Possible existence of charmonium-nucleus bound states

A. Y., E. Hiyama and M. Oka, arXiv:1308.6102, accepted by PTEP

Akira Yokota Tokyo Institute of Technology

Collaborating with Emiko Hiyama^a and Makoto Oka^b RIKEN Nishina Center^a Tokyo Institute of Technology^b

Contents

- Introduction
 - Charmonium-nucleon interaction (multiple-gluon exchange)
 - Charmonium-nucleus bound states
- Formalism
 - Effective charmonium-nucleon potential and its scattering length
 - Gaussian Expansion Method (GEM) for solving few-body Schrodinger eq.
- Results
 - Charmonium-deuteron system $(J/\psi N N)$
 - Charmonium-⁴He system ($J/\psi \alpha$)
 - Charmonium-⁸Be system ($J/\psi \alpha \alpha$)
- The decay and mixing of J/ ψ and η_c in nucleus
- Summary and conclusion

• the role of **gluon** and **QCD** in low energy **hadronic interaction**

 hadronic interactions in short range region which could not be described only by one meson exchange

Why studying $c\bar{c} - nucleus$ bound state?

- Low energy $c\bar{c} N$ scattering experiment is not feasible.
- We have to study without direct information about the $\, c ar c N$ interaction.

Also, it is <u>a new type of hadronic state</u> in which particles with **no common valence quarks** are bound mainly by **(multiple-)gluon exchange interaction**.

Such bound states have not yet been found by experiment. Therefore, we give an estimation of the binding energy of cc^{bar}-nucleus bound states. Effective potential between $\ c \bar{c} - N$

- We only consider **S wave** (L=O). (We only want to see the ground state.)
- Since the attraction is relatively **weak** and **short ranged**, the interaction could be expressed well by **scattering length**.
- We assume **Gaussian type** potential.

$$\eta_c$$
 (J $\pi = 0^-$)
 $v_{\eta_c - N}(r) = v_{\mathrm{eff}} e^{-\mu r^2}$

$$\mu = (1.0 \, \text{fm})^{-2}$$
 (taken from color confinement scale)

$$J/\psi \quad (J^{\pi} = 1^{-})$$

$$v_{J/\psi-N}(r) = (v_0 + v_s(\mathbf{S}_{J/\psi} \cdot \mathbf{S}_N))e^{-\mu r^2}$$

$$\equiv v_{\text{eff}}(S_{J/\psi-N})e^{-\mu r^2}$$

$$v_{\text{eff}}(S_{J/\psi-N}) = \begin{cases} v_0 - v_s & (S_{J/\psi-N} = 1/2) \\ v_0 + \frac{1}{2}v_s & (S_{J/\psi-N} = 3/2) \end{cases}$$

Our strategy:

- 1, Solve the Schrödinger equation for $c\bar{c} N$ 2-body system and obtain the relation between the potential depth $v_{\rm eff}$ and the scattering length a.
- 2, Solve the Schrödinger equation for $c\bar{c}$ —nucleus system (by GEM) and obtain the relation between $v_{\rm eff}$ and the binding energy *B*.
- 3, By combining these results, we obtain the relation between (a) and B.

Effective potential between $\ c \bar{c} - N$

- We only consider **S wave** (L=O). (We only want to see the ground state.)
- Since the attraction is relatively **weak** and **short ranged**, the interaction could be expressed well by **scattering length**.
- We assume **Gaussian type** potential.

$$\eta_c$$
 (J $\pi = 0^-$)
 $v_{\eta_c - N}(r) = v_{\mathrm{eff}} e^{-\mu r^2}$

$$\mu = (1.0 \text{ fm})^{-2}$$
(taken from color confinement scale)

$$J/\psi \quad (J^{\pi} = 1^{-})$$

$$v_{J/\psi-N}(r) = (v_0 + v_s(\mathbf{S}_{J/\psi} \cdot \mathbf{S}_N))e^{-\mu r^2}$$

$$\equiv v_{\text{eff}}(S_{J/\psi-N})e^{-\mu r^2}$$

$$v_{\text{eff}}(S_{J/\psi-N}) = \begin{cases} v_0 - v_s & (S_{J/\psi-N} = 1/2) \\ v_0 + \frac{1}{2}v_s & (S_{J/\psi-N} = 3/2) \end{cases}$$

Our strategy:

- 1, Solve the Schrödinger equation for $c\bar{c} N$ 2-body system and obtain the relation between the potential depth $v_{\rm eff}$ and the scattering length a.
- 2, Solve the Schrödinger equation for $c\bar{c}$ –nucleus system (by GEM) and obtain the relation between $v_{\rm eff}$ and the binding energy B.
- 3, By combining these results, we obtain the relation between (a) and B.

Can be calculated by lattice QCD

Effective potential between $\ c \bar{c} - N$

- We only consider **S wave** (L=O). (We only want to see the ground state.)
- Since the attraction is relatively **weak** and **short ranged**, the interaction could be expressed well by **scattering length**.
- We assume **Gaussian type** potential.

$$\eta_c$$
 (J $\pi = 0^-$)
 $v_{\eta_c - N}(r) = v_{\mathrm{eff}} e^{-\mu r^2}$

$$\mu = (1.0 \text{ fm})^{-2}$$
(taken from color confinement scale)

$$J/\psi \quad (J^{\pi} = 1^{-})$$

$$v_{J/\psi-N}(r) = (v_0 + v_s(\mathbf{S}_{J/\psi} \cdot \mathbf{S}_N))e^{-\mu r^2}$$

$$\equiv v_{\text{eff}}(S_{J/\psi-N})e^{-\mu r^2}$$

$$v_{\text{eff}}(S_{J/\psi-N}) = \begin{cases} v_0 - v_s & (S_{J/\psi-N} = 1/2) \\ v_0 + \frac{1}{2}v_s & (S_{J/\psi-N} = 3/2) \end{cases}$$

Our strategy:

- 1, Solve the Schrödinger equation for $c\bar{c} N$ 2-body system and obtain the relation between the potential depth $v_{\rm eff}$ and the scattering length a.
- 2, Solve the Schrödinger equation for $c\bar{c}$ –nucleus system (by GEM) and obtain the relation between v_{eff} and the binding energy *B*.
- 3, By combining these results, we obtain the relation between (a) and B.

Combining lattice QCD data, we estimate the binding energy of cc^{bar}-nucleus bound states.

The relation between potential strength and the scattering length

By the results, we can convert the value of v_{eff} into $a_{J/\psi-N}$. A $J/\psi - N$ bound state is formed when $v_{\text{eff}} \leq -72.6 \text{ MeV}$.

Calculation of J/ψ -nucleus bound states

GEM 3-body calculation

E. Hiyama et al. Prog. Part. Nucl. Phys. 51, 223 (2003)

(variation method) It is known empirically that \mathbf{r}_2 setting range parameters in geometric r₁ progression as shown below produce accurate eigenvalues and eigenfunctions with a relatively few basis functions. C=1 C=2 C=3 3 n_{max} N_{max} $\Psi_{JM} = \sum \sum \sum \sum C_{nNI}^c \phi_{nlm}^c(\mathbf{r_c}) \psi_{NLM}^c(\mathbf{R_c}) [[\chi_s(1)\chi_s(2)]_I \chi_s(3)]_{JM}$ c=1 n=1 N=1 $\psi^{c}_{NLM}(\mathbf{R}) = \psi^{c}_{NL}(R)Y^{M}_{L}(\hat{\mathbf{R}})$ $\psi^{c}_{NL}(R) = R^{L}e^{-\lambda_{N}R^{2}}$ $\phi_{nlm}^c(\mathbf{r}) = \phi_{nl}^c(r) Y_l^m(\hat{\mathbf{r}})$ $\phi_{nl}^c(r) = r^l e^{-\nu_n r^2}$ $u_n = \frac{1}{r_n^2} \quad r_n$: geometric progression $\lambda_N = \frac{1}{R_N^2}$ R_N : geometric progression $r_n = r_1 a^{n-1} \qquad (n = 1, \dots, n_{max})$ $R_N = R_1 A^{N-1} \qquad (N = 1, \dots, N_{max})$ $<\phi_{n00}^{c}\psi_{N00}^{c}|[-\frac{\hbar^{2}}{2\mu_{12}}\nabla_{\mathbf{r}_{1}}^{2}-\frac{\hbar^{2}}{2\mu_{122}}\nabla_{\mathbf{R}_{1}}^{2}+V(\mathbf{r}_{1},\mathbf{R}_{1})-E]|\Psi_{JM}>$ $= \sum [(T_{nN,n'N'}^{c,c'} + V_{nN,n'N'}^{c,c'}) - EN_{nN,n'N'}^{c,c'}]C_{n'N'}^{c'} = 0$ c'.n'.N'.I

Generalized eigenvalue problem of symmetric matrix.

binding energy B of J/Ψ –NN (Isospin T=0).

The binding energy is measured from J/Ψ + deuteron breakup threshold -2.2 MeV.

N-N potential: Minnesota potential I. Reichstein, Y. C. Tang, Nucl. Phys. A, 158, 529 (1970) D. R. Thompson et al., Nucl, Phys, A, 286, 53, (1977) A bound state is formed when $a_{J/\psi-N} < -0.95$ fm

Charmonium-nucleon scattering length from recent lattice QCD

Scattering lengths as functions of the square mass of π derived by quenched lattice QCD using Luscher's formula. (The notation of the sign of scattering length is opposite.)

Tendency of a^{J/ψ−N}_{J=3/2} ≥ a^{J/ψ−N}_{J=1/2} ≥ a^{η_c−N} can be seen for the central values although there are overlaps of error-bars. (The size of the error-bars are about 0.1 fm.)
 The small spin dependence may exist

$$a_{\rm SAV}^{J/\psi-N} \simeq -0.35 \; {\rm fm}$$

(our notation of the sign)

$$a_{\rm SAV}^{J/\psi-N} \equiv \frac{1}{3} (a_{J=1/2}^{J/\psi-N} + 2a_{J=3/2}^{J/\psi-N})$$

Range dependence of the binding energy

 $V(r) = V_{\rm eff} e^{-\mu r^2}$

- So far we have assumed that there are one to one correspondence between *a* and *B*.
- But additionally there is range dependence.
- A potential with smaller range gives deeper binding for the same value of the scattering length.
- But the difference becomes small when attraction become weak.
- Our results do not change qualitatively by the difference of the potential range.

Glue like effect is suppressed for weak attraction

J/ψ -⁴He potential

Since J/ ψ -N interaction is weak and ⁴He is a deeply bound state (B.E. = 28MeV), nucleon density distribution in ⁴He may not be disturbed by J/ Ψ . Therefore, is reasonable to treat ⁴He as one stable particle, α .

For J/ ψ - α potential, we use folding potential given by

$$V_{J/\psi-\alpha}(\mathbf{r}) = \sum_{i=1}^{4} \int \rho_{N_i}(\mathbf{r}') V_{J/\psi-N}(\mathbf{r}-\mathbf{r}') d^3 \mathbf{r}'$$

$$\begin{cases} \rho_{N_i}(r') = \frac{4}{b^3 \sqrt{\pi}} exp(-\frac{1}{b^2} r'^2) & \text{(nucleon density distribution in ^4He)} \\ b = 1.358 \text{fm} \\ \int_0^\infty \rho_{N_i}(r) r^2 dr = 1 & \text{Ref: R. Hofstadter, Annu. Rev. Nucl. Sci. 7, 231 (1957)} \\ \text{R.F. Frosch et al., Phys. Rev. 160, 4 (1967)} \\ \text{J.S. McCarthy et al., PRC15, 1396 (1977)} \end{cases}$$

Also, we implement the Center of Mass Correction to the folding potential.

$$V_{\text{fold}}(r) = 4 \left(\frac{4}{4+3\mu b^2}\right)^{3/2} v_0 e^{-4\mu r^2/(4+3\mu b^2)}$$

r : the relative distance between J/ψ and the center of mass of ⁴He.

 $J/\psi - 4He$ bound state is formed when $a_{J/\psi - N} \leq -0.24$ fm

 $J/\Psi - ^{4}He$ bound state may exist!

Also, since J/ψ -N interaction is attractive, bound states may exist for nuclei with $A \ge 4$.

Density distribution between $J/\psi^{-4}He$

A. Y., E. Hiyama and M. Oka, arXiv:1308.6102, accepted by PTEP

$J/\psi-lpha-lpha$ 3-body system

Relations between scattering length *a* of $J/\psi - N$ and binding energy *B* of $J/\psi - 4$ He and $J/\psi - \alpha - \alpha$

Summary and Conclusion

- We calculate the binding energies of $J/\psi {}^{4}He$ and $J/\psi \alpha \alpha$ by using Gaussian Expansion Method and give **the relations** between **the** $J/\psi N$ scattering length and the $J/\psi nucleus$ binding energies.
- By comparing these results with the recent lattice QCD data, we see that a shallow bound state of $J/\psi - {}^{4}He$ and $J/\psi - \alpha - \alpha (J/\psi - {}^{8}Be)$ may exist.
- Since $J/\psi N$ interaction is <u>attractive</u>,

 J/ψ – nucleus bound states may be formed with A > 4 nucleus.

- The decay mechanisms which could make the width of J/ ψ -nucleus larger are considered to be small.
- Therefore, we conclude that if $J/\psi nucleus$ bound states exist, it would be narrow states comparable to J/ψ in the vacuum.

Back up slides

The decay and the mixing of J/ ψ and η_c in nuclei

- $\Gamma_{J/\psi} = 93 \text{ keV}, \ \Gamma_{\eta_c} = 30 \text{ MeV}$ in vacuum.
- We expect narrow J/ψ states in nuclei.
- Two possible mechanisms, which make the decay width of $cc^{\text{bar}}(J/\psi)\text{-nucleus states larger are}$
 - (1) The final state interaction (FSI) of cc^{bar}

decay products with nucleons in nucleus

(2) The mixing of cc^{bar}-nucleon state with other hadronic states which retain c and c^{bar} quarks. (1) The final state interaction(FSI) of cc^{bar} decay products with nucleons in nucleus

- For J/ψ, FSI in nucleus (e.g. π absorption by N) may enhance the decay width of J/ψ in nucleus several times larger than in vacuum.
- But $\Gamma_{J/\psi}$ in vacuum is so small (= 93 keV) that even if it is enhanced for several times in nucleus, it still would be small (< 1 MeV).

(2) The mixing of cc^{bar}-nucleon state with other hadronic states which retain c and c^{bar} quarks.

• The decay of J/ ψ going through the mixing $J/\psi + N \rightarrow (c^{bar} meson) + (c baryon)$ is prohibited since all such hadronic states have larger masses. $m_{\Lambda c} + m_{D^{bar}} - 4151 \text{ MeV}$ (the lightest state) $\sim 120 \text{ MeV}$

 $m_{J/\psi} + m_p$

- Then, the only possible decay process of J/ψ in this case goes through the mixing of J/ψ-nucleus and ηc-nucleus channels which have the same conserving quantum numbers.
- This mixing process can be divided into two groups:
 - (a) coherent mixing (retains the nucleus to its ground state)
 - (b) incoherent mixing (nucleus is excited or broken)

(e.g. $J/\psi^{-4}He \rightarrow \eta c^{-3}H + p$)

—— 4035 MeV

(a) Coherent mixing channels

	J			L			
$J/\psi-N$	$1/2^{-}$	\rightarrow	$\eta_c - N$	0	_		
	$3/2^{-}$	\rightarrow	$\eta_c - N$	2	_		
J/ψ -deuteron	0^{-}	\rightarrow	×		` -		•
	1^{-}	\rightarrow	η_c -deuteron	0,2		² H (d)	
	2^{-}	\rightarrow	η_c -deuteron	2		t	
$J/\psi - {}^{4}\mathrm{He}$	1-	\rightarrow	×		フ	³ He 4 He (α)	
$J/\psi - {}^{6}Li$	0^{-}	\rightarrow	×			m(a)	
	1^{-}	\rightarrow	$\eta_c - {}^6\text{Li}$	0, 2		${}^{6}Li$	
	2^{-}	\rightarrow	$\eta_c - {}^6\text{Li}$	2		⁷ Li ⁸ Bo	
$J/\psi - {}^{7}Li$	$1/2^{-}$	\rightarrow	$\eta_c - 7$ Li	0		De	-
-	$3/2^{-}$	\rightarrow	$\eta_c - {}^7\mathrm{Li}$	2	_		
$J/\psi - {}^8\mathrm{Be}$	1-	\rightarrow	×				

Table 1: Coherent mixing channels of J/ψ -nucleus and η_c -nucleus systems for several light nuclei. L denotes the orbital angular momentum between charmonium and nucleus.

The mixing of J/ ψ -nucleus and η c-nucleus channels

• The spin flip process is suppressed by $1/m_c^2$.

Spin averaged J/Ψ -N potential in J/Ψ -NN system

Possible states for $J/\Psi - NN$ system

T (isospin)	J	S _{NN}	S _{J/Ψ-N}
0	0	1	1/2
0	1	1	1/2, 3/2
0	2	1	3/2

 $J/\Psi-N \text{ potential}$ $\frac{v_{J/\psi-N}(r)}{v_{J/\psi-N}(r)} = (v_0 + v_s(\mathbf{S}_{J/\psi} \cdot \mathbf{S}_N))e^{-\mu r^2}$ $= \begin{cases} \frac{(v_0 - v_s)}{(v_0 + \frac{1}{2}v_s)} e^{-\mu r^2} & (S_{J/\psi-N} = 1/2) \\ (v_0 + \frac{1}{2}v_s) e^{-\mu r^2} & (S_{J/\psi-N} = 3/2) \\ \equiv v_{\text{eff}}(S_{J/\psi-N}) e^{-\mu r^2} \end{cases}$

Spin averaged J/Ψ -N potential in J/Ψ -NN system

$$V_{\text{eff}}^{(J,T)} e^{-\mu r^2} \equiv \left\langle (NN)_{S_{NN}}, J/\psi; J \middle| v_{J/\psi-N}(r) \middle| (NN)_{S_{NN}}, J/\psi; J \right\rangle$$

 $V_{\text{eff}}^{(0,0)} = v_0 - v_s = v_{\text{eff}}(1/2) \qquad (J = 0, \ S_{NN} = 1, \ T = 0)$ $V_{\text{eff}}^{(1,0)} = v_0 - \frac{1}{2}v_s \qquad (J = 1, \ S_{NN} = 1, \ T = 0)$ $V_{\text{eff}}^{(2,0)} = v_0 + \frac{1}{2}v_s = v_{\text{eff}}(3/2) \qquad (J = 2, \ S_{NN} = 1, \ T = 0)$ Range dependence of $J/\psi^{-4}He$ binding energy

Difference between $\eta_c - {}^4 \operatorname{He}$ and $J/\psi - {}^4 \operatorname{He}$

Potential range parameter: $\mu = (1.0 \, \text{fm})^{-2}$

$$J/\psi - lpha - lpha$$

Relations between scattering length *a* of $J/\psi - N$ and binding energy *B* of $J/\psi - 4$ He and $J/\psi - \alpha - \alpha$

