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QCD phase diagram

Understanding the phase diagram of the strong interaction, QCD, is
extremely difficult, because

• there is no global analytical approach to solve QCD, and
• one cannot produce a long-lived and controlable system of QCD

matter to explore experimentally.

How can we still hope to fill this phase diagram?
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Approaches to the QCD phase diagram

• QCD calculations in the nonperturbative regime:

LQCD Wuppertal-Budapest
JHEP 0203 (2002), JHEP 1104 (2011) DSE C. Fischer, J. Luecker, PLB718 (2013)

• Effective models of QCD:

• Heavy-ion collisions:



Fluid dynamical description of heavy-ion collisions

• The discovery of RHIC: The QGP is an almost ideal strongly
coupled fluid.

• Early hydrodynamic calculations reproduce spectra and elliptic
flow P. Kolb, U. Heinz, QGP (2003).

• Long road of improvements during the last decade:
(3 + 1d), viscosity, initial conditions, initial state fluctuations, hybrid models

elliptic flow at LHC
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What is fluiddynamics?

• Two time scales:
• fast processes⇒ local equilibration
• slow processes⇒ change of conserved charges (energy,

momentum, charge)

• General dynamics:

∂µT µν = 0 ,

∂µNµ = 0

• Properties of the system enter via the equation of state and
transport coefficients.



What is fluiddynamics?

• Two time scales:
• fast processes⇒ local equilibration
• slow processes⇒ change of conserved charges (energy,

momentum, charge)

• General dynamics:

∂µT µν = 0 ,

∂µNµ = 0

• Properties of the system enter via the equation of state and
transport coefficients.

Phase transitions are easy to implement in fluiddynamics!



Equation of state - phase transition

• Build an equation of state from the QGP and the hadronic phase.

• Assume an noninteracting gas
of hadronic resonances below
TC ⇒ c2

s = ∂p/∂e ∼ 0.15 soft
• QGP: gas of noninteracting

quarks and gluons subject to
an external bag pressure B⇒
eos: p = 1/3e− 4/3B stiff

• Joined together by a Maxwell
construction.
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The speed of sound vanishes during the phase coexistence.
However, no clear experimental signals were found corresponding to
the “softest point” of the eos.
C. Hung, E. Shuryak, PRL75 (1995)



Equation of state - lattice QCD

• At µB = 0 the eos can be calculated on the lattice:

Wuppertal-Budapest, JHEP 1011 (2010)
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• Strong increase in the energy density around Tc due to the
liberation of color dof.

• Compares well to the HRG eos below Tc ⇒ allows for
parametrizing the QCD eos for use in hydrodynamic simulations.

• Some differences between two lattice QCD groups.



Equation of state - critical point

• Construct an eos with CP from the
universality class of the 3d Ising
model.

• Map the temperature and the
external magnetic field (r ,h) onto the
(T , µ)-plane⇒ critical part of the
entropy density Sc.

• Match with nonsingular entropy
density from QGP and the hadron
phase:

s = 1/2(1− tanh Sc)sH

+ 1/2(1 + tanh Sc)sQGP
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• Focussing of trajectories⇒ Different behavior of p̄/p yields.

C. Nonaka, M. Asakawa PRC71 (2005); M. Asakawa, S. Bass, B. Mueller, C. Nonaka PRL101 (2008)



Equation of state - effective models

• Equations of state can be obtained from effective model
Lagrangians.

• Hadronic SU(3) non-linear sigma model including quark degrees
of freedom yields a realistic structure of the phase diagram and
phenomenologically acceptable results for saturated nuclear
matter.
V. Dexheimer, S. Schramm, PRC81 (2010)

• The influence of the eos on the directed flow or mean transverse
momentum spectra is negligible.
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Phase transitions are easy to implement in fluiddynamics on the level
of the equation of state.

BUT:

Phase transitions are difficult to implement in fluiddynamics on the
level of fluctuations!

! Conventional fluiddynamics locally propagates thermal averages
! Fluctuations really matter at the critical point...



Fluctuations at the critical point
• Coupling of the order parameter to

pions gσππ and protons Gσp̄p ⇒
fluctuations in multiplicity
distributions

〈(δN)2〉 ∝ 〈(∆σ)2〉 ∝ ξ2

ξ: correlation length, diverges at the
CP
M. Stephanov, K. Rajagopal, E. Shuryak, PRL 81 (1998), PRD 60 (1999)

• Higher cumulants are more sensitive
to the CP
skewness: 〈(δN)3〉 ∝ ξ4.5

kurtosis: 〈(δN)4〉 − 3〈(δN)2〉2 ∝ ξ7

M. Stephanov, PLB 102 (2009), PRL 107 (2011)

• Experimental difficulties, baryon
number conservation
MN et al. EPJ C72 (2012)
A. Bzdak, V. Koch, PRC86 (2012), PRC87 (2013)

(NA49 collaboration J. Phys. G 35 (2008))

(STAR collaboration, QM2012)



Fluctuations at the critical point

• Long relaxation times near a critical point
⇒ the system is driven out of equilibrium (critical slowing down)!

• Phenomenological equation:

d
dt

mσ(t) = −Γ[mσ(t)](mσ(t)−
1

ξeq(t)
)

with Γ(mσ) =
A
ξ0
(mσξ0)

z

z = 3
(dynamic) critical exponent
from model H in Hohenberg-Halperin

⇒ ξ ∼ 1.5− 2.5 fm

(B. Berdnikov and K. Rajagopal, PRD 61 (2000)); D.T.Son, M.Stephanov, PRD 70 (2004); M.Asakawa, C.Nonaka, Nucl. Phys. A774 (2006))



Fluctuations at the phase transition in heavy-ion
collisions

• Large nonstatistical fluctuations in nonequilibrium situations of
single events.

• Instability of slow modes in
the spinodal region
(spinodal decomposition)
I. Mishustin, PRL 82 (1999)
C. Sasaki, B. Friman, K. Redlich, PRD 77 (2008)

• Significant amplification of initial density irregularities
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Heavy-ion collisions are
• inhomogeneous
• finite in space and time
• and highly dynamic.

? Can nonequilibrium effects become strong enough to develop
signals of the first order phase transition?

? Do enhanced equilibrium fluctuations at the critical point survive
the dynamics?

Goal:
Combine the fluid dynamical description of heavy-ion collisions with
fluctuation phenomena at the phase transition!

• Explicit propagation of the order parameter(s) – NχFD
• Fluid dynamical fluctuations



Nonequilibrium chiral fluid dynamics - NχFD
• Langevin equation for the sigma field: damping and noise from

the interaction with the quarks (QM model)

∂µ∂µσ +
δU
δσ

+ gρs + η∂t σ = ξ

• For PQM: phenomenological dynamics for the Polyakov-loop

η`∂t `T 2 +
∂Veff

∂`
= ξ`

• Fluid dynamic expansion of the quark fluid = heat bath, including
energy-momentum exchange

∂µT µν
q = Sν = −∂µT µν

σ

⇒ includes a stochastic source term!
• Nonequilibrium equation of state p = p(e, σ)

Selfconsistent approach within the 2PI effective action!

MN, S. Leupold, C. Herold, M. Bleicher, PRC 84 (2011); MN, S. Leupold, M. Bleicher, PLB 711 (2012);
MN, C. Herold, S. Leupold, I. Mishustin, M. Bleicher, arXiv:1105.1962; C. Herold, MN, I. Mishustin, M. Bleicher PRC 87 (2013)



Dynamics versus equilibration

• Quantify the fluctuations of the order parameter:

dNσ

d3k
=

(ω2
k |σk |2 + |∂t σk |2)
(2π)32ωk
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• Strong enhancement of the intensities for a first order phase
transition during the evolution.

• Strong enhancement of the intensities for a critical point scenario
after equilibration.

C. Herold, MN, I. Mishustin, M. Bleicher PRC 87 (2013)



Trajectories and isentropes at finite µB

Isentropes in the PQM model
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• Fluid dynamic trajectories differ from the isentropes due to
interaction with the fields.

• No significant features in the trajectories left of the critical point.
• Right to the critical point: system spends significant time in the

spinodal region! ⇒ possibility of spinodal decomposition!



Irregularities in net-baryon densities

first-order phase transition
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Dynamic enhancement of event-by-event fluctuations

temperature averaged sigma field

event-by-event fluctuations

• Initial fluctuations of the sigma
field from initial fluctuations in T .

• Enhanced event-by-event
fluctuations of the order
parameter at Tc .



Relativistic theory of fluid dynamical fluctuations

Conventional fluiddynamics propagates thermal averages of the
energy density, pressure, velocities, charge densities, etc.

However, ...
• ... already in equilibrium there are thermal fluctuations
• ... the fast processes, which lead to local equilibration also lead

to noise!
Conventional ideal fluid dynamics:

T µν = T µν
eq

Nµ = Nµ
eq
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Relativistic theory of fluid dynamical fluctuations

Conventional fluiddynamics propagates thermal averages of the
energy density, pressure, velocities, charge densities, etc.

However, ...
• ... already in equilibrium there are thermal fluctuations
• ... the fast processes, which lead to local equilibration also lead

to noise!
Stochastic viscous fluid dynamics:

T µν = T µν
eq + ∆T µν

visc + Ξµν

Nµ = Nµ
eq + ∆Nµ

visc + Iµ



Relativistic theory of fluid dynamical fluctuations

The noise terms are such that averaged quantities exactly equal the
conventional quantities:

〈T µν〉 = T µν
eq + ∆T µν

visc with 〈Ξµν〉 = 0

〈Nµ〉 = Nµ
eq + ∆Nµ

visc with 〈Iµ〉 = 0

The two formulations will, however, differ when one calculates
correlation functions:

〈T µν(x)T µν(x ′)〉
〈Nµ(x)Nµ(x ′)〉



Relativistic theory of fluid dynamical fluctuations

In linear response theory the retarded correlator 〈T µν(x)T µν(x ′)〉
gives the viscosities and 〈Nµ(x)Nµ(x ′)〉 the charge conductivities via
the dissipation-fluctuation theorem (Kubo-formula)!

It means that when dissipation is included also fluctuations need to
be included!



Relativistic theory of fluid dynamical fluctuations

recent interest in fluid dynamical fluctuations in relativistic (e.g
heavy-ion collisions) and non-relativistic fluids (ultra-cold gases).

• J. Kapusta, B. Mueller, M. Stephanov PRC85 (2012)
• P. Kovtun, J.Phys. A45 (2012)
• J. Kapusta, J. Torres-Rincon PRC86 (2012)
• C. Young, arXiv:1306.0472
• K. Murase and T. Hirano, arXiv:1304.3243
• C. Chafin and T. Schäfer, PRA87 (2013)
• P. Romatschke and R. E. Young, PRA87 (2013)



Relativistic theory of fluid dynamical fluctuations

As an example: consider only the conservation equation ∂µT µν = 0
(no baryon current).

Procedure:
• Write down the linearized fluid dynamical equations.
• Solve the coupled equations in linear response theory⇒

retarded Green’s functions.
• Construct 〈T µν(x)T µν(x ′)〉 from the conservation equation and

via the dissipation-fluctuation theorem.



Relativistic theory of fluid dynamical fluctuations

first-order (second-order) relativistic viscous fluid dynamics

T µν = euµuν − (p + Π)∆µν + πµν

Nµ = nBuµ + ν
µ
B

∆µν = gµν − uµuν

πµν = ∆µα∆νβ

(
∂αuβ + ∂βuα −

2
3

gαβ∂µuµ

)
−τηπ̇µν

Π = ζ∂µuµ−τζ Π̇

In principle, one needs to solve the equations for (second-order)
relativistic viscous fluid dynamics to preserve causality.

Here, as an example: first-order!



Relativistic theory of fluid dynamical fluctuations

• Linearized hydro equations: small fluctuations ē + δe, p̄ + δp and
δv i

with: δT 00 = δe and δT ij = mi = (ē + p̄)v i = w̄v i

∂tm⊥ + η/w̄k2m⊥ = 0
∂t δe + ik ·m|| = 0

∂tm|| + iv2
s kδe + γv k2m|| = 0

• Speed of sound vs from the equation of state,
γv = (4/3η + ζ)/w̄ .

• Transverse momentum densities decouple, remaining equations
can be written in compact form: ∂t φa + Mab = 0



Relativistic theory of fluid dynamical fluctuations

⇒ then the retarded Green’s function can be calculated via:

Gret
ab (ω,k) = −(1+ iω(−iωδab + M)−1)χ

• The static susceptibilities χab - response to an external source.
• sources contribute time-dependent parts to the Hamiltonian,

here:

δH = −
∫

d3x
(

δT
T

δe + v||m||

)
⇒ λ = (δT /T , v||)

• then χ = ∂φa
∂λb

=

(
cv T 0

0 w̄

)



Relativistic theory of fluid dynamical fluctuations

• retarded Green’s function for δe and m||:

Gret
ab (ω,k) =

w̄
ω2 − v2

s k2 + iωγsk2

(
k2 ω|k|

ω|k| v2
s k2 − iωγsk2

)

• including the transverse momentum density:

Gret
mi ,mj

(ω,k) =
(

δij −
kikj

k2

)
ηk2

iω− γηk2 +
kikj

k2
w̄(v2

s k2 − iωγsk2)

ω2 − v2
s k2 + iωγsk2

• Kubo-formulas for viscosities:

η = − ω

2k2

(
δij −

kikj

k2

)
=Gret

mi mj
(ω,k→ 0)

ζ +
4
3

η = −ω3

k4 =Gret
ee (ω,k→ 0)



Relativistic theory of fluid dynamical fluctuations

∂

∂
µ
x

∂

∂
µ
x ′
〈Ξµ0(x)Ξµ0(x ′)〉S = − ∂

∂
µ
x

∂

∂
µ
x ′
〈T µ0(x)T µ0(x ′)〉S

=
∫ dω

2π

∫ d3k
(2π)3 eik(x−x′)e−iω(t−t ′)×

×


ω2GS

ee(ω,k)︸ ︷︷ ︸
FDT

− 2ω|k|GS
em|| (ω,k)
︸ ︷︷ ︸

FDT

+ k2GS
m||m|| (ω,k)
︸ ︷︷ ︸

FDT




GS
ab(ω,k) = −2T

ω
=Gret

ab (ω,k)

= 0

⇒ no noise term in the first fluid dynamical equation!



Relativistic theory of fluid dynamical fluctuations

many more terms in the second fluid dynamical equation, but same
procedure:

∂

∂
µ
x

∂

∂
µ
x ′
〈Ξµi (x)Ξµj (x ′)〉S = − ∂

∂
µ
x

∂

∂
µ
x ′
〈T µi (x)T µj (x ′)〉S

= 2T
[(

ζ +
4
3

η

)
∂i ∂j + η(δij∇2 − ∂i ∂j )

]
δ4(x − x ′)

⇒

〈Ξij (x)Ξkl (x ′)〉S = 2T
[(

ζ − 2
3

η

)
δij δkl + η(δik δjl + δil δjk ))

]
δ4(x − x ′)

boost back to the Landau-Lifschitz frame

〈Ξµν(x)Ξαβ(x ′)〉S = 2T
[(

ζ − 2
3

η

)
∆µα∆νβ + η(∆µβδνα + ∆µν∆αβ))

]
δ4(x − x ′)



To do list

• Derive fluid dynamical fluctuations for the coupled system
including the net-baryon number current in second-order viscous
fluid dynamics and implement it numerically.

• Make a realistic choice for the equation of state and the transport
parameters.

• For a comparison to experiment, acknowledge that there other
sources of fluctuations and correlations in heavy-ion collisions,
e.g. initial fluctuations, flow...

• Final state interactions. Would any signal survive?



Summary

• Heavy-ion collisions can successfully be described by
fluiddynamics (possibly viscous and as a part of hybrid models)

• Equations of state from the universality class and effective model
approaches.

• Nonequilibrium effects can become strong enough to develop
signals of the first order phase transition.

• There are indications from NχFD for a dynamical enhancement
of event-by-event-fluctuations of the order parameter (σ) at the
critical point

• Fluid dynamical fluctuations play an important role at the critical
point!


