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The products of the moments            �
      and        are significantly 
below Skellam expectation, a 
behavior qualitatively consistent 
with a QCD based model which 
includes a CP.  �
�
No definite conclusion can be 
made until a comparison with 
QCD calculations with CP 
behavior which include the 
dynamics of HI collisions as 
freeze-out effects and finite 
correlation lengths is done.�
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beam energy and collision centrality dependence of the standard deviation � , skewness S , and kurtosis  of the

net proton multiplicity distributions in Au-Au collisions. The products of the moments S� and �2
are sensitive to

the correlation length of the hot and dense plasma created during the collision and are related to the ratios of baryon

number susceptibilities of corresponding orders.

Are We Observing the CP?�



Future Probes�



What do We Expect at Very Large Density?�

Color Superconductivity: �
Favored at asymptotically large densities�

Cooper Pairing via the color anti-triplet channel�



Intermediate Densities: �
No crystal-clear picture�

Cooper pairing is distorted by the mismatch of the 
flavors’ Fermi surfaces. It leads to gapless CS and 
chromomagnetic instabilities. �
Possible solution: inhomogeneous CS phases   �



Competing Pairings at Intermediate Density�

Becomes less favored with 
decreasing densities. Color 
nonsinglet, hence not favored at 
large Nc.�

No Fermi surface mismatch issue 
because it pairs fermions with 
holes. Favored over CS at large Nc.�

Cooper Pairing� Particle-Hole Pairing �



DGR Solution at Intermediate Density�
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Large Nc, gs
2Nc <<1 

(perturbative regime)�

µ >> ΛQCD Use an effective action that �
neglects gluon self-interactions �

and ghosts. �
Fermi surface unstable towards the 

formation of an �
inhomogeneous chiral condensate �
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Integrating the gluons: �

Density Wave 
Condensate �

But for the instability to develop they needed Nc à  �∞

Deryagin, Grigoriev, Rubakov IJMP7,1992 �
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Does the DGR instability still develop at finite Nc?�
Shuster & Son, NPB 573, 2000�
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DGR instability develops because the effective  4-fermion 
interaction is singular. The gluon propagator behaves as 1/p2. 
The instability survives only if the screening effects are not 
too large.�
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SS main question: �
�

For each chemical potential what is the smaller Nc at 
which the screening is not large enough to cut off 

the instability?       �



Dimensional Reduction �
Shuster & Son, NPB 573, 2000�

The theory becomes equivalent to a (1+1)-D Thirring-like  model�

Has different couplings for electric and magnetic interactions�

The DGR instability exists only if  �



No Favored DW in the Perturbative Regime! �
Shuster & Son, NPB 573, 2000�

In the perturbative regime the DW is very sensitive to screening  



13 �

µ 

ΛQCD ~  �

Large NC : Gluon Propagator (same as in confined vacuum). 
Gribov-Zwanziger propagator: �
�

Valid in the Coulomb gauge and for � ⎢p⎢≤  ΛQCD  
perturbative 

Quarkyonic Matter�

Relevant at high density & large Nc ,  
where screening effects are negligible �
�
�

Bulk Properties: perturbative �
Excitations at the Fermi surface: confined �

€ 

mD << ΛQCD << µ

McLerran & Pisarski, NPA’07 �



14 �

4D QCD in Coulomb gauge reduces to �
1+1 D QCD in axial gauge Az=0 �

 Kojo, Hidaka, McLerran & Pisarski NPA 843, 2010 �
SD-equation in Quarkyonic Matter�
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Quarkyonic Chiral Spirals �

Minimum Solution: Quarkyonic Chiral Spirals �

=  

 Kojo, et al NPA’10 �

  Equivalent to the (1+1)D theory�

=  

In terms of the 4D fermions the two condensates are: �
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No Need for “Almost” Infinite Nc�

QCS forms thanks to the nonperturbative dynamics of the 
excitations near the Fermi surface.�
�
Can occur at smaller values of Nc than the perturbative DW 
because the screening becomes relevant only when quark 
fluctuations become comparable to those of gluons�
�
�
�
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NJL Approach: Dual Chiral Density Wave �
Nakano & Tatsumi, PRD71, 2005 �

Start with NJL model�

Consider the condensates�

The mean-field Lagrangian then is�



NJL Approach: Dual Chiral Density Wave �
Nakano & Tatsumi, PRD71, 2005 �
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NJL Approach: Soliton/Crystalline Condensate�
Nickel, PRL103, 2009; PRD80, 2009 �

Considered NJL model with discrete chiral symmetry�

With mean-field Lagrangian �



Crystalline Condensate�
Nickel, PRL103, 2009; PRD80, 2009 �

The GL expansion has the same structure of the GN 
(1+1)D model�

For a single modulated condensate the solution is �

It behaves as a sinusoidal function close to the transition: �
Crystalline condensate �

�



Crystalline or Spiral Solution? �
Nickel, PRD80, 2009 �

Consider NJL model with continuous chiral symmetry�

and two condensates�

Then, the mean-field Hamiltonian is �

So we have now a complex condensate�



Bogoliubov-De Gennes Hamiltonian �

Leads to the GL expansion of 
the Gross-Neveu model�

The thermodynamic potential is�

For single-modulated condensates,     commute with H and the 
eigenvalue spectrum can be constructed from the subspace 
spanned by the  eigenfunctions at zero    , thus H reduces to �



GL Expansion �

Each H1D in the direct product leads to the GL expansion of 
the NJL2 model: �

Bassar, Dunnes, Thies, PRD79, 2009 �



The terms with odd coefficients cancel out in the sum 
because one H is evaluated in M and the other in M*. The 
result is again the GN Hamiltonian (related to the theory 
with discrete chiral symmetry). The minimum solution is 
again the real, soliton solution! The chiral spiral is not 
favored.�

Nickel, PRD80, 2009 �



No CP with the Crystalline Minimum �

The critical point is now a Lifshitz point. Hence, the 
critical region that surrounds the CP disappears. No 
divergent susceptibilities in this phase diagram. �

Nickel, PRD80, 2009 �



Vector Interactions Effects�

No much effect on the inhomogeneous phase. The LP stays at the same T 
when vector interactions are included. Their effect on the homogeneous 
phases in contrast is significant, as they shift the CP position to lower 
temperatures and larger chemical potentials�

Carignano, Nickel, & Buballa PRD82, 2010 �



A New Look to P-H Condensates �
in the NJL Approach �

Consider an NJL model with continuous chiral symmetry�
Feng, Ferrer, & VI, arXiv. 1304.0256  �



A New Look to P-H Condensates �
in the NJL Approach �

Consider an NJL model with continuous chiral symmetry  
and tensor channels�

At finite density the Fierz identities open up tensor channels 
that were absent in the Lorentz invariant theory�

Feng, Ferrer, & VI, arXiv. 1304.0256  �



Single modulated condensates: �

Bogoliubov-De Gennes Hamiltonian �

Leads to the NJL2 GL 
expansion �



GL Expansion in the NJL with tensor channel�

No cancellation of the odd terms in the GL expansion �

The symmetry of this theory is the same as in the NJL2 �
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The most favored solution is now the chiral spiral, not the 
real crystalline condensate! �
Symmetry is also different from the model with scalar 
and pseudoscalar channels only because now the ground 
state breaks parity!  

Carignano, Ferrer, & VI, in prep �
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Experimental Implications (for current and future experiments): �
•  Two regions of critical behavior: the phase diagram has the 

expected CP plus another one at lower T. �
•  Parity violation should also lead to experimental signals.�

Carignano, Ferrer, & VI, in prep �



NJL-QCD Effective Model Connections�
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To be Done…�

•  Finding the exact location of the new CP�

•  Calculating the susceptibilities �

•  Effects of vector interactions�

•  Comparing with CS condensates�

•  …�


