Longitudinal Fluctuation And Di-hadron Correlation In Event-by-event 3+1D Hydrodynamics

LongGang Pang

Central China Normal University with XinNian Wang from CCNU+LBNL and Qun Wang from USTC

Nov. 22nd, 2013 @ YITP

- **1** Model: Event-by-event (3+1)D hydro with AMPT initial conditions
- **2** Effects of longitudinal fluctuations
- 3 Di-hadron Correlation And Per-trigger Particle Yield
- 4 vn-decomposition of long range correlation

1 Model: Event-by-event (3+1)D hydro with AMPT initial conditions

- **2** Effects of longitudinal fluctuations
- 3 Di-hadron Correlation And Per-trigger Particle Yield
- 4 vn-decomposition of long range correlation

Milne coordinate

- Proper time: $\tau = \sqrt{t^2 z^2}$
- Spatial rapidity: $\eta_s = \frac{1}{2} \ln \frac{t+z}{t-z}$
- The metric: $g^{\mu\nu} = diag(1, -1, -1, -\tau^2)$
- Momentum rapidity: $Y = \frac{1}{2} \ln \frac{E+Pz}{E-Pz}$,
- Pseudo-rapidity: $\eta = \frac{1}{2} \ln \frac{P+Pz}{P-Pz}$.

Hydrodynamic Equations

$$\nabla_{\mu}T^{\mu\nu} = 0 \tag{2}$$

$$\nabla_{\mu}J^{\mu} = 0 \tag{3}$$

- \blacksquare Energy momentum tensor: $T^{\mu\nu}=(\varepsilon+P)u^{\mu}u^{\nu}-Pg^{\mu\nu}+X^{\mu\nu}$
- Net baryon current: $J^{\mu} = nu^{\mu}$
- u^{μ} : four velocity which obeys $u_{\mu}u^{\mu} = 1$.

For ideal hydro

- $\bullet X^{\mu\nu} = 0$
- 6 variables: ε , P, n, v_x , v_y , v_η ; 5 equations
- Equation of state (EOS) $P = P(\varepsilon, n)$ is needed.

- EOSI: Massless ideal partons gas p = e/3.
- EOSQ: First order phase transition between QGP and HRG
- EOSL: Smoothed crossover between lattice QCD Eos and HRG
- EOSL parameterized in Nucl.Phys. A837 (2010) 26-53 is used in this talk.

s95p-v1 By Pasi Huovinen and Peter Petreczky

QCD in hydrodynamic simulations

EOS

$$P = \frac{\partial (T \ln Z)}{\partial V} \tag{4}$$

$$\ln Z^{QCD} = \ln \int dU d\Psi d\bar{\Psi} e^{-S_E(U,\Psi,\bar{\Psi})}$$
(5)

$$\ln Z^{RHG} = \sum_{i \in Mesons} \ln Z^M_{mi}(T, V, \mu) \tag{6}$$

$$+\sum_{i\in Baryons} \ln Z^B_{mi}(T, V, \mu) \tag{7}$$

• where U is gauge filed, Ψ and $\overline{\Psi}$ are fermionic field. $S_E = S_g + S_f$. • and $\ln Z_{mi}^{M/B} = \mp \frac{Vg_i}{2\pi^2} \int_0^\infty dk k^2 \ln(1 \mp z_i e^{-\varepsilon_i/T})$.

QCD in hydrodynamic simulations

EOS

$$P = \frac{\partial (T \ln Z)}{\partial V} \tag{4}$$

$$\ln Z^{QCD} = \ln \int dU d\Psi d\bar{\Psi} e^{-S_E(U,\Psi,\bar{\Psi})}$$
(5)

$$n Z^{RHG} = \sum_{i \in Mesons} ln Z^M_{mi}(T, V, \mu)$$
(6)

$$+\sum_{i\in Baryons} \ln Z^B_{mi}(T, V, \mu) \tag{7}$$

• where U is gauge filed, Ψ and $\overline{\Psi}$ are fermionic field. $S_E = S_g + S_f$. • and $\ln Z_{mi}^{M/B} = \mp \frac{Vg_i}{2\pi^2} \int_0^\infty dk k^2 \ln(1 \mp z_i e^{-\varepsilon_i/T})$.

Others

∎ Ini: CGC, IP-Glasma, EPOS, HIJING+ZPC

$$\frac{dN}{dY p_T dp_T d\phi} = \frac{g_s}{(2\pi)^3} \int_{\Sigma} p^{\mu} d\Sigma_{\mu} \frac{1}{\exp((p \cdot u - \mu)/T_{FO}) \pm 1}$$
(8)

Reduce the filesize of freeze out hyper surface

Spectra calc. and resonance decay take 2-3 times longer than hydro evolution even with smaller SF data file.

Further speed up by GPU parallel computing (developing)

Perfect job for GPU

- Up to 200,000 small pieces of freeze out hyper surface.
- More than 100 resonance particles.
- At least 100 events for fluctuating initial conditions.

Simple test on my own laptop: π^+ spectra for Pb+Pb 2.76TeV/n, 20-25%

CPU-i5-430M: 7 minutes .VS. GPU-GT-240M: 30 seconds

10 times faster on my laptop with 48 cuda cores! Recent NVIDIA K20 GPU has 2496 Cuda Cores.

10 / 33

HIJING + ZPC

Glauber Geometry + PYTHIA for PP + Shadowing + Parton cascade

Comparison

	MC Glauber	HIJING+ZPC
Glauber Geometry	yes	yes
Transverse Fluc	yes	yes
Longitudinal Fluc	no	yes
Ini flow velocity	no	yes
Sub-nucleon, QCD	no	yes
Intrinsic corr.	no	yes

$$T_{0}^{\mu\nu} = K \sum_{i} \frac{p_{i}^{\mu} p_{i}^{\nu}}{p_{i}^{\tau}} f$$
(9)
$$f = \frac{1}{\tau_{0} \sqrt{2\pi\sigma_{\eta_{s}}^{2}} 2\pi\sigma_{r}^{2}} \exp\left(-\frac{(x-x_{i})^{2} + (y-y_{i})^{2}}{2\sigma_{r}^{2}} - \frac{(\eta_{s} - \eta_{si})^{2}}{2\sigma_{\eta_{s}}^{2}}\right)$$
(10)

- We assumed local thermalization and solve e and u^{μ} from $T^{\mu\nu}$.
- K and τ_0 are got from fitting the multiplicity of charged hadrons for central collisions.
- K = 1.45 and $\tau_0 = 0.4$ fm for $\sqrt{s} = 200 \text{ GeV/n Au+Au}$ collisions.
- K = 1.6 and $\tau_0 = 0.2$ fm for $\sqrt{s} = 2.76$ TeV/n Pb+Pb collisions.
- $\sigma_r = 0.6 \text{ fm}, \ \sigma_{\eta_s} = 0.6.$
- Longitudinal fluctuation and initial flow velocity are introduced from cascaded partons.

Transverse plane

The hot spikes squeezed out by hot spots may play an import role in understanding v_n .

Hydrodynamic evolution for AMPT initial condition

Reaction plane

1 Model: Event-by-event (3+1)D hydro with AMPT initial conditions

2 Effects of longitudinal fluctuations

3 Di-hadron Correlation And Per-trigger Particle Yield

4 vn-decomposition of long range correlation

• Usually a tube-like dist. in initial condition is used to get Bjorken scaling.

Effects of Longitudinal fluctuations on p_T spectra and v_2

Phys.Rev. C86 (2012) 024911 by LongGang Pang, Qun Wang and Xin
Nian Wang

Longitudinal fluctuations on di-hadron correlation

AuAu 200 GeV/n Centrality 30 - 40%, 2 GeV/c $\leq p_t^{trig}, p_t^{assoc} \leq 3$ GeV/c.

- Without longitudinal fluctuation, di-hadron correlation is constant along rapidity direction
- We want to study the di-hadron correlation more quantitively.

1 Model: Event-by-event (3+1)D hydro with AMPT initial conditions

- 2 Effects of longitudinal fluctuations
- 3 Di-hadron Correlation And Per-trigger Particle Yield

4 vn-decomposition of long range correlation

- Intrinsic correlation in P+P: near side peak + away side ridge.
- A+A is a superposition of P+P due to absent of final state interaction in HIJING.
- No near side ridge in P+P and A+A in HIJING.

Di-hadron correlation and per-trigger particle yield in hydro

Formula

$$C12(\Delta\eta, \Delta\phi) = S(\Delta\eta, \Delta\phi)/B(\Delta\eta, \Delta\phi)$$
(11)

$$S(\Delta \eta, \Delta \phi) = \frac{1}{N_{trig}} \frac{d^2 N^{same}}{d\Delta \eta d\Delta \phi}$$
(12)

Di-hadron correlation and per-trigger particle yield in hydro

Formula

$$C12(\Delta\eta, \Delta\phi) = S(\Delta\eta, \Delta\phi)/B(\Delta\eta, \Delta\phi)$$
(11)

$$B(\Delta\eta, \Delta\phi) = \frac{1}{N_{trig}} \frac{d^2 N^{mixd}}{d\Delta\eta d\Delta\phi}$$
(12)

Di-hadron correlation and per-trigger particle yield in hydro

Formula

$$C12(\Delta\eta, \Delta\phi) = S(\Delta\eta, \Delta\phi)/B(\Delta\eta, \Delta\phi)$$
(11)

$$\frac{1}{N_{trig}} \frac{d^2 N^{pair}}{d\Delta \eta d\Delta \phi} = \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)} \times B(0, 0)$$
(12)

- Flow at near side, flow and back-to-back jet at away side are subtracted.
- The scale factor is defined as $N_{ALICE}^{asso}/N_{Hydro}^{asso}$ for each centrality.
- Collectivity makes Per-trigger particle yield bigger for central collisions.

- Phys.Rev. C86 (2012) 024911 by LongGang Pang, Qun Wang and XinNian Wang
- arXiv:1309.6735 by LongGang Pang, Qun Wang and XinNian Wang

1 Model: Event-by-event (3+1)D hydro with AMPT initial conditions

- **2** Effects of longitudinal fluctuations
- 3 Di-hadron Correlation And Per-trigger Particle Yield
- 4 vn-decomposition of long range correlation

For Di-hadron correlation from AMPT+3DHydro

$$C12(\Delta\phi) = \frac{1}{\Delta\eta_{max} - \Delta\eta_{min}} \int_{\Delta\eta_{min}}^{\Delta\eta_{max}} C12(\Delta\eta, \Delta\phi) d\Delta\eta$$
(13)

For vn-decomposition from AMPT+3DHydro

$$C12^{EP}(\Delta\phi) = b_1 \cos(\Delta\phi) + b_2(1.0 + v_{n,t}^{EP} v_{n,a}^{EP} \cos(n\Delta\phi))$$
(14)

$$C12^{22}(\Delta\phi) = b_1 \cos(\Delta\phi) + b_2(1.0 + v_{n,t}^{22}v_{n,a}^{22}\cos(n\Delta\phi))$$
(15)

where $v_n^{22} = \sqrt{\langle v_n^{EP} * v_n^{EP} \rangle}$.

C12 for $Pb + Pb\sqrt{s} = 2.76TeV/n$, (0-5%), $p_T^{trig}, p_T^{asso} \in [2,3]GeV/c$

- Di-hadron correlation at large $\Delta \eta$ can be decomposed in v_n^{22} .
- Since initial flow and LF is introduced in AMPT initial condition, short range correlation can't be decomposed in v_n .

C12 for $Pb + Pb\sqrt{s} = 2.76TeV/n$, (10-20%), $p_T^{trig}, p_T^{asso} \in [2,3]GeV/c$

• For different centralities, the weight of harmonic flow at a special p_T range will be different, so as the away side dihadron correlation structure.

- For 0 5%, v_3 and v_4 are larger than v_2 at [2, 3] GeV/c in our model, which caused the two bumps at away side correlation.
- For 10 20%, v_2 is larger, the away side structure has a strong centrality and p_T cut dependence.

1 Model: Event-by-event (3+1)D hydro with AMPT initial conditions

- **2** Effects of longitudinal fluctuations
- 3 Di-hadron Correlation And Per-trigger Particle Yield
- 4 vn-decomposition of long range correlation

■ Hijing and ZPC describes the pre-equilibrium dynamics

■ Longitudinal fluctuation, Initial flow, Intrinsic correlation

• Longitudinal fluctuation suppress elliptic flow.

• Longitudinal fluctuation + intrinsic correlation describes di-hadron correlation.

• Long range correlation can be decomposited by v_n^{22} .

Thanks!