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A popular approach: NJL

• Nambu–Jona-Lasinio model

LNJL = ψ̄ (iγµ∂µ −m)ψ + G
((
ψ̄ψ

)2
+
(
ψ̄iγ5τ aψ

)2)
• Chirally invariant four-fermion interaction

• Mean-field approximation → Thermodynamic potential

• Vacuum (Dirac sea of quarks) + medium contributions

• Inhomogeneous phases:
retain spatial dependence of the condensates

〈ψ̄ψ〉 = S(x) , 〈ψ̄iγ5τ3ψ〉 = P(x)

• Minimize thermodynamic potential
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First NJL results: Inhomogeneous islands
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• Homogeneous only:

• First order phase transition

• ending at a critical point
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• Allow for spatial modulations
of the chiral condensate

• First order transition line covered
by inhomogeneous phase

• Critical point → Lifschitz point

(Broniowski et al., Nakano and Tatsumi, Nickel, . . . )
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However...

• What happens at higher densities ?
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Order parameter (T = 0)
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With a stronger coupling...
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The inhomogeneous “continent”

• What is the origin of this continent?
(SC and M. Buballa, arXiv:1111.4400)

• Interplay between vacuum and medium terms

• Even more: vacuum unstable against formation of a
inhomogeneous condensate!
(Broniowski and Kutschera, Phys. Lett. B242)

• But: vacuum contribution must be regularized.

• Difficult to disentangle a model “feature”
from a regularization artifact
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NJL: advantages and disadvantages

• NJL is a simplified model → calculations are feasible!

• Different kinds of spatial modulations can be studied
(SC and M.Buballa, Phys.Rev.D86)

• Can be readily extended to include additional features:
◦ Vector interactions
◦ Coupling with Polyakov loop (PNJL)

(SC, D.Nickel and M.Buballa, Phys.Rev.D82)

◦ QCD-inspired tensor structure
(Bo Feng, E.J. Ferrer, V. Incera, arXiv:1304.0256,

SC, E.J. Ferrer and V. Incera, WIP)

• However: requires regularization!
◦ No universal “good” prescription
◦ Some model “features” may be regularization artifacts
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Try something different: Quark-Meson model

LQM = ψ̄ (iγµ∂µ − g(σ + iγ5τ
aπa))ψ + Lkinmes − U(σ, πa)

• Meson kinetic contributions:

Lkinmes =
1

2
(∂µσ∂

µσ + ∂µπ
a∂µπa)

• Meson potential

U(σ, πa) =
λ

4

(
σ2 + πaπa − v2

)2 − cσ
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• Can in principle be renormalized !

• First step: neglect Dirac sea contribution
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Model parameters

• In the following: chiral limit! m = c = mπ = 0

• NJL:
◦ Coupling constant G
◦ Cutoff Λ

• Fixed using
◦ Pion decay constant fπ
◦ Constituent quark mass Mq

in vacuum

• QM:
◦ Quark-meson coupling g
◦ Vacuum expectation value v
◦ Quartic coupling λ

• Fixed using
◦ Pion decay constant fπ
◦ Constituent quark mass Mq

in vacuum
◦ Sigma meson mass mσ
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Inhomogeneous phases in QM

Just like in NJL:

• Allow for spatially modulated mean-fields

σ → σ(x) , π → π(x)

• Simplest ansatz: chiral density wave:

M(x) = g(σ + iπ)→ M(z) = ∆e iQz

• Minimize thermodynamic potential Ω(∆,Q)
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QM phase diagram - without Dirac sea

• Homogeneous phases:
first-order everywhere

• No critical point
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QM phase diagram - without Dirac sea

• Inhomogeneous phase up to µ = 0 !
• No critical/Lifshitz point
• On the bright side: no continent!
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Including vacuum

• First step towards renormalization:
include vacuum contributions and regularize them

• Investigate cutoff dependence:
◦ Keep all input values fixed:

Mq = 300MeV , fπ = 88MeV , mσ = 2Mq

◦ Vary the cutoff Λ
◦ Refit parameters
◦ Calculate the model phase diagram

• Two different schemes considered:
◦ Sharp three-momentum cutoff
◦ Pauli-Villars type regularization
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Phase diagram with Dirac sea (homogeneous phases)
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Phase diagram with Dirac sea (homogeneous phases)

• Critical point re-appears

• Larger cutoffs move the CP to lower temperatures

• Convergence of the results at higher cutoffs
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Chiral density wave: order parameters (T = 0)

Now allow for inhomogeneous phases...

• Without Dirac sea
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Chiral density wave: phase diagram

• Without Dirac sea
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• More realistic phenomenology (no inhom. phase at zero density)

• CP coincides with LP as long as mσ = 2Mq
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Cranking up the cutoff...
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• Results stabilize at
higher cutoffs
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Changing the σ mass

• So far: mσ = 2Mq = 600 MeV

• What happens if we vary mσ ?
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CP vs LP at mσ < 2Mq

• Consider the intermediate case mσ = 580 MeV
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• CP and LP split: CP is above the LP !

• Coming soon: mσ > 2Mq
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Higher chemical potentials

• Since we are including again the Dirac sea,
it may be worth checking...
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The inhomogeneous “continent” is back!
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But wait, there’s more!

• When including vacuum, the QM thermodynamic potential
becomes unbounded from below for higher gap values

• Already for homogeneous phases...

200 400 600 800 1000

3.2340 ´ 1013

3.2341 ´ 1013

3.2342 ´ 1013

• Believed to be a one-loop artifact!
(V. Skokov et al., Phys. Rev. D82 )
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With inhomogeneous phases

• With inhomogeneous phases,
“dip” occurs for large values of ∆ and q
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Suppressing the “continent”...

• Local “continent” minimum disappears because of this dip!
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Looking again at the continent
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Conclusions

• Qualitative picture we are starting to believe:
strongly interacting matter may form inhomogeneous phases!

• Quantitative picture we are not so sure of:
how big are these inhomogeneous phases?

• Regularization issues in effective models

• Possible solution: pick a renormalizable model
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Conclusions

• We investigated the cutoff and mσ dependence of QM results:
◦ Increasing cutoff shrinks but does not destroy the inhomogeneous

phase, results converge at higher cutoffs
◦ Decreasing mσ rapidly destroys the inhomogeneous phase

• Including the Dirac sea in QM brings the “continent” back
(and then destroys it again. . . or maybe not. )

• Next step: what happens beyond mean-field?
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