ₃	10.514	10.563		10.449		
3 ³ P ₀	10.613	NS		10.521		
3 ³ <i>P</i> 1	10.622	NS		10.541		
3 ¹ <i>P</i> ₁	10.627	NS		10.544		
3 ³ P ₂	10.633	NS		10.550		
4 ¹ S ₀	10.720	10.653		10.573		
$4^{3}S_{1}$	10.723	10.666	10.579	10586		
-1 c	11 005	10.006		10.951	• • 🗗 • •	(三)→ (三)→

Decay Constant

State			ē	
Otato		Gauss.	Hydro.	Others
16	Uncor.	0.468	0.809	$\textbf{0.335} \pm \textbf{0.075} \texttt{[23]}$
15	Cor.	0.316	0.549	
25	Uncor.	0.194	0.397	
23	Cor.	0.132	0.269	
25	Uncor.	0.136	0.285	
35	Cor.	0.092	0.194	
45	Uncor.	0.108	0.230	
45	Cor.	0.073	0.156	

Table : Pseudoscalar Decay Constants of $c\bar{c}$ (in GeV)

Decay Constants

Ohaha		ЬБ					
State		Gauss.	Hydro.	Others			
1 <i>S</i>	Uncor.	0.595	1.164	0.711[24]			
	Cor.	0.471	0.920				
	Uncor.	0.256	0.525				
25	Cor.	0.203	0.415				
	Uncor.	0.182	0.380				
35	Cor.	0.144	0.300				
4 <i>S</i>	Uncor.	0.147	0.310				
	Cor.	0.116	0.245				

Table : Pseudoscalar Decay Constants of $b\bar{b}$ (in GeV)

Decay Constants

State		cē					
Clate		Gauss.	Hydro.	Others[25]			
16	Uncor.	0.479	0.887	$\textbf{0.459} \pm \textbf{0.028}$			
15	Cor.	0.324	0.603				
	Uncor.	0.195	0.403				
23	Cor.	0.132	0.274				
26	Uncor.	0.136	0.287				
35	Cor.	0.092	0.195				
45	Uncor.	0.108	0.231				
45	Cor.	0.073	0.157				

Table : Vector Decay Constants of $c\bar{c}$ (in GeV)

Decay constants

State		ЬБ						
State		Gauss.	Hydro.	Others[26]				
16	Uncor.	0.597	1.174	$\textbf{0.708} \pm \textbf{0.008}$				
15	Cor.	0.472	0.928					
2 <i>5</i>	Uncor.	0.257	0.526					
	Cor.	0.203	0.416					
3 <i>5</i>	Uncor.	0.182	0.380					
	Cor.	0.144	0.300					
4 <i>S</i>	Uncor.	0.147	0.310					
	Cor.	0.117	0.245					

Table : Vector decay constants of $b\bar{b}$ and (in GeV)

Results E1 Transitions Rates

Transition	k (GeV)		Г(1	ceV)	Expt. [1]	[21]	
	Hydr. Gauss. Hydr. Ga		Gauss.		1		
$1^{3}P_{2} ightarrow 1^{3}S_{1}\gamma$	0.454	0.406	44.117	20.703		40.2	
$1^{3}P_{1} \rightarrow 1^{3}S_{1}\gamma$	0.426	0.419	36.527	22.640		36.6	
$1^{3}P_{0} ightarrow 1^{3}S_{1}\gamma$	0.385	0.406	26.926	20.680		29.9	
$1^{\bf 1} P_{\bf 1} \rightarrow 1^{\bf 1} S_{\bf 0} \gamma$	0.591	0.466	97.289	31.289		52.6	
$2^{3}S_{1} ightarrow 1^{3}P_{2}\gamma$	0.074	0.114	0.869	0.946	2.287	2.46	
$2^{3}S_{1} ightarrow 1^{3}P_{1}\gamma$	0.102	0.130	1.400	0.837	2.207	2.45	
$2^{3}S_{1} ightarrow 1^{3}P_{0}\gamma$	0.145	0.143	1.320	0.370	1.251	1.62	
$2^{1}S_{0} ightarrow 1^{1}P_{1}\gamma$	0.057	0.114	0.717	1.703		3.09	

Table : *E*1 Transition Rates of $b\bar{b}$ Meson.

E1 Transition rates

Table : E1 transition rates of the $c\bar{c}$ meson.

Transition	k (GeV)		۲(ke	Γ(keV)		[21]	[27]
	Hydr.	Gauss.	Hydr.	Gauss.	1.001		
$1^{3}P_{2} ightarrow 1^{3}S_{1}\gamma$	0.435	0.428	492.114	326.643	386.1	327	309
$1^{3}P_{1} \rightarrow 1^{3}S_{1}\gamma$	0.358	0.398	274.242	261.210	295.8	265	244
$1^{3}P_{0} ightarrow 1^{3}S_{1}\gamma$	0.239	0.340	81.961	164.171	176.8	121	117
$\mathbf{1^1} P_1 \to \mathbf{1^1} S_0 \gamma$	0.686	0.505	1900.210	531.564	< 510	560	323
$2^{3}S_{1} ightarrow 1^{3}P_{2}\gamma$	0.072	0.135	9.235	17.840	26.5	18.2	34
$2^{3}S_{1} ightarrow 1^{3}P_{1}\gamma$	0.157	0.169	56.242	20.776	27.9	22.9	36
$2^{3}S_{1} ightarrow 1^{3}P_{0}\gamma$	0.279	0.229	105.487	17.318	29.4	26.3	25
$2^{1}S_{0} ightarrow 1^{1}P_{1}\gamma$	0.016	0.132	0.179	29.437		41	104

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○ ○

M1 transition rates

Table : M1 transitions rates of the $b\bar{b}$ meson.

Transition	k (GeV)	Г	_ [21]	
	Hydr.	Gauss.	Hydr.	Gauss.	[]
$1^3S_1 ightarrow 1^1S_0\gamma$	0.162	0.043	191	4	5.8
$2^3S_1 ightarrow 2^1S_0\gamma$	0.035	0.009	02	0	1.4
$3^3S_1 ightarrow 3^1S_0\gamma$	0.019	0.004	0	0	0.8
$4^3S_1 ightarrow 4^1S_0\gamma$	0.013	0.003	0	0	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

M1 transition rates

Table : M1 transition rates of the $c\bar{c}$ meson.

Transition	k (GeV)		Γ(k	xeV)	Expt [1]	[21]
Transition	Hydr.	Gauss.	Hydr.	Gauss.		[21]
$1^3S_1 ightarrow 1^1S_0\gamma$	0.337	0.110	68.266	2.381	1.58	1.05
$2^3S_1 \rightarrow 2^1S_0\gamma$	0.108	0.027	2.286	0.035		0.043
$3^3S_1 ightarrow 3^1S_0\gamma$	0.081	0.015	0.962	0.006		
$4^3S_1 ightarrow 4^1S_0\gamma$	0.045	0.010	0.161	0.002		
$5^3S_1 ightarrow 5^1S_0\gamma$	0.032	0.008	0.058	0.001		

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ ・ の < @

Two photon decay widths

Table : Two photon decay widths in charmonia(Gaussian wavefunction).

	Mass "		B (0)	R ² (0)	Width (keV)					
Transition	Mass	μ (O-ID	$\kappa_{nS}(0)$	$R_{nP}(0) =$	This work		F . (4)	D (07)	D (1001	
	(Gev)	(Gev)	(Gev-/-)	(Gev-/-)	Г	Г _{сог}	Expt.[1]	Rei[27]	Ref.[28]	
$\mathbf{1^1S_0} \rightarrow \gamma\gamma$	2.984	0.655	0.797		8.34	3.86	5.29	8.5	3.5	
$2^{1}S_{0} \rightarrow \gamma\gamma$	3.665	0.460	0.382		1.92	0.89	< 5	2.4	1.38	
$\mathbf{3^1S_0} \rightarrow \gamma\gamma$	4.111	0.405	0.283		1.05	0.49		0.88	0.94	
$1^{3}P_{0} ightarrow \gamma\gamma$	3.455	0.498		0.215	2.27	2.33	2.32	2.5	1.39	
$2^{3}P_{0} ightarrow \gamma\gamma$	3.930	0.420		0.140	0.97	0.99		1.7	1.11	
$3^{3}P_{0} \rightarrow \gamma\gamma$	4.314	0.385		0.113	0.63	0.64		1.2	0.91	
$1^{3}P_{2} ightarrow \gamma\gamma$	3.554	0.498		0.215	0.60	0.09	0.51	0.31	0.44	
$2^{3}P_{2} \rightarrow \gamma\gamma$	4.008	0.420		0.140	0.26	0.04		0.23	0.48	
$3^{3}P_{2} \rightarrow \gamma\gamma$	4.388	0.385		0.113	0.17	0.02		0.17	0.014	

Conclusion

- The spin averaged masses of these mesons are in excellent agreement with the experimental results in Ref.[1] and also with the results of Ref.[2].
- The results obtained using the Gaussian wavefunction are in good agreement with experimental measurements and also with Ref.[2].
- Spectra produced due to the hydrogenic wavefunction is overestimated.
- ▶ E1 transition widths in the case of *cc* obtained with Gaussian wave function are in good agreement with experimental results.
- Two photon decay widths in the case of cc̄ are in satisfactory agreement with experimental measurements.

References I

- J. Beringer et al. (Particle Data Group), Phys.Rev. D86, 010001 (2012)
- [2] D. Ebert, R. Faustov, V. Galkin, Eur.Phys.J. C71, 1825 (2011)
- [3] E. Klempt, A. Zaitsev, Phys.Rept. 454, 1 (2007), 0708.4016
- [4] S.N. Gupta, J.M. Johnson, Phys. Rev. D 51(1), 168 (1995)
- [5] A.K. Rai, R.H. Parmar, P.C. Vinodkumar, J. Phys. G: Nucl. Part. Phys. 28(8), 2275 (2002)
- [6] A.K. Rai, J.N. Pandya, P.C. Vinodkumar, J. Phys. G: Nucl. Part. Phys. **31**(12), 1453 (2005)
- [7] A.K. Rai, B. Patel, P.C. Vinodkumar, Phys. Rev. C 78(5), 055202 (2008)

References II

- [8] A.M. Badalian, A.I. Veselov, B.L.G. Bakker, Phys. Rev. D 70, 016007 (2004)
- [9] Y.A. Simonov, Physics of Atomic Nuclei 58, 107 (1995)
- [10] D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 79, 114029 (2009)
- [11] D.S. Hwang, C. Kim, W. Namgung, Phys.Lett. B406, 117 (1997)
- [12] E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane, T.M. Yan, Phys. Rev. D 21, 203 (1980)
- [13] D. Gromes, Z.Phys. C26, 401 (1984)
- [14] S. Gershtein et al., Phys.Usp. 38, 1 (1995)
- [15] R. Van Royen, V. Weisskopf, Nuovo Cim. A50, 617 (1967)

References III

- [16] E. Braaten, S. Fleming, Phys. Rev. D 52(1), 181 (1995)
- [17] D.M. Li, P.F. Ji, B. Ma, Eur.Phys.J. C71, 1 (2011), ISSN 1434-6044
- [18] N. Brambilla et al., Eur.Phys.J. C71, 1534 (2011)
- [19] W.A. Bardeen, E.J. Eichten, C.T. Hill, Phys. Rev. D 68(5), 054024 (2003)
- [20] W. Kwong et al., Phys. Rev. D 37, 3210 (1988)
- [21] D. Ebert, R. Faustov, V. Galkin, Phys.Rev. D67, 014027 (2003)
- [22] E.J. Eichten, C. Quigg, Phys.Rev. D49, 5845 (1994)
- [23] K.W. Edwards et al. ((CLEO Collaboration)), Phys. Rev. Lett. 86, 30 (2001)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

- [24] J. Pandya, P. Vinodkumar, Pramana 57, 821 (2001)
- [25] G.L. Wang, Physics Letters B 633, 492 (2006)
- [26] C.W. Hwang, Z.T. Wei, J.Phys.G G34, 687 (2007), hep-ph/0609036
- [27] B.Q. Li, K.T. Chao, Phys.Rev. D79, 094004 (2009)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

[28] C.R. Munz, Nucl. Phys. A 609, 364 (1996)

Collaborator: Dr. Nayneshkumar Devlani

(ロト (個) (E) (E) (E) (E) のQ()

Thanks