

Medium modification of heavy meson spectra from QCD sum rules

Kei Suzuki (Tokyo Institute of Technology)

Philipp Gubler (*RIKEN*) Makoto Oka (*TITech*)

Outline of Today's Talk

1. Introduction

- 1-1. D meson in nuclear medium
- 1-2. Previous works

2. Methods

- 2-1. QCD sum rule
- 2-2. D meson OPE
- 3. Results

3-1. D meson spectral function in vacuum
3-2. D meson spectral function in nuclear medium

3-3. Relation between QCD vacuum condensates and hadron

4. Summary

1. Introduction

D meson in nuclear medium If a D meson is put into nuclear medium, what will happen ?

vacuum

in nuclear medium

U

C

U

u d

d

U

U

d

U

d

U

d

d

U

U

d

d

u d

u d

 \overline{d}

u

U

d

d

D meson properties in nuclear medium

 \overline{d}

d d

d

Mass shift (partial restoration of chiral symmetry etc.)

 \overline{d}

d d

 \overline{c}

d

• $D - \overline{D}$ mass splitting

 \overline{d}

D

C

Mass:1.87GeV

different mass?

d

d d

Previous work (from QCD sum rules)

There are many theoretical approachs ⇒ Talks by L.Tolos, S.Yasui

A. Hayashigaki, Phys.Lett. B487 (2000) 96 including condensates up to dim.4 $\langle \bar{q}q \rangle, \langle G^2 \rangle, \langle q^{\dagger}iD_0q \rangle_N, \langle (u \cdot G)^2 - G^2/4 \rangle_N$ \Rightarrow mass shift : $(\Delta m_{D+} + \Delta m_{D-})/2 = -50$ MeV at ρ_0

T. Hilger, R. Thomas, B. Kampfer, Phys. Rev. C79 (2009) 025202 $\langle \overline{q}g\sigma Gq \rangle \dots \langle q^{\dagger}q \rangle_{_{N}} \dots$ including condensates up to dim.5 and q₀-odd term \Rightarrow mass shift : +45MeV and mass splitting : (m_{D+}-m_D)= -60MeV at ρ_0

Previous work (from QCD sum rules)

T. Hilger, R. Thomas, B. Kampfer, Phys. Rev. C79 (2009) 025202

Mass shift $(\Delta m_{D+} + \Delta m_{D-})/2$

mass splitting $(m_{D+} - m_{D-})/2$

These results depend on phenomenological parameter
 ⇒We need parameter independent analysis (=MEM)

2/Nov/2013

2. Methods

Theoretical strategy for hadron in nuclear medium

We study density dependence of spectral function

QCD sum rule

M.A. Shifman, A.I. Vainshtein, and V.I. Zakharov,
 QCD sum rule Nucl. Phys. B147, 385 (1979); B147, 448 (1979)
 Relation between operator product expansion (OPE) of correlation function and spectral function of hadron

2/Nov/2013

Setup in QCD sum rules

$$\Pi_{\text{OPE}}(s,\tau) = \int_0^\infty K(t,s,\tau)\rho(t) dt$$

Gaussian sum rule

exp

 $\sqrt{4\pi\tau}$

 $(t - s^2)$

 4τ

D meson OPE

$$\begin{split} G^{\text{even}}(\hat{s},\tau) &= \frac{1}{\sqrt{4\pi\tau}} \frac{1}{\pi} \int_{m_h^2}^{\infty} ds e^{-\frac{(s-\delta)^2}{4\tau}} \text{Im}\Pi^{\text{pert}}(s) \\ &+ \frac{1}{\sqrt{4\pi\tau}} e^{-\frac{(m_h^2 - \delta)^2}{4\tau}} \left[-m_h \langle \bar{q}q \rangle + \frac{1}{12} \langle \frac{\alpha}{\pi} G^2 \rangle - \frac{1}{2} \left(\frac{3m_h^2 - 2\hat{s}}{4\tau} - \frac{2(m_h^2 - \hat{s})^2 m_h^2}{(4\tau)^2} \right) m_h \langle \bar{q}g\sigma Gq \rangle \\ &- \left\{ \left(\frac{7}{18} + \frac{1}{3} \ln \frac{\mu^2}{m_h^2} \right) \left(1 - \frac{(m_h^2 - \hat{s})m_h^2}{2\tau} \right) + \frac{m_h^4 - m_h^2 \hat{s} - 2\tau}{3\tau} \right\} \langle \frac{\alpha_s}{\pi} \left(\frac{(vG)^2}{v^2} - \frac{G^2}{4} \right) \rangle \\ &- 2 \left(1 - \frac{(m_h^2 - \hat{s})m_h^2}{2\tau} \right) \langle q^\dagger i \vec{D}_0 q \rangle \\ &- 4 \left(\frac{3m_h^2 - 2\hat{s}}{4\tau} - \frac{2(m_h^2 - \hat{s})^2 m_h^2}{(4\tau)^2} \right) m_h \left[\langle \bar{q} \vec{D}_0^2 q \rangle - \langle \frac{1}{8} \bar{q}g\sigma Gq \rangle \right] \right] \\ \text{Im}\Pi^{\text{pert}}(s) &= \frac{3}{8\pi} s \left(1 - \frac{m_h^2}{s} \right)^2 \times \left(1 + \frac{4}{3} \frac{\alpha_s}{\pi} R_0(m_h^2/s) \right) \\ R_0(m_h^2/s = x) &= \frac{9}{4} + 2Li_2(x) + \ln x \ln(1 - x) - \frac{3}{2} \ln \frac{1 - x}{x} - \ln(1 - x) + x \ln \frac{1 - x}{x} - \frac{x}{1 - x} \ln x \end{split}$$

Output spectral function

 maximum entropy method (MEM)

P. Gubler and M. Oka, Prog. Theor. Phys. 124, 995 (2010)

2/Nov/2013

D meson OPE in vacuum

 $\Pi_{\text{OPE}}(M^2)$ = perturbative term

$$-e^{-m_{c}^{2}/M^{2}}\left[-\frac{m_{o}^{2}}{2M}\left(\overline{q}q\right)+\frac{1}{2}\left(\frac{m_{c}^{2}}{2M^{4}}-\frac{1}{M^{2}}\right)m_{c}\left(\overline{q}g\sigma Gq\right)+\frac{1}{12}\left(\frac{\alpha_{s}}{\pi}G^{2}\right)\right]$$
$$-\frac{16\pi}{27}\frac{1}{M^{2}}\left(1+\frac{1}{2}\frac{m_{c}^{2}}{M^{2}}-\frac{1}{12}\frac{m_{c}^{4}}{M^{4}}\right)\alpha_{s}\left(\overline{q}q\right)^{2}\right]$$

Chiral condensate
 Mixed condensate
 Gluon condensate
 4. 4-quark condensate

Coefficients are proportional to <u>charm</u> <u>quark mass</u>

⇒These terms are <u>amplified</u>

Other condensates are relatively suppressed

 \Rightarrow We expect that chiral and mixed condensate are dominant

3. Results

3-1. D meson spectral function in vacuum
3-2. D meson spectral function in nuclear matter
3-3. Relation between condensates and hadron

D meson spectral function (in vacuum)

Mass: 1.78GeV Exp.: 1.87GeV

Hadron in Nucleus at YITP

d

D meson spectral function (in medium)

⇒Peak position in D[±] shifts to higher energy side with increasing density (D⁺: ~10MeV D⁻: ~30MeV at ρ_0)

2/Nov/2013

Hadron in Nucleus at YITP

U

d

d

d

U

U

d

D⁻ is changed more rapidly than D⁺ \Rightarrow D⁺-D⁻ mass splitting is about 20 MeV at ρ_0

2/Nov/2013

Contribution of vacuum condensates

⇒Most dominant contribution of mass shift to higher energy is <u>D-dependence of chiral condensate</u>

2/Nov/2013

Summary

- We extracted D meson spectral functions in nuclear medium from <u>QCD sum rules and MEM</u>
- We obtained <u>mass shift</u> and <u>D-D mass splitting</u>

D ⁺ mass shift	D^- mass shift	D ⁺ -D ⁻ splitting
~+10MeV	~+30MeV	~20MeV

 Mass shift comes from <u>density dependence of</u> <u>chiral condensate</u>

Outlook

• B meson, D_s meson, D* meson...

U

Backup

D meson OPE in nuclear medium

- New (Lorentz variant) condensates appear
- All of the condensates have <u>density</u> <u>dependence</u> $\langle \bar{d}d \rangle = \langle \bar{d}d \rangle_{vac} + \frac{\sigma_N}{2m_s}n$,

⇒QCD sum rules relate
D-dependence of
condensates to Ddependence of hadron

 $\langle \frac{\alpha_s}{\pi} G^2 \rangle = \langle \frac{\alpha_s}{\pi} G^2 \rangle_{vac} - \frac{8M_N^0}{\Omega} n ,$ $\langle \bar{d}q\sigma \mathscr{G}d \rangle = \lambda^2 \langle \bar{d}d \rangle$. $\langle d^{\dagger}d\rangle = \frac{3}{2}n$, $\left\langle \frac{\alpha_s}{\pi} \left(\frac{(vG)^2}{v^2} - \frac{G^2}{4} \right) \right\rangle = -\frac{3}{4} M_N \alpha_s(\mu^2) A_2^g(\mu^2) n ,$ $\langle d^{\dagger}iD_0d\rangle = \frac{3}{8}M_NA_2^q(\mu^2)n$, $\left[\langle \bar{d}D_0^2 d \rangle - \frac{1}{8} \langle \bar{d}g\sigma \mathscr{G}d \rangle \right] = \frac{\lambda^2 \sigma_N}{2m_{-}} n ,$ $\langle d^{\dagger} q \sigma \mathscr{G} d \rangle = (-0.33 \text{GeV}^2) n$ $\langle d^{\dagger} D_0^2 d \rangle = -\frac{1}{4} M_N^2 A_3^q(\mu^2) n + \frac{1}{12} \langle d^{\dagger} g \sigma \mathscr{G} d \rangle \,.$

2/Nov/2013

Hadron i

How to determine criterion of Borel window?

Dim3: enhanced Dim4: suppressed Dim5: enhanced Dim6: suppressed

Dim 6 (4-quark) condensate is strongly suppressed
 ⇒Should we regard the highest term as 4-quark con.?

Separation of D⁺ and D⁻

 D^{-}

 In finite density, we have to construct <u>q₀ sum rule</u> instead of q_0^2

 $\Pi(q_0) = \Pi^{\text{even}}(q_0^2) + q_0 \Pi^{\text{odd}}(q_0^2)$

 Moreover, we separate positive and negative energy on q₀ axis

 $\Pi^{+}(q_{0}) = \Pi^{\text{even}}(q_{0}^{2}) + q_{0}\Pi^{\text{odd}}(q_{0}^{2})$

 $\Pi^{-}(-q_{0}) = \Pi^{\text{even}}(q_{0}^{2}) - q_{0}\Pi^{\text{odd}}(q_{0}^{2})$

3 possibility of spectral modification

1. Mass shift

t

2. width broadening 3. residue reduction

 $\rho(t)$

m t

2/Nov/2013