Quark-Hadron Phase Transition in the PNJL model for interacting quarks Kanako Yamazaki

Institute of Physics, Komaba, University of Tokyo

in collaboration with Tetsuo Matsui

1. Motivations : quark-hadron transition

2. 2-flavor PNJL model KY and T. Matsui, Nucl. Phys. A913 (2013) 19.
3. 3-flavor PNJL model KY and T. Matsui, arXiv:1310.4960.
4. Numerical results

Quark-Hadron Phase Transition

- Chiral symmetry restoration

- Color de-confinement

Chiral symmetry breaking
Color confinement

Quark-Hadron Phase Transition

Questions :

- What is happening in intermediate region between two phases ?

Chiral symmetry restoration

10

- How degrees of freedom change from hadrons to quarks ?

Method

- Calculating partition function in path integral method

- Model choosing
 - Chiral phase transition

 Nambu-Jona-Lasinio (NJL)
 Y. Nambu, G. Jona-Lasinio, 1961
 T. Hatsuda, T. Kunihiro, 1994

 De-confining phase transition

 Polyakov loop
 A. M. Polyakov, 1973

PNJL model K. Fukushima, 2004

- Bosonization

- inserting dummy integrals
- 4- and 6-point interactions --> bosonic fields
- Mean field approximation + Mesonic correlations

2-flavor PNJL model

Model setup

Partition function

$$Z(T,A_4) = \int [dq] [dar q] \exp \left[\int_0^eta d au \int d^3x {\cal L}_{
m NJL}(q,ar q,A_4)
ight]$$

$${\cal L}_{
m NJL}(q,ar q,A_4) = ar q (i \gamma^\mu D_\mu - m_0) q + G \left[(ar q q)^2 + (i ar q \gamma_5 au q)^2
ight]$$

$$D_{\mu} = \partial_{\mu} + g A_0 \delta_{\mu,0} \ , \ A_4 = i A_0$$

mo: bare quark mass
 breaks chiral symmetry explicitly

 A4 : temporal component of gauge field treated as external field

Bosonization

Hubbard-Stratonovich transformation

J. Hubbard, 1956 R. L. Stratonovich, 1957

- introducing auxiliary bosonic fields : ϕ

$$\phi_i = (\sigma, \pi)$$

-

mm

 eliminating 4 point interaction by inserting dummy integral over boson fields

$$Z(T,A_4) = \int [dq] [dar q] [d\phi] \mathrm{exp} iggl[\int_0^eta d au \int d^3x \mathcal{L}_{\mathrm{eff}}(q,ar q,\phi,A_4) iggr]$$

$$\mathcal{L}_{ ext{eff}}(q,ar{q},\phi\,,A_4) = ar{q} \left[i \gamma^\mu D_\mu + \sigma \ + i \gamma_5 m{ au} \cdot m{\pi}
ight] q - rac{1}{4G} ((\sigma \ - m_0)^2 + \pi_i^2)$$

four fermi interaction --> Yukawa interaction

Thermodynamic potential

- integrating over fermion fields

$$Z(T,A_4)=\int [d\phi]e^{-I(\phi|,A_4)}$$

- expand effective action up to second order of fluctuation

$$\Omega(T, A_4) = T\left(I_0 + \frac{1}{2} \text{Tr}_{M} \ln \frac{\delta I}{\delta \phi_i \delta \phi_j}\right)$$

$$\sigma_0 = -M_0 \ \pi_0 = 0.$$

contribution from mean field contribution from mesonic excitations

Mean field approximation

$$\Omega_{\rm MF}(T, A_4) = TI_0 = -p_{MF}V.$$

- Taking statistical average over the external color gauge field A4
- Replacing A4 with the thermal average of Polyakov loop Φ

$$p_{\rm MF}(T,\Phi,M_0) = p_{\rm MF}^0(M_0) - \Delta p_{\rm vac} + 4 \times 3 \times \int \frac{d^3p}{(2\pi)^3} \frac{p^2}{3E_p} f_{\Phi}(E_p) - \mathcal{U}(T,\Phi)$$

effective potential of Φ

represent dynamics of gluon phenomenologically

$$\mathcal{U}(T, \Phi)/T^4 = -rac{1}{2}b_2(T)ar{\Phi}\Phi - rac{1}{6}b_3(\Phi^3 + ar{\Phi}^3) + rac{1}{4}b_4(ar{\Phi}\Phi)^2$$

Mean field approximation

$$\Omega_{\rm MF}(T, A_4) = TI_0 = -p_{MF}V.$$

- Taking statistical average over the external color gauge field A4
- Replacing A4 with the thermal average of Polyakov loop Φ

$$p_{\rm MF}(T,\Phi,M_0) = p_{\rm MF}^0(M_0) - \Delta p_{\rm vac} + 4 \times 3 \times \int \frac{d^3p}{(2\pi)^3} \frac{p^2}{3E_p} f_{\Phi}(E_p) - \mathcal{U}(T,\Phi)$$

modified quark distribution function

$$f_{\Phi}(E_p) = \frac{\bar{\Phi}e^{2\beta E_p} + 2\Phi e^{\beta E_p} + 1}{e^{3\beta E_p} + 3\bar{\Phi}e^{2\beta E_p} + 3\Phi e^{\beta E_p} + 1}$$

$$arPsi = rac{1}{3} \langle {
m tr}_c L
angle, \qquad ar{arPsi} = rac{1}{3} \langle {
m tr}_c L^\dagger
angle$$

Quark distribution function

Two extreme cases

- De-confining phase

$$\Phi = \overline{\Phi} = 1$$

$$f_{\Phi}(E_p)|_{\Phi=1} = rac{1}{e^{eta E_p} + 1}$$

quark distribution function

- Confining phase

$$\Phi = \bar{\Phi} = 0$$
 $f_{\Phi}(E_p)|_{\Phi=0} = rac{1}{e^{3\beta E_p} + 1}$

triad three quark distribution function

$$E_p = \sqrt{p^2 + M_0^2}$$

Mo is determined by Gap equation

Gap equation

- Mo is determined by stationary condition

$$\left. rac{\delta I}{\delta \phi_i'}
ight|_{\phi' = \phi_0'} = 0.$$

$$M_0 - m_0 = 8GN_f \sum_n \int rac{\mathrm{d}^3 p}{(2\pi)^3} rac{M_0}{(\epsilon_n - gA_4)^2 + p^2 + M_0^2}$$

self-consistent equation : Gap equation

- Mo : constituent quark mass
- mo : bare quark mass

Mesonic Correlations

- Contribution of mesonic correlations

$$p_M = -\sum_n \int \frac{d^3q}{(2\pi)^3} \Big\{ 3\ln\mathcal{M}_{\pi}(\omega_n, q) + \ln\mathcal{M}_{\sigma}(\omega_n, q) \Big\}$$

• chiral limit : mo=0

$$\mathcal{M}_{\pi} = (\omega_n^2 + q^2) F(\omega_n, q) , \quad \mathcal{M}_{\sigma} = (\omega_n^2 + q^2 + 4M_0^2) F(\omega_n, q)$$

$$p_M = p_{\pi}^{\text{free}} + p_{\sigma}^{\text{free}} + p_{non-coll.}^{\text{free}}$$

• breaking chiral symmetry with mo#0

$$\mathcal{M}_{\pi} = (\omega_n^2 + q^2) F(\omega_n, q) + \frac{m_0}{2GM_0} , \quad \mathcal{M}_{\sigma} = (\omega_n^2 + q^2 + 4M_0^2) F(\omega_n, q) + \frac{m_0}{2GM_0}$$

3-flavor PNJL model

3-flavor PNJL model

Partition function

$$Z(T,A_4) = \int [dq] [dar q] \exp \left[\int_0^eta d au \int d^3x {\cal L}_{
m NJL}(q,ar q,A_4)
ight]$$

$$\mathcal{L}_{NJL} = \sum_{i,j=1}^{3} ar{q}_i (i D - \hat{m})_{i,j} q_j + \mathcal{L}_4 + \mathcal{L}_6$$

$$D_{\mu}=\partial_{\mu}\!+\!gA_0\delta_{\mu,0}$$

- 4 point interaction

$$\mathcal{L}_4 = G \sum_{a=0}^8 \left[(ar{q} \lambda^a q)^2 + (ar{q} i \gamma_5 \lambda^a q)^2
ight]$$

$$a = 0 \sim 8$$

- 6 point interaction U(1)A breaking

$$\mathcal{L}_6 = -K \Big[\det ar{q}(1+\gamma_5)q + \det ar{q}(1-\gamma_5)q \Big]$$

Meson nonets

Pseudo scalar meson π, Κ, η, η'

Scalar meson σ, к, f0, a0 Ishida, 1998 Fariborz, Jora, Schechter, 2009 Mass Width [MeV] [MeV] 400 - 700 ~550 σ ~800 Κ fo(980) ~980 40 - 100 ao(980) ~980 50 - 100

 \mathcal{L}_6 plays a role in mass splitting

Rewrite P.F. by auxiliary fields

 Lagrangian contains 4th power and 6th power of fermion fields.

6th power can be effectively rewritten to 4th power
 by replacing with condensate.

– eliminating 4point interactions to bosonic fields : ϕ^a,π^a

 We get partition function as a function of auxiliary bosonic fields :

$$Z(T, A_4) = \int [d\phi] [d\pi] \exp\left[-I_{eff}(\phi^a, \pi^a, A_4)\right]$$

Thermodynamic potential

- Expanding effective action up to second order of fluctuation around stationary point

- Stationary point is determined by stationary condition : δI

$$\left.\frac{\delta I}{\delta \phi_a}\right|_{\phi = \phi_0} = 0.$$

- Performing Gaussian integrals over bosonic fields

- Thermodynamic potential

$$\Omega(T, A_4) = T\left(I_0 + \frac{1}{2} \operatorname{Tr}_M \ln \frac{\delta^2 I}{\delta \phi_a \delta \phi_b} + \frac{1}{2} \operatorname{Tr}_M \ln \frac{\delta^2 I}{\delta \pi_a \delta \pi_b}\right)$$

mean field

mesonic excitations

Constituent quark mass

- Pressure depends on constituent quark masses.

- Constituent quark masses are determined by solving gap equations : $M_u = m_u - 4G\langle \bar{u}u \rangle + 2K\langle \bar{d}d \rangle \langle \bar{s}s \rangle$

$$M_s = m_s - 4G\langle \bar{s}s \rangle + 2K\langle \bar{u}u \rangle \langle \bar{d}d \rangle$$

- Chiral condensates : $\langle \bar{u}u \rangle (= \langle \bar{d}d \rangle), \langle \bar{s}s \rangle$

Order Parameters

Expectation value of Polyakov loopTc : pseudo critical temperatureTc ~ 220MeV

Pressure

- mean field

$$p_{MF}(T) = \sum_{f} p_{M_f}^0 + 4N_c \sum_{f} \int \frac{d^3p}{(2\pi)^3} \frac{p^2}{3E_f} f_{\langle l \rangle}(E_f) - \mathcal{U}(T)$$

- mesonic correlations

$$p_{M} = -\sum_{n} \int \frac{d^{3}q}{(2\pi)^{3}} \Big\{ 3\ln\mathcal{M}_{\pi}(\omega_{n},q) + 4\ln\mathcal{M}_{K}(\omega_{n},q) + \ln\mathcal{M}_{\eta}(\omega_{n},q) + \ln\mathcal{M}_{\eta'}(\omega_{n},q) + \ln\mathcal{M}_{\eta'}(\omega_{n},q) + \ln\mathcal{M}_{\sigma}(\omega_{n},q) + 4\ln\mathcal{M}_{\kappa}(\omega_{n},q) + 3\ln\mathcal{M}_{a_{0}}(\omega_{n},q) + \ln\mathcal{M}_{f_{0}}(\omega_{n},q) \Big\}$$

Pressure

- mean field

$$p_{MF}(T) = \sum_{f} p_{M_f}^0 + 4N_c \sum_{f} \int \frac{d^3 p}{(2\pi)^3} \frac{p^2}{3E_f} f_{\langle l \rangle}(E_f) - \mathcal{U}(T)$$

- mesonic correlations

$$p_{M} = -\sum_{n} \int \frac{d^{3}q}{(2\pi)^{3}} \left\{ 3\ln\mathcal{M}_{\pi}(\omega_{n},q) + 4\ln\mathcal{M}_{K}(\omega_{n},q) + \ln\mathcal{M}_{\eta}(\omega_{n},q) + \ln\mathcal{M}_{\eta'}(\omega_{n},q) + \ln\mathcal{M}_{\eta'}(\omega_{n},q) + \ln\mathcal{M}_{\sigma}(\omega_{n},q) + 4\ln\mathcal{M}_{\kappa}(\omega_{n},q) + 3\ln\mathcal{M}_{a_{0}}(\omega_{n},q) + \ln\mathcal{M}_{f_{0}}(\omega_{n},q) \right\}$$
Pseudo
scalar
$$\mathcal{M}_{\alpha}(\omega_{n},q) = \frac{1}{2G'_{\alpha}} - \Pi_{\alpha}(\omega_{n},q)$$

$$\Pi(\omega_{n},q) = \frac{1}{2\mathcal{M}_{\alpha}} + \mathcal{M}_{\alpha}(\omega_{n},q)$$

Pressure

- mean field

$$p_{MF}(T) = \sum_{f} p_{M_f}^0 + 4N_c \sum_{f} \int \frac{d^3 p}{(2\pi)^3} \frac{p^2}{3E_f} f_{\langle l \rangle}(E_f) - \mathcal{U}(T)$$

- mesonic correlations

Scalar

hn

M

$$p_{M} = -\sum_{n} \int \frac{d^{3}q}{(2\pi)^{3}} \Big\{ 3\ln\mathcal{M}_{\pi}(\omega_{n},q) + 4\ln\mathcal{M}_{K}(\omega_{n},q) + \ln\mathcal{M}_{\eta}(\omega_{n},q) + \ln\mathcal{M}_{\eta'}(\omega_{n},q) + \ln\mathcal{M}_{\eta'}(\omega_{n},q) + \ln\mathcal{M}_{\eta'}(\omega_{n},q) \Big\}$$

$$\mathcal{M}_{\alpha}(\omega_{n},q) = \frac{1}{2G'_{\alpha}} - \Pi_{\alpha}(\omega_{n},q) \qquad \Pi(\omega_{n},q) = \mathbf{I}(\omega_{n},q) = \mathbf{I}(\omega_{n},q)$$

Effective coupling G'

$$G'_{\pi} = G - \frac{K}{2} \langle \bar{s}s \rangle$$

$$G'_K = G - \frac{K}{2} \langle \bar{u}u \rangle$$

$$G'_{\eta^8} = G + \frac{K}{6} \Big(\langle \bar{s}s \rangle - 4 \langle \bar{u}u \rangle \Big)$$

$$G'_{\eta^0} = G + \frac{K}{3} \Big(\langle \bar{s}s \rangle + 2 \langle \bar{u}u \rangle \Big)$$

Numerical Results

Pressure in the chiral limit (2-flavor)

 At low T, pressure from quark excitation is suppressed by Polyakov loop.

- At high T, massless quark excitations dominate the pressure.

Pressure with finite bare quark mass (2-f)

 At low T, pressure from quark excitation is suppressed by Polyakov loop.

- At high T, massless quark excitations dominate pressure.

Pressure (3-flavor)

– π , K and σ are taken into this calculation.

- At low T, pion and kaon dominate pressure.

- At high T, pressure approaches to quark mean field pressure.

Real part of M Imaginary part of M

$$\mathcal{M}(\omega, q) = \frac{1}{2G'} - \Pi(\omega, q)$$

Kaon

Summary and Outlook

- We have described a quark-hadron phase transition from interacting quarks.

- Collective modes of mesons at low T melt with increasing temperature, and resolve to quarks.

 Melting temperature of pion is higher than that of kaon.

- How to put baryonic correlation at finite chemical potential.