Backward ϕ photo-production from C and Cu targets at $E_{\gamma} = 1.5 - 2.4$ GeV

Takahiro Sawada, Institute of Physics, Academia Sinica, Taiwan on behalf of the LEPS Collaboration

Hadron in Nucleus - Kyoto (Japan) Oct 31st – Nov 2nd, 2013

Table of Contents

- Introduction
- Experiment
- Result & Discussion
- Summary

Not Only

Backward ϕ photo-production from C and Cu targets at E_{γ} = 1.5 - 2.4 GeV

Takahiro Sawada, Institute of Physics, Academia Sinica, Taiwan on behalf of the LEPS Collaboration

Hadron in Nucleus - Kyoto (Japan) Oct 31st – Nov 2nd, 2013

Table of Contents

- Introduction
- Experiment
- Result & Discussion
- Summary

φ-meson Properties in Nuclear Medium

The way to approach to observe the in-medium φ properties

- Mass-Spectrum Measurement
 - $l + l^-$ decay channel
 - Small FSI
 - Small branching ratio (~10⁻⁴)
 - Many backgrounds.

Target Mass Number (A) dependence Measurement

K⁺ K[−] decay channel

- Large branching ratio (~50%)
- Cancellation of Systematic Errors

Introductior

Introduction A-dependence Measurement

A-dependence Measurement

Introduction

Observed Result $\Leftrightarrow \sigma_{\phi N}$

Glauber Approximation

Transparency Ratio =
$$\frac{R_{Cu}^{\phi}/A_{Cu}}{R_{C}^{\phi}/A_{C}} = \frac{N_{Cu}^{eff}/A_{Cu}}{N_{C}^{eff}/A_{C}}$$

here,

$$N_{A}^{eff} = \int d^{2}b \, dz \, \rho(b, z) \, S_{\gamma}(b, z) \, S_{\phi}(b, z, \theta, \phi)$$

$$S_{\gamma}(b, z) = \exp\left[-\sigma_{\gamma N} \int_{-\infty}^{z} dz' \rho_{A}(b, z')\right] = e^{-\sigma_{\gamma N} T_{Z}(b)}$$

$$S_{\phi}(b, z, \theta, \phi) = \frac{1}{2\pi} \exp\left[-\sigma_{\phi} \oint d\xi \, \rho(|\mathbf{r}_{\xi}|)\right]$$

$$r_{\xi}^{2} = (b + \xi \cos \phi \sin \theta)^{2} + (\xi \sin \phi \sin \theta)^{2} + (z + \xi \cos \theta)^{2}$$

Nuclear density distribution: Woods-Saxon

$$\rho_A(r) = \frac{\rho_0}{1 + \exp[(r - R)/d]}$$
, $R = 1.28A^{1/3} - 0.76 + 0.8A^{-1/3}$ fm
 $d = \sqrt{3}/\pi$ fm

Connect two variables

Transparency Ratio
$$\langle \stackrel{\Psi}{\Longrightarrow} \rangle \sigma_{\phi N}$$

Introduction

A-dependence @ LEPS, CLAS

SPring-8/LEPS

T. Ishikawa et al. Phys.Lett. B608 (2005) 215-222

photo-production at $E_{\gamma} = 1.5 - 2.4 \text{ GeV}$ $\varphi \rightarrow K^+ K^- < p_{\varphi} > = 1.8 \text{ GeV/c}$. Li, C, Al, and Cu targets.

JLab/CLAS

M. H. Wood et al. Phys.Rev.Lett. 105 (2010) 112301

photo-production at $E_{\gamma} < 3.8 \text{ GeV}$ $\varphi \rightarrow e^+ e^- < \rho_{\varphi} > = 2 \text{ GeV/c}$. (²H), C, Ti, Fe, and Pb targets.

 $\sigma_{\phi N} = 16-70 \text{ mb}$

$\sigma_{\phi N}$

Theoretical Calculation (in free space)

VMD model : 8.2 ± 0.5 mb Quark model : 13.0 ± 1.5 mb

H.J. Lipkin, Phys. Rev. Lett. 16, 1015 (1966). H.-J. Behrend et al., Phys. Lett. 56 B, 408 (1975).

Analogy to other mesons (K^+ , K^- , π^{\pm})

- OZI suppression.
- φ-N resonance has not been reported.
- Total hadronic cross section <u>at a few GeV region</u>

 $\sigma_{total}^{ab} = Z^{ab} + B \ln^2(s/s_0) + \cdots$

• At 2 GeV/c

 $\sigma_{\phi N} < \sigma_{K^+N} < \sigma_{K^-N}, \sigma_{\pi^+N}, \sigma_{\pi^-N}$? 18 mb 30 mb 30 mb 35 mb

A-dependence @ ANKE-COSY

Experiment

LEPS facility @ SPring-8

Experiment

Experimental Apparatus

Experiment Detection Modes for φ mesons

Experiment

φ Experiment with Nuclear Targets @Spring-8/LEPS

	Previous experiment	This experiment
Period	Nov. in 2001	Sep Dec. in 2004
Beam	1.5-2.4 GeV photons	
Targets	Li, C, Al, and Cu	C, Cu, (and CH ₂)
Reaction	$\varphi \to K^+ K^-$	
Main Detectors	Forward spectrometer	Forward spectrometer + TPC
φ momentum	p _o = 1.0-2.2 GeV/c (Ave. 1.8 GeV/c, 1-Bin)	p _o = 0.3-2.0 GeV/c (4-Bins)

Result & Discussion

14

Transparency Ratio

Same tendency as the result of COSY/ANKE collaboration

Result & Discussion

$\sigma_{\phi N}$

using Glauber multiple scattering theory

$$\sigma_{\phi N} = 21.7 \frac{+8.7}{-6.2} \text{ mb}$$

 $\chi^2/\text{ndf} = 6.95 / 3$

This agrees with the result in previous experiment (35_{-11}^{+17} mb) within the statistical errors.

$\sigma_{\phi N}$ (Momentum Dependent ?)

Assuming that $\sigma_{\varphi N}$ has the momentum dependency

Result & Discussion

$\sigma_{\phi N}$ (Momentum Dependent ?)

$$\alpha = 27.2 + 13.5 - 9.2 \text{ mb/(GeV/c)}^2$$
At lower p_{ϕ} (0.5 GeV/c)
$$\sigma_{\phi N} = 6.8 + 3.4 - 2.3 \text{ mb}$$
Consistent with the theoretically predicted value in free space.

At higher p_{ϕ} (1.8 GeV/c) $\sigma_{\phi N} = 88.1 {}^{+43.7}_{-29.8}$ mb Unexplainable !!!

Result & Discussion

This suggests that

the cause of the transparency ratio reduction at higher p_{ϕ} is not the ϕ -N interaction.

Discussion

• Production

The number of ϕ -mesons produced on nucleon is (almost) proportional to the target mass number A.

Result & Discussio

• Propagation The flux of ϕ -mesons is decreased by the $\sigma_{\phi N}$ \longrightarrow Unexplainable Measured

Discussion

Result & Discussion

Related(?) Topic

φ photo-production from the deuteron target

W.C. Chang et al. Phys.Lett., B684:6-10, 2010.

the nuclear medium effect is minimal since the deuteron is composed of a loosely bound proton and neutron

some effect other than nuclear density at forward angles?

Summary

- We have confirmed that the transparency ratio decreases with p_{ϕ} .
- The reduction of the transparency ratio shown in the high p_{φ} region suggests that

 $- \sigma_{\phi N}$ increases as p_{ϕ}^2 .

a diffractive φ photo-production might have a strong
 A- dependence.

For further study

- Measurement of the **absolute** cross section for each target (not the "**ratio**")
- Improvement of the statistical precision.
- Data-taking with many kinds of target nuclei.
- Measurement at higher p_{ϕ} .