Exotic dibaryons with a heavy antiquark

Yasuhiro Yamaguchi¹

in collaboration with

Shigehiro Yasui², Atsushi Hosaka¹

¹Research Center for Nuclear physics (RCNP), Osaka University, Japan
²KEK, Japan

YITP international workshop on Hadron in Nucleus

10/31-11/2 2013, Maskawa Hall in Kyoto University, Japan

Outline

Introduction

- Heavy Quark Spin Symmetry
- π exchange potential between heavy meson and nucleon.
- Results of $\overline{D}^{(*)}NN$ and $B^{(*)}NN$
- **③** Results of $P^{(*)}NN$ in $m_Q o \infty$
- Summary

3-body system

直 ト イヨ ト イヨ ト

Exotic hadrons in the heavy quark region Introduction

- New particles (XYZ) with heavy quarks: Belle, BaBar...
- These states cannot be explained by a simple quark model (Baryons qqq, Meson $q\bar{q}$). \rightarrow Exotic hadrons

Exotic hadrons in the heavy quark region Introduction

- New particles (XYZ) with heavy quarks: Belle, BaBar...
- These states cannot be explained by a simple quark model (Baryons qqq, Meson $q\bar{q}$). \rightarrow Exotic hadrons

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Exotic hadrons in the heavy quark region Introduction

- New particles (XYZ) with heavy quarks: Belle, BaBar...
- These states cannot be explained by a simple quark model (Baryons qqq, Meson $q\bar{q}$). \rightarrow Exotic hadrons

 Hadron molecules: Loosely bound state or resonance of two hadrons. Candidates? X(3872), Z_b...

S.K.Choi et al., PRL91 (2003) 262001, A.Bondar, et al., PRL108(2012)122001

Hadronic molecule and π exchange potential $_{\rm Introduction}$

- Driving force to form molecules: π exchange potential ?
- In the heavy quark region,

→ ∃ → → ∃ →

Hadronic molecule and π exchange potential $_{\rm Introduction}$

- Driving force to form molecules: π exchange potential ?
- In the heavy quark region, π exchange potential is enhanced by **the Heavy Quark Spin Symmetry**.
- Meson-Meson molecules: The importance of the tensor force in "Deuson" N. A. Törnqvist, Z. Phys. C 61 (1994) 525
- $\overline{D}N$ and BN ($\overline{Q}qqqq$) \rightarrow Genuinely Exotics!
 - T. D. Cohen, et al., PRD72(2005)074010, S. Yasui and K. Sudoh, PRD80(2009)034008
 - Y.Y., S.Ohkoda, S.Yasui and A.Hosaka, PRD84(2011)014032 and PRD85(2012)054003
 - \Leftrightarrow KN (s̄qqqq) doesn't exist due to a repulsive force.

Heavy Quark Spin Symmetry and Heavy meson Introduction

Heavy Quark Spin Symmetry N.Isgur, M.B.Wise, PRL66, 1130

• In the heavy quark limit $(m_Q \rightarrow \infty)$, $\vec{J} = \vec{s}_Q + \vec{i}$

 s_Q : Heavy quark spin, *j*: the total angular momentum of the <u>brown muck</u> (Brown muck: Everything other than the heavy quark in the hadron)

$$\begin{array}{l} \triangleright \ s_Q = 1/2 \ \text{and} \ j \ \text{are decoupled} \\ \hline \end{array} \\ \begin{array}{l} \Rightarrow \ \textbf{Degenerate states} \ \left\{ \begin{array}{l} (j+1/2)^P \\ (j-1/2)^P \end{array} \right. (j \neq 0) \end{array} \right. \end{array}$$

通 と く ヨ と く ヨ と

Heavy Quark Spin Symmetry and Heavy meson Introduction

Heavy Quark Spin Symmetry N.Isgur, M.B.Wise, PRL66, 1130

• In the heavy quark limit $(m_Q \rightarrow \infty)$, $\vec{J} = \vec{s}_Q + \vec{i}$

 s_Q : Heavy quark spin, *j*: the total angular momentum of the <u>brown muck</u> (<u>Brown muck</u>: Everything other than the heavy quark in the hadron)

$$\begin{array}{l} \triangleright \ s_Q = 1/2 \ \text{and} \ j \ \text{are decoupled} \\ \Rightarrow \mbox{Degenerate states} \\ & \left\{ \begin{array}{l} (j+1/2)^P \\ (j-1/2)^P \end{array} \right. (j \neq 0) \\ & \downarrow \ \mbox{Heavy meson} \end{array}$$

 $\begin{array}{c} & & \\ & &$

$$\begin{array}{c} m_{B^*} - m_B \sim 45 \, \text{MeV} \\ m_{D^*} - m_D \sim 140 \, \text{MeV} \end{array} \Leftrightarrow \begin{array}{c} \text{For strange sector} \\ m_{K^*} = m_K \sim 400 \, \text{MeV}_{\odot} \end{array}$$

The one pion exchange potential in P^(*)N system.

• The π exchange potential (OPEP) appears through **PP**^{*} π and **P**^{*}**P**^{*} π vertices. (*PP* π is forbidden.)

 \rightarrow The OPEP is enhanced when P and P* are degenerate.

- The OPEP is important in the heavy meson system.
- The OPEP(**Tensor force**) generates a **strong attraction** in Analogy with Deuteron.

P^(*)N molecule (2-body system) (previous works)

P^(*)N molecule (2-body system) (previous works)

Exotic baryons!

Bound and resonant states were obtained.

S. Yasui and K. Sudoh, PRD80(2009)034008

Y.Y., S.Ohkoda, S.Yasui and A.Hosaka, PRD84(2011)014032, PRD85(2012)054003

▶ **The tensor force of OPEP** plays an important role.

P^(*) nuclei (Few body or many body)?

- Impurity effects e.g. glue-like effect.
- Heavy meson-nucleon interaction.
- several works for D
 (B) meson in nuclear matter and in ¹²C, ²⁰⁸Pb...
 e.g. C. Garcia-Recio, et al., PRC85 (2012)025203.
 S. Yasui and K. Sudoh, PRC87(2013)015202.
- However, there is no study for few-body $\overline{D}(B)$ nuclei in the literature so far.

Main Subject

• Exotic dibaryons with a heavy antiquark, $\overline{D}^{(*)}NN$ and $B^{(*)}NN$ (3-body system).

- $P = \overline{D}(\overline{c}q), B(\overline{b}q) \rightarrow$ Genuinely exotic states! \Leftrightarrow <u>KNN doesn't exist.</u> (*KN* interaction is repulsive force.)
- We study bound and resonant states by solving the coupled-channel Schrödinger equations for PNN and P*NN channels.
- We employ only OPEP. $(\rho, \omega ... \rightarrow \text{Future Work})_{-}$

Lagrangian($P^{(*)} - N$) and Form factor

▷ Lagrangian

• Heavy-light chiral Lagrangian R

R.Casalbuoni et al. PhysRept.281(1997)145

 $P^{(*)}$

同下 イヨト イヨト

$$\mathcal{L}_{\pi HH} = ig_{\pi} \operatorname{Tr} \left[H_{b} \gamma_{\mu} \gamma_{5} \mathcal{A}_{ba}^{\mu} \bar{H}_{a} \right], \quad g_{\pi} = 0.59 \text{ for } \bar{D} \text{ and } B$$
From $D^{*} \to D\pi$ decay
$$H_{a} = \frac{1 + \cancel{p}}{2} \left[\mathbf{P}_{a \ \mu}^{*} \gamma^{\mu} - \mathbf{P}_{a} \gamma^{5} \right], \quad \bar{H}_{a} = \gamma^{0} H_{a} \gamma^{0}$$
vector pseudoscalar
$$P^{(*)}$$
• Bonn model
R.Machleidt *et al.* Phys Rept.149(1987)1
$$\mathcal{L}_{\pi NN} = ig_{\pi NN} \bar{N}_{b} \gamma^{5} N_{a} \hat{\pi}_{ba}, \quad g_{\pi NN}^{2} / 4\pi = 13.6$$
From NN data
$$\Lambda_{P} \qquad \pi$$

 \triangleright

Ν

Lagrangian($P^{(*)} - N$) and Form factor

▷ Lagrangian

• Heavy-light chiral Lagrangian R.Casalbuoni et al. PhysRept.281(1997)145

$P^{(*)}N$ ($P^{(*)} = \overline{D}^{(*)}, B^{(*)}$) and NN interactions

• π exchange potential between $P^{(*)}(=ar{D}^{(*)},B^{(*)})$ and N

$$V_{PN-P^*N} = -\frac{g_{\pi}g_{\pi NN}}{\sqrt{2}m_N f_{\pi}} \frac{1}{3} \left[\vec{\varepsilon}^{\dagger} \cdot \vec{\sigma}C(r) + S_{\varepsilon}T(r) \right] \vec{\tau}_P \cdot \vec{\tau}_N$$
$$V_{P^*N-P^*N} = \frac{g_{\pi}g_{\pi NN}}{\sqrt{2}m_N f_{\pi}} \frac{1}{3} \left[\vec{T} \cdot \vec{\sigma}C(r) + S_TT(r) \right] \vec{\tau}_P \cdot \vec{\tau}_N$$

S.Yasui and K.Sudoh PRD80(2009)034008

・ 同 ト ・ ヨ ト ・ ヨ ト

C(r): Central force, T(r): Tensor force $g_{\pi} = 0.59$ for \overline{D} and B, $g_{\pi NN}^2/4\pi = 13.6$

$P^{(*)}N$ ($P^{(*)} = \overline{D}^{(*)}, B^{(*)}$) and NN interactions

• π exchange potential between $P^{(*)}(=ar{D}^{(*)},B^{(*)})$ and N

$$V_{PN-P^*N} = -\frac{g_{\pi}g_{\pi NN}}{\sqrt{2}m_N f_{\pi}} \frac{1}{3} \left[\vec{\varepsilon}^{\dagger} \cdot \vec{\sigma} C(r) + S_{\varepsilon} T(r) \right] \vec{\tau}_P \cdot \vec{\tau}_N$$
$$V_{P^*N-P^*N} = \frac{g_{\pi}g_{\pi NN}}{\sqrt{2}m_N f_{\pi}} \frac{1}{3} \left[\vec{T} \cdot \vec{\sigma} C(r) + S_T T(r) \right] \vec{\tau}_P \cdot \vec{\tau}_N$$

S.Yasui and K.Sudoh PRD80(2009)034008

$$C(r)$$
: Central force, $T(r)$: Tensor force
 $g_{\pi} = 0.59$ for \overline{D} and B , $g_{\pi NN}^2/4\pi = 13.6$

• NN int.: AV8' potential B. S. Pudliner, et.al. , PRC56(1997)1720

$$v_8'(r) = \sum_{p=1,8} v_p'(r) \mathcal{O}^p$$
$$\mathcal{O}^{p=1-8} = \begin{cases} \text{Central} \quad [1, \vec{\sigma}_1 \cdot \vec{\sigma}_2] \otimes [1, \vec{\tau}_1 \cdot \vec{\tau}_2] & (4 \text{ operators}) \\ \text{Tensor} \quad S_{12} \otimes [1, \vec{\tau}_1 \cdot \vec{\tau}_2] & (2) \\ \text{LS} \quad \vec{L} \cdot \vec{S} \otimes [1, \vec{\tau}_1 \cdot \vec{\tau}_2] & (2) \end{cases}$$

Results of P^(*)NN states (3-body)

Exotic dibaryon states: $\bar{D}^{(*)}NN$, $B^{(*)}NN$

with $J^{P} = 0^{-}, 1^{-}$ and I = 1/2

Bound state and Resonance

- Wave functions are expressed by the Gaussian expansion method. E. Hiyama, et al., Prog.Part.Nucl.Phys.51(2003)223
- Resonances \rightarrow Complex scaling method s.Aoyama,*et.al.*,PTP116,1(2006)

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Results of P^(*)NN states (3-body)

Exotic dibaryon states: $\bar{D}^{(*)}NN$, $B^{(*)}NN$

Bound state and Resonance

- Wave functions are expressed by the Gaussian expansion method. E. Hiyama, et al., Prog.Part.Nucl.Phys.51(2003)223
- Resonances → Complex scaling method S.Aoyama, et.al., PTP116,1(2006)

• $\overline{D}NN(0^{-})$ locates below $\overline{D}N(1/2^{-}) + N$ threshold.

・ 同 ト ・ ヨ ト ・ ヨ ト

- $\overline{D}NN(0^{-})$ locates below $\overline{D}N(1/2^{-}) + N$ threshold.
- D
 *D*NN(1⁻) locates below D
 ^{*} + NN(1⁺) and D
 *D*N(3/2⁻) + N thresholds.

伺 ト イ ヨ ト イ ヨ ト

• $\overline{D}NN(0^{-})$ locates below $\overline{D}N(1/2^{-}) + N$ threshold.

- D
 *D*NN(1⁻) locates below D
 ^{*} + NN(1⁺) and D
 *D*N(3/2⁻) + N thresholds.
- $BNN > ar{D}NN$ due to large reduced mass and small Δm_{BB^*} .

Energy expectation values

The bound state of $ar{D}NN(0^-)$					
$\bar{D}^{(*)}NN$	$\langle V_{\bar{D}N-\bar{D}^*N} \rangle$	$\langle V_{\bar{D}^*N-\bar{D}^*N} \rangle$	$\langle V_{NN} \rangle$		
Central	-2.3	-0.1	-9.5		
Tensor	-47.1	0.7	-0.2		
LS			-0.03		

YY, S. Yasui, and A. Hosaka, arXiv:1309.4324 [nucl-th]

伺 ト く ヨ ト く ヨ ト

Energy expectation values

The bound state of $\bar{D}NN(0^-)$					
$\bar{D}^{(*)}NN$	$\langle V_{\bar{D}N-\bar{D}^*N} \rangle$	$\langle V_{\bar{D}^*N-\bar{D}^*N} \rangle$	$\langle V_{NN} \rangle$		
Central	-2.3	-0.1	-9.5		
Tensor	-47.1	0.7	-0.2		
LS			-0.03		

YY, S. Yasui, and A. Hosaka, arXiv:1309.4324 [nucl-th]

 Tensor force of DN – D*N mixing component generates the strong attraction.

伺 ト イヨト イヨト

Energy expectation values

The bound state of $ar{D}NN(0^-)$					
$\bar{D}^{(*)}NN$	$\langle V_{\bar{D}N-\bar{D}^*N} \rangle$	$\langle V_{\bar{D}^*N-\bar{D}^*N} \rangle$	$\langle V_{NN} \rangle$		
Central	-2.3	-0.1	-9.5		
Tensor	-47.1	0.7	-0.2		
LS			-0.03		

YY, S. Yasui, and A. Hosaka, arXiv:1309.4324 [nucl-th]

- Tensor force of DN D*N mixing component generates the strong attraction.
- For V_{NN} , central force is stronger than tensor force. $\Rightarrow NN(0^+)$ subsystem dominates in the bound state, while $NN(1^+)$ (=Deuteron) is minor.

・ 同 ト ・ ヨ ト ・ ヨ ト

月▶ ▲ 3

• The bound states for $J^P = 0^-$ vanish.

 $\Rightarrow PN - P^*N$ mixing components are very important!

• For $J^P = 1^-$ channel, the bound states survive.

⇒ Feshbash resonance!

Results of $\mathsf{P}_{\mathsf{Q}}^{(*)}\mathsf{NN}$ states (m_Q $ightarrow\infty$)

$$N \longleftrightarrow N$$

$$P_{Q}^{(*)}NN \;(m_{P_{Q}^{*}}-m_{P_{Q}}=0)$$

同下 イヨト イヨト

Results of $P_Q^{(*)}NN$ in $m_Q \rightarrow \infty$ (Exotic)

• We find bound states both for $J^P = 0^-$ and $1^-!$

・ 同 ト ・ ヨ ト ・ ヨ ト

Results of $P_Q^{(*)}NN$ in $m_Q \rightarrow \infty$ (Exotic)

• We find bound states both for $J^P = 0^-$ and $1^-!$

• $P^{(*)}NN$: Degenerate states $(j - 1/2, j + 1/2)^P = (0, 1)^ \rightarrow$ Brown muck $[qNN]^P$ has $j^P = 1/2^+$.

Results of $P_Q^{(*)}NN$ in $m_Q \rightarrow \infty$ (Exotic)

• Energy-levels for $\bar{D}NN$, BNN and $P_QNN(m_Q \rightarrow \infty)$

increases.

- We have investigated genuinely exotic dibaryons formed by $P^{(*)}NN$.
- The π exchange potential was employed between a heavy meson $P^{(*)}$ and a nucleon N.
- For the $\overline{D}NN$ and BNN states, we have found the bound states with $J^P = 0^-$ and resonances with $J^P = 1^-$ for I = 1/2.
- Tensor force of π exchange plays a crucial role to produce a strong attraction.
- The PN P*N mixing component is important to yield these states.
- In $m_Q \rightarrow \infty$, we have obtained the degenerate states of $J^P = 0^-$ and 1^- .

イロト 不得 トイヨト イヨト

Back up

イロン イロン イヨン イヨン

æ

• Central force C(r) and Tensor force T(r)

$$C(r) = \int \frac{d^3q}{(2\pi)^3} \frac{m_{\pi}^2}{\vec{q}\,^2 + m_{\pi}^2} e^{i\vec{q}\cdot\vec{r}} F(\Lambda_P, \vec{q}) F(\Lambda_N, \vec{q})$$

$$S_T(\hat{r}) T(r) = \int \frac{d^3q}{(2\pi)^3} \frac{-\vec{q}\,^2}{\vec{q}\,^2 + m_{\pi}^2} S_T(\hat{q}) e^{i\vec{q}\cdot\vec{r}} F(\Lambda_P, \vec{q}) F(\Lambda_N, \vec{q})$$

$$F(\Lambda, \vec{q}) = \frac{\Lambda^2 - m_{\pi}^2}{\Lambda^2 + \vec{q}\,^2}$$

э

・ 戸 ・ ・ ヨ ・ ・ ヨ ・